亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Python中的數據科學和分析是為學術和商業環境中的數據科學和數據分析從業者設計的。其目的是通過使用Python開發的工具(如SciKit-learn、Pandas、Numpy等)向讀者介紹數據科學中使用的主要概念。鑒于Python最近在數據科學社區的流行,它的使用特別有趣。有經驗的程序員和新手都可以使用這本書。

本書的組織方式是各個章節相互獨立,這樣讀者就可以放心地使用其中的內容作為參考。這本書從過程和獲得的結果的角度討論了什么是數據科學和分析。還介紹了Python的重要特性,包括Python入門。機器學習、模式識別和人工智能的基本元素在書的其余部分使用的算法和實現的基礎上也出現在書的第一部分。

本書的第二部分介紹了使用Python、聚類技術和分類算法的回歸分析。層次聚類、決策樹和集成技術,以及降維技術和推薦系統也被探討。書的最后一部分討論了支持向量機算法和內核技巧。

付費5元查看完整內容

相關內容

數據科學(英語:data science)是一門利用數據學習知識的學科,其目標是通過從數據中提取出有價值的部分來生產數據產品。 它結合了諸多領域中的理論和技術,包括應用數學、統計、模式識別、機器學習、數據可視化、數據倉庫以及高性能計算。 數據科學通過運用各種相關的數據來幫助非專業人士理解問題。

機器學習簡明指南,不可錯過!

A Machine Learning Primer

亞馬遜研究科學家Mihail Eric關于機器學習實踐重要經驗。包括監督學習、機器學習實踐、無監督學習以及深度學習。具體為:

監督學習

  • 線性回歸
  • 邏輯回歸
  • 樸素貝葉斯
  • 支持向量機
  • 決策樹
  • K-近鄰

機器學習實踐

  • 偏差-方差權衡
  • 如何選擇模型
  • 如何選擇特征
  • 正則化你的模型
  • 模型集成
  • 評價指標

無監督學習

  • 市場籃子分析
  • K均值聚類
  • 主成分分析

深度學習

  • 前向神經網絡
  • 神經網絡實踐
  • 卷積神經網絡
  • 循環神經網絡
付費5元查看完整內容

本書基于易于理解且具有數據科學相關的豐富的庫的Python語言環境,從零開始講解數據科學工作。具體內容包括:Python速成,可視化數據,線性代數,統計,概率,假設與推斷,梯度下降法,如何獲取數據,k近鄰法,樸素貝葉斯算法,等等。作者借助大量具體例子以及數據挖掘、統計學、機器學習等領域的重要概念,詳細展示了什么是數據科學。

介紹數據科學基本知識的重量級讀本,Google數據科學家作品。

數據科學是一個蓬勃發展、前途無限的行業,有人將數據科學家稱為“21世紀頭號性感職業”。本書從零開始講解數據科學工作,教授數據科學工作所必需的黑客技能,并帶領讀者熟悉數據科學的核心知識——數學和統計學。

作者選擇了功能強大、簡單易學的Python語言環境,親手搭建工具和實現算法,并精心挑選了注釋良好、簡潔易讀的實現范例。書中涵蓋的所有代碼和數據都可以在GitHub上下載。

  • 簡單介紹Python
  • 回顧一下線性幾何、統計和概率知識,了解搞數據科學的時候怎么使用它們
  • 收集、探索、清理、轉換和操作數據
  • 了解機器學習的基本知識
  • 實現K近鄰、樸素貝葉斯、線性及邏輯回歸、決策樹、神經網絡及聚類等模型
  • 探索推薦系統、自然語言處理、網絡分析、MapReduce,還有數據庫
付費5元查看完整內容

使用Python的高級數據科學和分析使數據科學家能夠繼續發展他們的技能,并將其應用于商業和學術設置中。這本書中討論的主題是補充和后續主題討論的數據科學和分析與Python。其目的是使用Python開發的工具,如SciKit-learn、Pandas、Numpy、Beautiful Soup、NLTK、NetworkX等,覆蓋數據科學中重要的高級領域。使用Keras、TensorFlow、Core ML等框架,以及用于iOS和MacOS應用開發的Swift來支持模型開發。

付費5元查看完整內容

管理統計和數據科學的原理包括:數據可視化;描述性措施;概率;概率分布;數學期望;置信區間;和假設檢驗。方差分析;簡單線性回歸;多元線性回歸也包括在內。另外,本書還提供了列聯表、卡方檢驗、非參數方法和時間序列方法。

教材:

  • 包括通常在入門統計學課程中涵蓋的學術材料,但與數據科學扭曲,較少強調理論
  • 依靠Minitab來展示如何用計算機執行任務
  • 展示并促進來自開放門戶的數據的使用
  • 重點是發展對程序如何工作的直覺
  • 讓讀者了解大數據的潛力和目前使用它的失敗之處
付費5元查看完整內容

這本教科書通過提供實用的建議,使用直接的例子,并提供相關應用的引人入勝的討論,以一種容易理解的方式介紹了基本的機器學習概念。主要的主題包括貝葉斯分類器,最近鄰分類器,線性和多項式分類器,決策樹,神經網絡,和支持向量機。后面的章節展示了如何通過“推進”的方式結合這些簡單的工具,如何在更復雜的領域中利用它們,以及如何處理各種高級的實際問題。有一章專門介紹流行的遺傳算法。

這個修訂的版本包含關于工業中機器學習的實用應用的關鍵主題的三個全新的章節。這些章節研究了多標簽域,無監督學習和它在深度學習中的使用,以及歸納邏輯編程的邏輯方法。許多章節已經被擴展,并且材料的呈現已經被增強。這本書包含了許多新的練習,許多解決的例子,深入的實驗,和獨立工作的計算機作業。

//link.springer.com/book/10.1007/978-3-319-63913-0#about

付費5元查看完整內容

有興趣的數據科學專業人士可以通過本書學習Scikit-Learn圖書館以及機器學習的基本知識。本書結合了Anaconda Python發行版和流行的Scikit-Learn庫,演示了廣泛的有監督和無監督機器學習算法。通過用Python編寫的清晰示例,您可以在家里自己的機器上試用和試驗機器學習的原理。

所有的應用數學和編程技能需要掌握的內容,在這本書中涵蓋。不需要深入的面向對象編程知識,因為工作和完整的例子被提供和解釋。必要時,編碼示例是深入和復雜的。它們也簡潔、準確、完整,補充了介紹的機器學習概念。使用示例有助于建立必要的技能,以理解和應用復雜的機器學習算法。

對于那些在機器學習方面追求職業生涯的人來說,Scikit-Learn機器學習應用手冊是一個很好的起點。學習這本書的學生將學習基本知識,這是勝任工作的先決條件。讀者將接觸到專門為數據科學專業人員設計的蟒蛇分布,并將在流行的Scikit-Learn庫中構建技能,該庫是Python世界中許多機器學習應用程序的基礎。

你將學習

  • 使用Scikit-Learn中常見的簡單和復雜數據集
  • 將數據操作為向量和矩陣,以進行算法處理
  • 熟悉數據科學中使用的蟒蛇分布
  • 應用帶有分類器、回歸器和降維的機器學習
  • 優化算法并為每個數據集找到最佳算法
  • 從CSV、JSON、Numpy和panda格式加載數據并保存為這些格式

這本書是給誰的

  • 有抱負的數據科學家渴望通過掌握底層的基礎知識進入機器學習領域,而這些基礎知識有時在急于提高生產力的過程中被忽略了。一些面向對象編程的知識和非常基本的線性代數應用將使學習更容易,盡管任何人都可以從這本書獲益。
付費5元查看完整內容

機器學習已經成為許多商業應用和研究項目中不可或缺的一部分,但這一領域并不僅限于擁有廣泛研究團隊的大公司。如果您使用Python,即使是初學者,這本書也會教你構建自己的機器學習解決方案的實用方法。今天,有了所有可用的數據,機器學習應用程序只受限于你的想象力。

您將學習使用Python和scikit-learn庫創建成功的機器學習應用程序所需的步驟。兩位作者安德烈亞斯?穆勒(Andreas Muller)和薩拉?圭多(Sarah Guido)關注的是使用機器學習算法的實踐層面,而不是背后的數學。熟悉NumPy和matplotlib庫將有助于您從本書獲得更多信息。

通過這本書,你會學到 :

  • 機器學習的基本概念和應用
  • 廣泛應用的機器學習算法的優缺點
  • 如何表示機器學習處理過的數據,包括關注哪些數據方面
  • 先進的模型評估和參數調整方法
  • 用于鏈接模型和封裝工作流的管道概念
  • 處理文本數據的方法,包括特定于文本的處理技術
  • 提高機器學習和數據科學技能的建議
付費5元查看完整內容

本書涵蓋了這些領域中使用Python模塊演示的概率、統計和機器學習的關鍵思想。整本書包括所有的圖形和數值結果,都可以使用Python代碼及其相關的Jupyter/IPython Notebooks。作者通過使用多種分析方法和Python代碼的有意義的示例,開發了機器學習中的關鍵直覺,從而將理論概念與具體實現聯系起來。現代Python模塊(如panda、y和Scikit-learn)用于模擬和可視化重要的機器學習概念,如偏差/方差權衡、交叉驗證和正則化。許多抽象的數學思想,如概率論中的收斂性,都得到了發展,并用數值例子加以說明。本書適合任何具有概率、統計或機器學習的本科生,以及具有Python編程的基本知識的人。

付費5元查看完整內容

本書介紹了自由軟件Python及其在統計數據分析中的應用。它涵蓋了連續、離散和分類數據的常見統計測試,以及線性回歸分析和生存分析和貝葉斯統計的主題。每個測試的Python解決方案的工作代碼和數據,以及易于遵循的Python示例,可以被讀者復制,并加強他們對主題的直接理解。隨著Python生態系統的最新進展,Python已經成為科學計算的一種流行語言,為統計數據分析提供了一個強大的環境,并且是R的一個有趣的替代選擇。本書面向碩士和博士學生,主要來自生命和醫學科學,具有統計學的基本知識。由于該書還提供了一些統計方面的背景知識,因此任何想要執行統計數據分析的人都可以使用這本書。

付費5元查看完整內容

數據科學庫、框架、模塊和工具包非常適合進行數據科學研究,但它們也是深入研究這一學科的好方法,不需要真正理解數據科學。在本書中,您將了解到許多最基本的數據科學工具和算法都是通過從頭實現來實現的。

如果你有數學天賦和一些編程技能,作者Joel Grus將幫助你熟悉作為數據科學核心的數學和統計,以及作為數據科學家的入門技能。如今,這些雜亂的、充斥著海量數據的數據,為一些甚至沒人想過要問的問題提供了答案。這本書為你提供了挖掘這些答案的訣竅。

參加Python速成班

  • 學習線性代數、統計和概率的基礎知識,并了解如何以及何時在數據科學中使用它們
  • 收集、探索、清理、分析和操作數據
  • 深入了解機器學習的基本原理
  • 實現諸如k近鄰、樸素貝葉斯、線性和邏輯回歸、決策樹、神經網絡和聚類等模型
  • 探索推薦系統、自然語言處理、網絡分析、MapReduce和數據庫
付費5元查看完整內容
北京阿比特科技有限公司