本書涵蓋了這些領域中使用Python模塊演示的概率、統計和機器學習的關鍵思想。整本書包括所有的圖形和數值結果,都可以使用Python代碼及其相關的Jupyter/IPython Notebooks。作者通過使用多種分析方法和Python代碼的有意義的示例,開發了機器學習中的關鍵直覺,從而將理論概念與具體實現聯系起來。現代Python模塊(如panda、y和Scikit-learn)用于模擬和可視化重要的機器學習概念,如偏差/方差權衡、交叉驗證和正則化。許多抽象的數學思想,如概率論中的收斂性,都得到了發展,并用數值例子加以說明。本書適合任何具有概率、統計或機器學習的本科生,以及具有Python編程的基本知識的人。
這本書來自統計學習課程,這是一門統計機器學習的入門課程,面向具有一些微積分、線性代數和統計學背景的學生。這門課程的重點是監督學習:分類和回歸。本課程將涵蓋機器學習和數據科學中使用的一系列方法,包括:
這些方法將在整個課程中被研究并應用于來自各種應用的真實數據。課程還涵蓋了一些重要的實際問題,如交叉驗證、模型選擇和偏方差權衡。課程包括理論(例如,推導和證明)以及實踐(特別是實驗室和小型項目)。實際部分將使用Python實現。
有興趣的數據科學專業人士可以通過本書學習Scikit-Learn圖書館以及機器學習的基本知識。本書結合了Anaconda Python發行版和流行的Scikit-Learn庫,演示了廣泛的有監督和無監督機器學習算法。通過用Python編寫的清晰示例,您可以在家里自己的機器上試用和試驗機器學習的原理。
所有的應用數學和編程技能需要掌握的內容,在這本書中涵蓋。不需要深入的面向對象編程知識,因為工作和完整的例子被提供和解釋。必要時,編碼示例是深入和復雜的。它們也簡潔、準確、完整,補充了介紹的機器學習概念。使用示例有助于建立必要的技能,以理解和應用復雜的機器學習算法。
對于那些在機器學習方面追求職業生涯的人來說,Scikit-Learn機器學習應用手冊是一個很好的起點。學習這本書的學生將學習基本知識,這是勝任工作的先決條件。讀者將接觸到專門為數據科學專業人員設計的蟒蛇分布,并將在流行的Scikit-Learn庫中構建技能,該庫是Python世界中許多機器學習應用程序的基礎。
你將學習
這本書是給誰的
簡單易懂,讀起來很有趣,介紹Python對于初學者和語言新手都是理想的。作者Bill Lubanovic帶您從基礎知識到更復雜和更多樣的主題,混合教程和烹飪書風格的代碼配方來解釋Python 3中的概念。章節結尾的練習可以幫助你練習所學的內容。
您將獲得該語言的堅實基礎,包括測試、調試、代碼重用和其他開發技巧的最佳實踐。本書還向您展示了如何使用各種Python工具和開放源碼包將Python用于商業、科學和藝術領域的應用程序。
通過機器學習的實際操作指南深入挖掘數據
機器學習: 為開發人員和技術專業人員提供實踐指導和全編碼的工作示例,用于開發人員和技術專業人員使用的最常見的機器學習技術。這本書包含了每一個ML變體的詳細分析,解釋了它是如何工作的,以及如何在特定的行業中使用它,允許讀者在閱讀過程中將所介紹的技術融入到他們自己的工作中。機器學習的一個核心內容是對數據準備的強烈關注,對各種類型的學習算法的全面探索說明了適當的工具如何能夠幫助任何開發人員從現有數據中提取信息和見解。這本書包括一個完整的補充教師的材料,以方便在課堂上使用,使這一資源有用的學生和作為一個專業的參考。
機器學習的核心是一種基于數學和算法的技術,它是歷史數據挖掘和現代大數據科學的基礎。對大數據的科學分析需要機器學習的工作知識,它根據從訓練數據中獲得的已知屬性形成預測。機器學習是一個容易理解的,全面的指導,為非數學家,提供明確的指導,讓讀者:
通過學習構建一個可以從數據中學習的系統,讀者可以在各個行業中增加他們的效用。機器學習是深度數據分析和可視化的核心,隨著企業發現隱藏在現有數據中的金礦,這一領域的需求越來越大。對于涉及數據科學的技術專業人員,機器學習:為開發人員和技術專業人員提供深入挖掘所需的技能和技術。
高斯過程(GPs)為核機器的學習提供了一種有原則的、實用的、概率的方法。在過去的十年中,GPs在機器學習社區中得到了越來越多的關注,這本書提供了GPs在機器學習中理論和實踐方面長期需要的系統和統一的處理。該書是全面和獨立的,針對研究人員和學生在機器學習和應用統計學。
這本書處理監督學習問題的回歸和分類,并包括詳細的算法。提出了各種協方差(核)函數,并討論了它們的性質。從貝葉斯和經典的角度討論了模型選擇。討論了許多與其他著名技術的聯系,包括支持向量機、神經網絡、正則化網絡、相關向量機等。討論了包括學習曲線和PAC-Bayesian框架在內的理論問題,并討論了幾種用于大數據集學習的近似方法。這本書包含說明性的例子和練習,和代碼和數據集在網上是可得到的。附錄提供了數學背景和高斯馬爾可夫過程的討論。
獲得在日常工作中應用機器學習所需的信心。通過本實用指南,作者Matthew Kirk向您展示了如何在您的代碼中集成和測試機器學習算法,而沒有學術潛臺詞。
全書以圖形和突出顯示的代碼示例為特色,使用Python的Numpy、panda、Scikit-Learn和SciPy數據科學庫進行測試。如果你是一個軟件工程師或業務分析師,對數據科學感興趣,這本書將幫助你:
本書通過提供真實的案例研究和示例,為使用Python庫進行機器學習提供了堅實的基礎。它涵蓋了諸如機器學習基礎、Python入門、描述性分析和預測分析等主題。包括高級機器學習概念,如決策樹學習、隨機森林、增強、推薦系統和文本分析。這本書在理論理解和實際應用之間采取了一種平衡的方法。所有的主題都包括真實世界的例子,并提供如何探索、構建、評估和優化機器學習模型的逐步方法。
本備忘單是機器學習手冊的濃縮版,包含了許多關于機器學習的經典方程和圖表,旨在幫助您快速回憶起機器學習中的知識和思想。
這個備忘單有兩個顯著的優點:
清晰的符號。數學公式使用了許多令人困惑的符號。例如,X可以是一個集合,一個隨機變量,或者一個矩陣。這是非常混亂的,使讀者很難理解數學公式的意義。本備忘單試圖規范符號的使用,所有符號都有明確的預先定義,請參見小節。
更少的思維跳躍。在許多機器學習的書籍中,作者省略了數學證明過程中的一些中間步驟,這可能會節省一些空間,但是會給讀者理解這個公式帶來困難,讀者會在中間迷失。
簡介:
科學專業人員可以通過本書學習Scikit-Learn庫以及機器學習的基礎知識。該書將Anaconda Python發行版與流行的Scikit-Learn庫結合在一起,展示了各種有監督和無監督的機器學習算法。通過Python編寫的清晰示例向讀者介紹機器學習的原理,以及相關代碼。
本書涵蓋了掌握這些內容所需的所有應用數學和編程技能。不需要深入的面向對象編程知識,因為可以提供并說明完整的示例。必要時,編碼示例很深入且很復雜。它們也簡潔,準確,完整,是對引入的機器學習概念的補充。處理示例有助于建立理解和應用復雜機器學習算法所需的技能。
本書的學生將學習作為勝任力前提的基礎知識。讀者將了解專門為數據科學專業人員設計的Python Anaconda發行版,并將在流行的Scikit-Learn庫中構建技能,該庫是Python領域許多機器學習應用程序的基礎。
本書內容包括:
內容介紹:
這本書分為八章。 第1章介紹了機器學習,Anaconda和Scikit-Learn的主題。 第2章和第3章介紹算法分類。 第2章對簡單數據集進行分類,第3章對復雜數據集進行分類。 第4章介紹了回歸預測模型。 第5章和第6章介紹分類調整。 第5章調整簡單數據集,第6章調整復雜數據集。 第7章介紹了預測模型回歸調整。 第8章將所有知識匯總在一起,以整體方式審查和提出發現。
作者介紹:
David Paper博士是猶他州立大學管理信息系統系的教授。他寫了兩本書-商業網絡編程:Oracle的PHP面向對象編程和Python和MongoDB的數據科學基礎。他在諸如組織研究方法,ACM通訊,信息與管理,信息資源管理期刊,AIS通訊,信息技術案例與應用研究期刊以及遠程計劃等參考期刊上發表了70余篇論文。他還曾在多個編輯委員會擔任過各種職務,包括副編輯。Paper博士還曾在德州儀器(TI),DLS,Inc.和鳳凰城小型企業管理局工作。他曾為IBM,AT&T,Octel,猶他州交通運輸部和空間動力實驗室執行過IS咨詢工作。 Paper博士的教學和研究興趣包括數據科學,機器學習,面向對象的程序設計和變更管理。
目錄: