管理統計和數據科學的原理包括:數據可視化;描述性措施;概率;概率分布;數學期望;置信區間;和假設檢驗。方差分析;簡單線性回歸;多元線性回歸也包括在內。另外,本書還提供了列聯表、卡方檢驗、非參數方法和時間序列方法。
教材:
這是第一本介紹隨機過程貝葉斯推理程序的書。貝葉斯方法有明顯的優勢(包括對先驗信息的最佳利用)。最初,這本書以貝葉斯推理的簡要回顧開始,并使用了許多與隨機過程分析相關的例子,包括四種主要類型,即離散時間和離散狀態空間以及連續時間和連續狀態空間。然后介紹了理解隨機過程所必需的要素,接著是專門用于此類過程的貝葉斯分析的章節。重要的是,這一章專門討論隨機過程中的基本概念。本文詳細描述了離散時間馬爾可夫鏈、馬爾可夫跳躍過程、常規過程(如布朗運動和奧恩斯坦-烏倫貝克過程)、傳統時間序列以及點過程和空間過程的貝葉斯推理(估計、檢驗假設和預測)。書中著重強調了許多來自生物學和其他科學學科的例子。為了分析隨機過程,它將使用R和WinBUGS。
Python中的數據科學和分析是為學術和商業環境中的數據科學和數據分析從業者設計的。其目的是通過使用Python開發的工具(如SciKit-learn、Pandas、Numpy等)向讀者介紹數據科學中使用的主要概念。鑒于Python最近在數據科學社區的流行,它的使用特別有趣。有經驗的程序員和新手都可以使用這本書。
本書的組織方式是各個章節相互獨立,這樣讀者就可以放心地使用其中的內容作為參考。這本書從過程和獲得的結果的角度討論了什么是數據科學和分析。還介紹了Python的重要特性,包括Python入門。機器學習、模式識別和人工智能的基本元素在書的其余部分使用的算法和實現的基礎上也出現在書的第一部分。
本書的第二部分介紹了使用Python、聚類技術和分類算法的回歸分析。層次聚類、決策樹和集成技術,以及降維技術和推薦系統也被探討。書的最后一部分討論了支持向量機算法和內核技巧。
如果您是用Python編程的新手,并且正在尋找可靠的介紹,那么這本書就是為您準備的。由計算機科學教師開發,在“為絕對初學者”系列叢書通過簡單的游戲創造教授編程的原則。您將獲得實際的Python編程應用程序所需的技能,并將了解如何在真實場景中使用這些技能。在整個章節中,你會發現一些代碼示例來說明所提出的概念。在每一章的結尾,你會發現一個完整的游戲,展示了這一章的關鍵思想,一章的總結,以及一系列的挑戰來測試你的新知識。當你讀完這本書的時候,你將非常精通Python,并且能夠將你所學到的基本編程原理應用到你要處理的下一種編程語言。
使用Python的高級數據科學和分析使數據科學家能夠繼續發展他們的技能,并將其應用于商業和學術設置中。這本書中討論的主題是補充和后續主題討論的數據科學和分析與Python。其目的是使用Python開發的工具,如SciKit-learn、Pandas、Numpy、Beautiful Soup、NLTK、NetworkX等,覆蓋數據科學中重要的高級領域。使用Keras、TensorFlow、Core ML等框架,以及用于iOS和MacOS應用開發的Swift來支持模型開發。
題目
Fundamentals of Graphics Using
簡介
本書介紹了2D和3D圖形的基本概念和原理,是為學習圖形和/或多媒體相關主題的本科生和研究生編寫的。 關于圖形的大多數書籍都使用C編程環境來說明實際的實現。 本書偏離了這種常規做法,并說明了為此目的使用MATLAB?的情況。 MathWorks,Inc.的MATLAB是一種數據分析和可視化工具,適用于算法開發和仿真應用。 MATLAB的優點之一是它包含內置函數的大型庫,與其他當代編程環境相比,該庫可用于減少程序開發時間。 假定該學生具有MATLAB的基本知識,尤其是各種矩陣運算和繪圖功能。 提供了MATLAB代碼,作為對特定示例的解答,讀者可以簡單地復制并粘貼代碼來執行它們。 通常,代碼顯示預期結果的答案,例如曲線方程,混合函數和變換矩陣,并繪制最終結果以提供解決方案的直觀表示。 本書的目的是,首先,演示如何使用MATLAB解決圖形問題,其次,通過可視化表示和實際示例,幫助學生獲得有關主題的深入知識。
本書大致分為兩個部分:2D圖形和3D圖形,盡管在某些地方這兩個概念重疊在一起主要是為了突出它們之間的差異,或者是為了使用較簡單的概念使讀者為更復雜的概念做準備。
本書的第一部分主要討論與2D圖形有關的概念和問題,涵蓋了五章:(1)內插樣條線,(2)混合函數和混合樣條線,(3)近似樣條線,(4)2D變換, (5)樣條曲線屬性。
第1章介紹了各種類型的插值樣條及其使用多項式的表示。 詳細討論了樣條方程的推導原理以及所涉及的矩陣代數的理論概念,然后通過數值示例和MATLAB代碼來說明過程。 在大多數示例后均附有圖形化圖表,以使讀者能夠直觀地看到方程式如何根據給定的起點,終點和其他相關參數轉換為相應的曲線。 本章還重點介紹了使用線性,二次方和三次方變體的樣條方程的標準或空間形式以及參數形式的這些過程的差異。
首先加速介紹R生態系統、編程語言和工具,包括R腳本和RStudio。通過使用許多例子和項目,這本書教你如何將數據導入R,以及如何使用R處理這些數據。一旦基礎扎實,《實用R 4》的其余部分將深入具體的項目和例子,從使用R和LimeSurvey運行和分析調查開始。接下來,您將使用R和MouselabWeb執行高級統計分析。然后,您將看到在沒有統計信息的情況下R如何工作,包括如何使用R自動化數據格式化、操作、報告和自定義函數。
本書的最后一部分討論了在服務器上使用R;您將使用R構建一個腳本,該腳本可以運行RStudio服務器并監視報表源的更改,以便在發生更改時向用戶發出警報。這個項目包括定期電子郵件提醒和推送通知。最后,您將使用R創建一個定制的個人最重要信息的每日綱要報告,例如天氣報告、每日日歷、待辦事項等等。這演示了如何自動化這樣一個過程,以便用戶每天早上導航到相同的web頁面并獲得更新的報告。
你將學到什么
這本書是給誰的
這本教科書通過提供實用的建議,使用直接的例子,并提供相關應用的引人入勝的討論,以一種容易理解的方式介紹了基本的機器學習概念。主要的主題包括貝葉斯分類器,最近鄰分類器,線性和多項式分類器,決策樹,神經網絡,和支持向量機。后面的章節展示了如何通過“推進”的方式結合這些簡單的工具,如何在更復雜的領域中利用它們,以及如何處理各種高級的實際問題。有一章專門介紹流行的遺傳算法。
這個修訂的版本包含關于工業中機器學習的實用應用的關鍵主題的三個全新的章節。這些章節研究了多標簽域,無監督學習和它在深度學習中的使用,以及歸納邏輯編程的邏輯方法。許多章節已經被擴展,并且材料的呈現已經被增強。這本書包含了許多新的練習,許多解決的例子,深入的實驗,和獨立工作的計算機作業。
//link.springer.com/book/10.1007/978-3-319-63913-0#about
關于大數據技術的信息很多,但將這些技術拼接到端到端企業數據平臺是一項艱巨的任務,沒有得到廣泛的討論。通過這本實用的書,您將學習如何在本地和云中構建大數據基礎設施,并成功地構建一個現代數據平臺。
本書非常適合企業架構師、IT經理、應用程序架構師和數據工程師,它向您展示了如何克服Hadoop項目期間出現的許多挑戰。在深入了解以下內容之前,您將在一個徹底的技術入門中探索Hadoop和大數據領域中可用的大量工具:
-平臺: 了解部署、操作、安全性、高可用性和災難恢復的各個方面,以及將平臺與企業IT的其他部分集成在一起所需了解的所有內容
本書涵蓋了這些領域中使用Python模塊演示的概率、統計和機器學習的關鍵思想。整本書包括所有的圖形和數值結果,都可以使用Python代碼及其相關的Jupyter/IPython Notebooks。作者通過使用多種分析方法和Python代碼的有意義的示例,開發了機器學習中的關鍵直覺,從而將理論概念與具體實現聯系起來。現代Python模塊(如panda、y和Scikit-learn)用于模擬和可視化重要的機器學習概念,如偏差/方差權衡、交叉驗證和正則化。許多抽象的數學思想,如概率論中的收斂性,都得到了發展,并用數值例子加以說明。本書適合任何具有概率、統計或機器學習的本科生,以及具有Python編程的基本知識的人。
本書通過提供真實的案例研究和示例,為使用Python庫進行機器學習提供了堅實的基礎。它涵蓋了諸如機器學習基礎、Python入門、描述性分析和預測分析等主題。包括高級機器學習概念,如決策樹學習、隨機森林、增強、推薦系統和文本分析。這本書在理論理解和實際應用之間采取了一種平衡的方法。所有的主題都包括真實世界的例子,并提供如何探索、構建、評估和優化機器學習模型的逐步方法。