亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

機器學習簡明指南,不可錯過!

A Machine Learning Primer

亞馬遜研究科學家Mihail Eric關于機器學習實踐重要經驗。包括監督學習、機器學習實踐、無監督學習以及深度學習。具體為:

監督學習

  • 線性回歸
  • 邏輯回歸
  • 樸素貝葉斯
  • 支持向量機
  • 決策樹
  • K-近鄰

機器學習實踐

  • 偏差-方差權衡
  • 如何選擇模型
  • 如何選擇特征
  • 正則化你的模型
  • 模型集成
  • 評價指標

無監督學習

  • 市場籃子分析
  • K均值聚類
  • 主成分分析

深度學習

  • 前向神經網絡
  • 神經網絡實踐
  • 卷積神經網絡
  • 循環神經網絡
付費5元查看完整內容

相關內容

“機器學習是近20多年興起的一門多領域交叉學科,涉及概率論、統計學、逼近論、凸分析、算法復雜度理論等多門學科。機器學習理論主要是設計和分析一些讓 可以自動“ ”的算法。機器學習算法是一類從數據中自動分析獲得規律,并利用規律對未知數據進行預測的算法。因為學習算法中涉及了大量的統計學理論,機器學習與統計推斷學聯系尤為密切,也被稱為統計學習理論。算法設計方面,機器學習理論關注可以實現的,行之有效的學習算法。很多 問題屬于 ,所以部分的機器學習研究是開發容易處理的近似算法。” ——中文維基百科

知識薈萃

精品入門和進階教程、論文和代碼整理等

更多

查看相關VIP內容、論文、資訊等

自然語言處理(NLP)為解決人工智能方面的問題提供了無限的機會,使Amazon Alexa和谷歌翻譯等產品成為可能。如果您是NLP和深度學習的新手,那么本實用指南將向您展示如何使用PyTorch(一個基于python的深度學習庫)應用這些方法。

作者Delip Rao和Brian McMahon為您提供了關于NLP和深度學習算法的堅實基礎,并演示了如何使用PyTorch構建應用程序,其中包含針對您所面臨問題的文本的豐富表示。每一章包括幾個代碼示例和插圖。

  • 探索計算圖表和監督學習范式
  • 掌握PyTorch優化張量操作庫的基礎知識
  • 對傳統的NLP概念和方法進行概述
  • 學習建立神經網絡的基本概念
  • 使用嵌入來表示單詞、句子、文檔和其他特性
  • 探索序列預測并生成序列對序列模型
  • 學習構建生產NLP系統的設計模式

//www.oreilly.com/library/view/natural-language-processing/9781491978221/

付費5元查看完整內容

通過使用Python開發用例,全面了解監督學習算法您將學習監督學習概念、Python代碼、數據集、最佳實踐、常見問題和缺陷的解決方案,以及實現結構化、文本和圖像數據集算法的實踐知識。

你將從介紹機器學習開始,強調監督學習、半監督學習和非監督學習之間的區別。在接下來的章節中,你將學習回歸和分類問題,它們背后的數學,像線性回歸、邏輯回歸、決策樹、KNN、樸素貝葉斯等算法,以及像隨機森林、支持向量機、梯度增強和神經網絡等高級算法。提供了所有算法的Python實現。最后,您將得到一個端到端模型開發流程,包括模型的部署和維護。在閱讀了Python的監督學習之后,你將會對監督學習和它的實際實現有一個廣泛的理解,并且能夠以一種創新的方式運行代碼和擴展它。

你將學習:

  • 回顧使用Python進行監督學習的基本構建塊和概念
  • 為結構化數據以及文本和圖像開發監督學習解決方案
  • 解決圍繞過擬合、特征工程、數據清理和建立最佳擬合模型的交叉驗證的問題
  • 理解從業務問題定義到模型部署和模型維護的端到端模型周期
  • 在使用Python創建監督學習模型時,避免常見的缺陷并遵循最佳實踐

這本書是給誰的

  • 對監督學習的最佳實踐和標準感興趣,并使用分類算法和回歸技術來開發預測模型的數據科學家或數據分析師。

//www.apress.com/gp/book/9781484261552

付費5元查看完整內容

本書基于易于理解且具有數據科學相關的豐富的庫的Python語言環境,從零開始講解數據科學工作。具體內容包括:Python速成,可視化數據,線性代數,統計,概率,假設與推斷,梯度下降法,如何獲取數據,k近鄰法,樸素貝葉斯算法,等等。作者借助大量具體例子以及數據挖掘、統計學、機器學習等領域的重要概念,詳細展示了什么是數據科學。

介紹數據科學基本知識的重量級讀本,Google數據科學家作品。

數據科學是一個蓬勃發展、前途無限的行業,有人將數據科學家稱為“21世紀頭號性感職業”。本書從零開始講解數據科學工作,教授數據科學工作所必需的黑客技能,并帶領讀者熟悉數據科學的核心知識——數學和統計學。

作者選擇了功能強大、簡單易學的Python語言環境,親手搭建工具和實現算法,并精心挑選了注釋良好、簡潔易讀的實現范例。書中涵蓋的所有代碼和數據都可以在GitHub上下載。

  • 簡單介紹Python
  • 回顧一下線性幾何、統計和概率知識,了解搞數據科學的時候怎么使用它們
  • 收集、探索、清理、轉換和操作數據
  • 了解機器學習的基本知識
  • 實現K近鄰、樸素貝葉斯、線性及邏輯回歸、決策樹、神經網絡及聚類等模型
  • 探索推薦系統、自然語言處理、網絡分析、MapReduce,還有數據庫
付費5元查看完整內容

管理統計和數據科學的原理包括:數據可視化;描述性措施;概率;概率分布;數學期望;置信區間;和假設檢驗。方差分析;簡單線性回歸;多元線性回歸也包括在內。另外,本書還提供了列聯表、卡方檢驗、非參數方法和時間序列方法。

教材:

  • 包括通常在入門統計學課程中涵蓋的學術材料,但與數據科學扭曲,較少強調理論
  • 依靠Minitab來展示如何用計算機執行任務
  • 展示并促進來自開放門戶的數據的使用
  • 重點是發展對程序如何工作的直覺
  • 讓讀者了解大數據的潛力和目前使用它的失敗之處
付費5元查看完整內容

這本教科書通過提供實用的建議,使用直接的例子,并提供相關應用的引人入勝的討論,以一種容易理解的方式介紹了基本的機器學習概念。主要的主題包括貝葉斯分類器,最近鄰分類器,線性和多項式分類器,決策樹,神經網絡,和支持向量機。后面的章節展示了如何通過“推進”的方式結合這些簡單的工具,如何在更復雜的領域中利用它們,以及如何處理各種高級的實際問題。有一章專門介紹流行的遺傳算法。

這個修訂的版本包含關于工業中機器學習的實用應用的關鍵主題的三個全新的章節。這些章節研究了多標簽域,無監督學習和它在深度學習中的使用,以及歸納邏輯編程的邏輯方法。許多章節已經被擴展,并且材料的呈現已經被增強。這本書包含了許多新的練習,許多解決的例子,深入的實驗,和獨立工作的計算機作業。

//link.springer.com/book/10.1007/978-3-319-63913-0#about

付費5元查看完整內容

機器學習已經成為許多商業應用和研究項目中不可或缺的一部分,但這一領域并不僅限于擁有廣泛研究團隊的大公司。如果您使用Python,即使是初學者,這本書也會教你構建自己的機器學習解決方案的實用方法。今天,有了所有可用的數據,機器學習應用程序只受限于你的想象力。

您將學習使用Python和scikit-learn庫創建成功的機器學習應用程序所需的步驟。兩位作者安德烈亞斯?穆勒(Andreas Muller)和薩拉?圭多(Sarah Guido)關注的是使用機器學習算法的實踐層面,而不是背后的數學。熟悉NumPy和matplotlib庫將有助于您從本書獲得更多信息。

通過這本書,你會學到 :

  • 機器學習的基本概念和應用
  • 廣泛應用的機器學習算法的優缺點
  • 如何表示機器學習處理過的數據,包括關注哪些數據方面
  • 先進的模型評估和參數調整方法
  • 用于鏈接模型和封裝工作流的管道概念
  • 處理文本數據的方法,包括特定于文本的處理技術
  • 提高機器學習和數據科學技能的建議
付費5元查看完整內容

本書涵蓋了這些領域中使用Python模塊演示的概率、統計和機器學習的關鍵思想。整本書包括所有的圖形和數值結果,都可以使用Python代碼及其相關的Jupyter/IPython Notebooks。作者通過使用多種分析方法和Python代碼的有意義的示例,開發了機器學習中的關鍵直覺,從而將理論概念與具體實現聯系起來。現代Python模塊(如panda、y和Scikit-learn)用于模擬和可視化重要的機器學習概念,如偏差/方差權衡、交叉驗證和正則化。許多抽象的數學思想,如概率論中的收斂性,都得到了發展,并用數值例子加以說明。本書適合任何具有概率、統計或機器學習的本科生,以及具有Python編程的基本知識的人。

付費5元查看完整內容

本書概述了現代數據科學重要的數學和數值基礎。特別是,它涵蓋了信號和圖像處理(傅立葉、小波及其在去噪和壓縮方面的應用)、成像科學(反問題、稀疏性、壓縮感知)和機器學習(線性回歸、邏輯分類、深度學習)的基礎知識。重點是對方法學工具(特別是線性算子、非線性逼近、凸優化、最優傳輸)的數學上合理的闡述,以及如何將它們映射到高效的計算算法。

//mathematical-tours.github.io/book/

它應該作為數據科學的數字導覽的數學伴侶,它展示了Matlab/Python/Julia/R對這里所涵蓋的所有概念的詳細實現。

付費5元查看完整內容

本書通過提供真實的案例研究和示例,為使用Python庫進行機器學習提供了堅實的基礎。它涵蓋了諸如機器學習基礎、Python入門、描述性分析和預測分析等主題。包括高級機器學習概念,如決策樹學習、隨機森林、增強、推薦系統和文本分析。這本書在理論理解和實際應用之間采取了一種平衡的方法。所有的主題都包括真實世界的例子,并提供如何探索、構建、評估和優化機器學習模型的逐步方法。

付費5元查看完整內容

這本書在對算法工作原理的高層次理解和對優化模型的具體細節的了解之間找到一個平衡點。這本書將給你的信心和技能時,開發所有主要的機器學習模型。在這本Pro機器學習算法中,您將首先在Excel中開發算法,以便在用Python/R實現模型之前,實際了解可以在模型中調優的所有細節。

你將涵蓋所有主要的算法:監督和非監督學習,其中包括線性/邏輯回歸;k - means聚類;主成分分析;推薦系統;決策樹;隨機森林;“GBM”;和神經網絡。您還將通過CNNs、RNNs和word2vec等文本挖掘工具了解最新的深度學習。你不僅要學習算法,還要學習特征工程的概念來最大化模型的性能。您將看到該理論與案例研究,如情緒分類,欺詐檢測,推薦系統,和圖像識別,以便您得到最佳的理論和實踐為工業中使用的絕大多數機器學習算法。在學習算法的同時,您還將接觸到在所有主要云服務提供商上運行的機器學習模型。

你會學到什么?

  • 深入了解所有主要的機器學習和深度學習算法
  • 充分理解在構建模型時要避免的陷阱
  • 在云中實現機器學習算法
  • 通過對每種算法的案例研究,采用動手實踐的方法
  • 學習集成學習的技巧,建立更精確的模型
  • 了解R/Python編程的基礎知識和Keras深度學習框架

這本書是給誰看的

希望轉換到數據科學角色的業務分析師/ IT專業人員。想要鞏固機器學習知識的數據科學家。

付費5元查看完整內容
北京阿比特科技有限公司