亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

自然語言處理(NLP)為解決人工智能方面的問題提供了無限的機會,使Amazon Alexa和谷歌翻譯等產品成為可能。如果您是NLP和深度學習的新手,那么本實用指南將向您展示如何使用PyTorch(一個基于python的深度學習庫)應用這些方法。

作者Delip Rao和Brian McMahon為您提供了關于NLP和深度學習算法的堅實基礎,并演示了如何使用PyTorch構建應用程序,其中包含針對您所面臨問題的文本的豐富表示。每一章包括幾個代碼示例和插圖。

  • 探索計算圖表和監督學習范式
  • 掌握PyTorch優化張量操作庫的基礎知識
  • 對傳統的NLP概念和方法進行概述
  • 學習建立神經網絡的基本概念
  • 使用嵌入來表示單詞、句子、文檔和其他特性
  • 探索序列預測并生成序列對序列模型
  • 學習構建生產NLP系統的設計模式

//www.oreilly.com/library/view/natural-language-processing/9781491978221/

付費5元查看完整內容

相關內容

當看到這些材料時,一個明顯的問題可能會出現:“為什么還要寫一本深度學習和自然語言處理的書呢?”一些優秀的論文已經出版,涵蓋了深度學習的理論和實踐方面,以及它在語言處理中的應用。然而,從我教授自然語言處理課程的經驗來看,我認為,盡管這些書的質量非常好,但大多數都不是針對最有可能的讀者。本書的目標讀者是那些在機器學習和自然語言處理之外的領域有經驗的人,并且他們的工作至少部分地依賴于對大量數據,特別是文本數據的自動化分析。這些專家可能包括社會科學家、政治科學家、生物醫學科學家,甚至是對機器學習接觸有限的計算機科學家和計算語言學家。

現有的深度學習和自然語言處理書籍通常分為兩大陣營。第一個陣營專注于深度學習的理論基礎。這對前面提到的讀者肯定是有用的,因為在使用工具之前應該了解它的理論方面。然而,這些書傾向于假設一個典型的機器學習研究者的背景,因此,我經常看到沒有這種背景的學生很快就迷失在這樣的材料中。為了緩解這個問題,目前存在的第二種類型的書集中在機器學習從業者;也就是說,如何使用深度學習軟件,而很少關注理論方面。我認為,關注實際方面同樣是必要的,但還不夠。考慮到深度學習框架和庫已經變得相當復雜,由于理論上的誤解而濫用它們的可能性很高。這個問題在我的課程中也很常見。

因此,本書旨在為自然語言處理的深度學習搭建理論和實踐的橋梁。我涵蓋了必要的理論背景,并假設讀者有最少的機器學習背景。我的目標是讓任何上過線性代數和微積分課程的人都能跟上理論材料。為了解決實際問題,本書包含了用于討論的較簡單算法的偽代碼,以及用于較復雜體系結構的實際Python代碼。任何上過Python編程課程的人都應該能夠理解這些代碼。讀完這本書后,我希望讀者能有必要的基礎,立即開始構建真實世界的、實用的自然語言處理系統,并通過閱讀有關這些主題的研究出版物來擴展他們的知識。

//clulab.cs.arizona.edu/gentlenlp/gentlenlp-book-05172020.pdf

付費5元查看完整內容

通過使用Python開發用例,全面了解監督學習算法您將學習監督學習概念、Python代碼、數據集、最佳實踐、常見問題和缺陷的解決方案,以及實現結構化、文本和圖像數據集算法的實踐知識。

你將從介紹機器學習開始,強調監督學習、半監督學習和非監督學習之間的區別。在接下來的章節中,你將學習回歸和分類問題,它們背后的數學,像線性回歸、邏輯回歸、決策樹、KNN、樸素貝葉斯等算法,以及像隨機森林、支持向量機、梯度增強和神經網絡等高級算法。提供了所有算法的Python實現。最后,您將得到一個端到端模型開發流程,包括模型的部署和維護。在閱讀了Python的監督學習之后,你將會對監督學習和它的實際實現有一個廣泛的理解,并且能夠以一種創新的方式運行代碼和擴展它。

你將學習:

  • 回顧使用Python進行監督學習的基本構建塊和概念
  • 為結構化數據以及文本和圖像開發監督學習解決方案
  • 解決圍繞過擬合、特征工程、數據清理和建立最佳擬合模型的交叉驗證的問題
  • 理解從業務問題定義到模型部署和模型維護的端到端模型周期
  • 在使用Python創建監督學習模型時,避免常見的缺陷并遵循最佳實踐

這本書是給誰的

  • 對監督學習的最佳實踐和標準感興趣,并使用分類算法和回歸技術來開發預測模型的數據科學家或數據分析師。

//www.apress.com/gp/book/9781484261552

付費5元查看完整內容

如果您是用Python編程的新手,并且正在尋找可靠的介紹,那么這本書就是為您準備的。由計算機科學教師開發,在“為絕對初學者”系列叢書通過簡單的游戲創造教授編程的原則。您將獲得實際的Python編程應用程序所需的技能,并將了解如何在真實場景中使用這些技能。在整個章節中,你會發現一些代碼示例來說明所提出的概念。在每一章的結尾,你會發現一個完整的游戲,展示了這一章的關鍵思想,一章的總結,以及一系列的挑戰來測試你的新知識。當你讀完這本書的時候,你將非常精通Python,并且能夠將你所學到的基本編程原理應用到你要處理的下一種編程語言。

付費5元查看完整內容

對于語音計算領域的開發者來說,這是一個激動人心的時刻:谷歌上每4次搜索中就有1次是支持語音的,亞馬遜Alexa剛剛超過1萬個技能,WhatsApp上每天完成1億個通話。但是你從哪里開始學習如何在這個領域編碼呢?

無論您是一位經驗豐富的開發人員還是剛剛起步,這本書都將指導您使用Python構建基于語音的應用程序。

  • 了解如何讀/寫、記錄、清潔、加密、回放、轉碼、轉錄、壓縮、發布、飽和化、建模和可視化語音文件
  • 從零開始創建自己的語音計算機和語音助手
  • 在Docker和Kubernetes上設計前沿的微服務服務器架構
  • 在GitHub存儲庫中訪問200多個初始腳本
  • 參與到更大的開源語音社區中
付費5元查看完整內容

?介紹

這本書在保持非常務實的教導和結果導向付出很大的精力。構建聊天機器人不只是完成一個教程或遵循幾個步驟,它本身就是一種技能。這本書肯定不會用大量的文本和過程讓你感到無聊;相反,它采用的是邊做邊學的方法。到目前為止,在你的生活中,你肯定至少使用過一個聊天機器人。無論你是不是一個程序員,一旦你瀏覽這本書,你會發現構建模塊的聊天機器人,所有的奧秘將被揭開。建立聊天機器人可能看起來很困難,但這本書將讓你使它如此容易。我們的大腦不是用來直接處理復雜概念的;相反,我們一步一步地學習。當你讀這本書的時候,從第一章到最后一章,你會發現事情的進展是多么的清晰。雖然你可以直接翻到任何一章,但我強烈建議你從第一章開始,因為它肯定會支持你的想法。這本書就像一個網絡系列,你在讀完一章之后就無法抗拒下一章的誘惑。在閱讀完這本書后,你所接觸到的任何聊天機器人都會在你的腦海中形成一幅關于聊天機器人內部是如何設計和構建的畫面。

這本書適合誰?

這本書將作為學習與聊天機器人相關的概念和學習如何建立他們的一個完整的資源。那些將會發現這本書有用的包括: Python web開發人員希望擴大他們的知識或職業到聊天機器人開發。 學生和有抱負的程序員想獲得一種新的技能通過親身體驗展示的東西,自然語言愛好者希望從頭開始學習。 企業家如何構建一個聊天機器人的偉大的想法,但沒有足夠的技術關于如何制作聊天機器人的可行性信息。 產品/工程經理計劃與聊天機器人相關項目。

如何使用這本書?

請記住,這本書的寫作風格和其他書不一樣。讀這本書的時候要記住,一旦你完成了這本書,你就可以自己建造一個聊天機器人,或者教會別人如何建造一個聊天機器人。在像閱讀其他書籍一樣閱讀這本書之前,務必記住以下幾點:

  • 這本書涵蓋了構建聊天機器人所需的幾乎所有內容,而不是現有內容。
  • 這本書是關于花更多的時間在你的系統上做事情的,這本書就在你身邊。確保您執行每個代碼片段并嘗試編寫代碼;不要復制粘貼。
  • 一定要按照書中的步驟去做;如果你不理解一些事情,不要擔心。你將在本章的后面部分了解到。
  • 可以使用本書所提供的源代碼及Jupyter NoteBook作為參考。

內容概要

  • Chapter 1: 在本章中,你將從商業和開發人員的角度了解與聊天機器人相關的事情。這一章為我們熟悉chatbots概念并將其轉換為代碼奠定了基礎。希望在本章結束時,你會明白為什么你一定要為自己或你的公司創建一個聊天機器人。
  • Chapter 2: 在本章中會涉及聊天機器人的自然語言處理,你將學習到聊天機器人需要NLP時應該使用哪些工具和方法。這一章不僅教你在NLP的方法,而且還采取實際的例子和演示與編碼的例子。本章還討論了為什么使用特定的NLP方法可能需要在聊天機器人。注意,NLP本身就是一種技能。
  • Chapter 3: 在本章中,你將學習如何使用像Dialogflow這樣的工具以一種友好而簡單的方式構建聊天機器人。如果你不是程序員,你肯定會喜歡它,因為它幾乎不需要編程技能。
  • Chapter 4:在本章中,你將學習如何以人們想要的方式構建聊天機器人。標題說的很艱難,但一旦你完成了前一章,你會想要更多,因為這一章將教如何建立內部聊天機器人從零開始,以及如何使用機器學習算法訓練聊天機器人。
  • Chapter 5:在本章中,部署你的聊天機器人純粹是設計給你的聊天機器人應用一個最后的推動。當你經歷了創建聊天機器人的簡單和艱難的過程后,你肯定不想把它留給自己。你將學習如何展示你的聊天機器人到世界使用Facebook和Slack,最后,整合他們在你自己的網站。
付費5元查看完整內容

使用Python進行自然語言處理(NLP),學習如何設置健壯環境來執行文本分析。這第二版經歷了一個重大的修改,并介紹了幾個重要的變化和基于NLP的最新趨勢的新主題。

您將了解如何在NLP中使用最新的、最先進的框架,以及機器學習和深度學習模型,用于Python支持的監督情感分析,以解決實際的案例研究。首先回顧Python中關于字符串和文本數據的NLP基礎知識,然后討論文本數據的工程表示方法,包括傳統的統計模型和新的基于深度學習的嵌入模型。本文還討論了解析和處理文本的改進技術和新方法。

文本摘要和主題模型已經全面修訂,因此本書展示了如何在NIPS會議論文的興趣數據集上下文中構建、調整和解釋主題模型。此外,這本書涵蓋了文本相似性技術與現實世界的電影推薦人的例子,以及情緒分析使用監督和非監督的技術。還有一章專門討論語義分析,您將了解如何從頭構建自己的命名實體識別(NER)系統。雖然該書的整體結構保持不變,但整個代碼庫、模塊和章節都已更新到最新的Python 3。x版本。

你將學習

  • 理解NLP和文本的語法、語義和結構
  • 發現文本清理和功能工程
  • 回顧文本分類和文本聚類
  • 評估文本摘要和主題模型
  • 學習NLP的深度學習

這本書是給誰的

  • IT專業人員、數據分析師、開發人員、語言學專家、數據科學家和工程師,以及任何對語言學、分析和從文本數據中產生見解有濃厚興趣的人。
付費5元查看完整內容

概率圖模型是機器學習中的一種技術,它使用圖論的概念來簡明地表示和最佳地預測數據問題中的值。

圖模型為我們提供了在數據中發現復雜模式的技術,廣泛應用于語音識別、信息提取、圖像分割和基因調控網絡建模等領域。

這本書從概率論和圖論的基礎開始,然后繼續討論各種模型和推理算法。所有不同類型的模型都將與代碼示例一起討論,以創建和修改它們,并在它們上運行不同的推理算法。有一整章是關于樸素貝葉斯模型和隱馬爾可夫模型的。這些模型已經通過實際例子進行了詳細的討論。

你會學到什么

  • 掌握概率論和圖論的基本知識
  • 使用馬爾可夫網絡
  • 實現貝葉斯網絡
  • 圖模型中的精確推理技術,如變量消除算法
  • 了解圖模型中的近似推理技術,如消息傳遞算法

圖模型中的示例算法 通過真實的例子來掌握樸素貝葉斯的細節 使用Python中的各種庫部署PGMs 獲得隱馬爾可夫模型的工作細節與現實世界的例子

詳細 概率圖模型是機器學習中的一種技術,它使用圖論的概念來簡潔地表示和最佳地預測數據問題中的值。在現實問題中,往往很難選擇合適的圖模型和合適的推理算法,這對計算時間和精度有很大的影響。因此,了解這些算法的工作細節是至關重要的。

這本書從概率論和圖論的基礎開始,然后繼續討論各種模型和推理算法。所有不同類型的模型都將與代碼示例一起討論,以創建和修改它們,并在它們上運行不同的推理算法。有一個完整的章節專門討論最廣泛使用的網絡樸素貝葉斯模型和隱馬爾可夫模型(HMMs)。這些模型已經通過實際例子進行了詳細的討論。

風格和方法 一個易于遵循的指南,幫助您理解概率圖模型使用簡單的例子和大量的代碼例子,重點放在更廣泛使用的模型。

付費5元查看完整內容

獲得高級數據分析概念的廣泛基礎,并發現數據庫中的最新革命,如Neo4j、Elasticsearch和MongoDB。這本書討論了如何實現ETL技術,包括主題爬行,這是應用在諸如高頻算法交易和面向目標的對話系統等領域。您還將看到機器學習概念的示例,如半監督學習、深度學習和NLP。使用Python的高級數據分析還包括時間序列和主成分分析等重要的傳統數據分析技術。

讀完這本書,你將對分析項目的每個技術方面都有了經驗。您將了解使用Python代碼的概念,并提供在您自己的項目中使用的示例。

你會學到什么

  • 使用數據分析技術,如分類、聚類、回歸和預測
  • 處理結構化和非結構化數據、ETL技術以及不同類型的數據庫,如Neo4j、Elasticsearch、MongoDB和M- ySQL
  • 考察不同的大數據框架,包括Hadoop和Spark
  • 發現先進的機器學習概念,如半監督學習,深度學習,和NLP

這本書是給誰看的

對數據分析領域感興趣的數據科學家和軟件開發人員。

付費5元查看完整內容
北京阿比特科技有限公司