亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

數據科學庫、框架、模塊和工具包非常適合進行數據科學研究,但它們也是深入研究這一學科的好方法,不需要真正理解數據科學。在本書中,您將了解到許多最基本的數據科學工具和算法都是通過從頭實現來實現的。

如果你有數學天賦和一些編程技能,作者Joel Grus將幫助你熟悉作為數據科學核心的數學和統計,以及作為數據科學家的入門技能。如今,這些雜亂的、充斥著海量數據的數據,為一些甚至沒人想過要問的問題提供了答案。這本書為你提供了挖掘這些答案的訣竅。

參加Python速成班

  • 學習線性代數、統計和概率的基礎知識,并了解如何以及何時在數據科學中使用它們
  • 收集、探索、清理、分析和操作數據
  • 深入了解機器學習的基本原理
  • 實現諸如k近鄰、樸素貝葉斯、線性和邏輯回歸、決策樹、神經網絡和聚類等模型
  • 探索推薦系統、自然語言處理、網絡分析、MapReduce和數據庫
付費5元查看完整內容

相關內容

數據科學(英語:data science)是一門利用數據學習知識的學科,其目標是通過從數據中提取出有價值的部分來生產數據產品。 它結合了諸多領域中的理論和技術,包括應用數學、統計、模式識別、機器學習、數據可視化、數據倉庫以及高性能計算。 數據科學通過運用各種相關的數據來幫助非專業人士理解問題。

通過這個緊湊的實用指南,開始使用Python進行數據分析。這本書包括三個練習和一個用正確的格式從Python代碼中獲取數據的案例研究。使用Python學習數據分析還可以幫助您使用分析發現數據中的意義,并展示如何可視化數據。

每一節課都盡可能是獨立的,允許您根據需要插入和退出示例。如果您已經在使用Python進行數據分析,那么您會發現您希望知道如何使用Python來完成許多事情。然后,您可以將這些技術直接應用到您自己的項目中。

如果您不使用Python進行數據分析,那么本書從一開始就帶您了解基礎知識,為您在該主題中打下堅實的基礎。當你閱讀完這本書的時候,你會對如何使用Python進行數據分析有更好的理解。

你將學到什么

  • 從Python代碼中獲取數據
  • 準備數據及其格式
  • 找出數據的意義
  • 使用iPython可視化數據

這本書是給誰的

想學習使用Python進行數據分析的同學。建議您具有Python方面的經驗,但不是必需的,因為您需要具有數據分析或數據科學方面的經驗。

付費5元查看完整內容

有興趣的數據科學專業人士可以通過本書學習Scikit-Learn圖書館以及機器學習的基本知識。本書結合了Anaconda Python發行版和流行的Scikit-Learn庫,演示了廣泛的有監督和無監督機器學習算法。通過用Python編寫的清晰示例,您可以在家里自己的機器上試用和試驗機器學習的原理。

所有的應用數學和編程技能需要掌握的內容,在這本書中涵蓋。不需要深入的面向對象編程知識,因為工作和完整的例子被提供和解釋。必要時,編碼示例是深入和復雜的。它們也簡潔、準確、完整,補充了介紹的機器學習概念。使用示例有助于建立必要的技能,以理解和應用復雜的機器學習算法。

對于那些在機器學習方面追求職業生涯的人來說,Scikit-Learn機器學習應用手冊是一個很好的起點。學習這本書的學生將學習基本知識,這是勝任工作的先決條件。讀者將接觸到專門為數據科學專業人員設計的蟒蛇分布,并將在流行的Scikit-Learn庫中構建技能,該庫是Python世界中許多機器學習應用程序的基礎。

你將學習

  • 使用Scikit-Learn中常見的簡單和復雜數據集
  • 將數據操作為向量和矩陣,以進行算法處理
  • 熟悉數據科學中使用的蟒蛇分布
  • 應用帶有分類器、回歸器和降維的機器學習
  • 優化算法并為每個數據集找到最佳算法
  • 從CSV、JSON、Numpy和panda格式加載數據并保存為這些格式

這本書是給誰的

  • 有抱負的數據科學家渴望通過掌握底層的基礎知識進入機器學習領域,而這些基礎知識有時在急于提高生產力的過程中被忽略了。一些面向對象編程的知識和非常基本的線性代數應用將使學習更容易,盡管任何人都可以從這本書獲益。
付費5元查看完整內容

本書介紹了自由軟件Python及其在統計數據分析中的應用。它涵蓋了連續、離散和分類數據的常見統計測試,以及線性回歸分析和生存分析和貝葉斯統計的主題。每個測試的Python解決方案的工作代碼和數據,以及易于遵循的Python示例,可以被讀者復制,并加強他們對主題的直接理解。隨著Python生態系統的最新進展,Python已經成為科學計算的一種流行語言,為統計數據分析提供了一個強大的環境,并且是R的一個有趣的替代選擇。本書面向碩士和博士學生,主要來自生命和醫學科學,具有統計學的基本知識。由于該書還提供了一些統計方面的背景知識,因此任何想要執行統計數據分析的人都可以使用這本書。

付費5元查看完整內容

了解深度學習,不同模型的細微差別,以及這些模型可以應用的地方。

豐富的數據和對優質產品/服務的需求,推動了先進的計算機科學技術的發展,其中包括圖像和語音識別。通過機器學習和深度學習建立在數據科學的基礎上,《使用R進行深度學習的介紹》提供了對執行這些任務的模型的理論和實踐理解。這個分步指南將幫助您理解這些規程,以便您可以在各種上下文中應用該方法。所有的例子都是用R統計語言教授的,允許學生和專業人員使用開源工具來實現這些技術。

你將學習 理解支持深度學習模型的直覺和數學 利用各種算法使用R編程語言和它的包 使用最佳實踐進行實驗設計和變量選擇 作為一個數據科學家,實踐方法來接近和有效地解決問題 評估算法解決方案的有效性并增強其預測能力

這本書是給誰的

熟悉使用R編程的學生、研究人員和數據科學家也可以使用這本書來學習如何在最有用的應用程序中適當地部署這些算法。

付費5元查看完整內容

從設計和原型設計到測試、部署和維護,Python在許多方面都很有用,它一直是當今最流行的編程語言之一。這本實用的書的第三版提供了對語言的快速參考——包括Python 3.5、2.7和3.6的突出部分——它龐大的標準庫中常用的區域,以及一些最有用的第三方模塊和包。

本書非常適合具有一些Python經驗的程序員,以及來自其他編程語言的程序員,它涵蓋了廣泛的應用領域,包括web和網絡編程、XML處理、數據庫交互和高速數字計算。了解Python如何提供優雅、簡單、實用和強大功能的獨特組合。

這個版本包括:

  • Python語法、面向對象的Python、標準庫模塊和第三方Python包
  • Python對文件和文本操作、持久性和數據庫、并發執行和數值計算的支持
  • 網絡基礎、事件驅動編程和客戶端網絡協議模塊
  • Python擴展模塊,以及用于打包和分發擴展、模塊和應用程序的工具
付費5元查看完整內容

簡單易懂,讀起來很有趣,介紹Python對于初學者和語言新手都是理想的。作者Bill Lubanovic帶您從基礎知識到更復雜和更多樣的主題,混合教程和烹飪書風格的代碼配方來解釋Python 3中的概念。章節結尾的練習可以幫助你練習所學的內容。

您將獲得該語言的堅實基礎,包括測試、調試、代碼重用和其他開發技巧的最佳實踐。本書還向您展示了如何使用各種Python工具和開放源碼包將Python用于商業、科學和藝術領域的應用程序。

  • 學習簡單的數據類型,以及基本的數學和文本操作
  • 在Python的內置數據結構中使用數據協商技術
  • 探索Python代碼結構,包括函數的使用
  • 用Python編寫大型程序,包括模塊和包
  • 深入研究對象、類和其他面向對象的特性
  • 檢查從平面文件到關系數據庫和NoSQL的存儲
  • 使用Python構建web客戶機、服務器、api和服務
  • 管理系統任務,如程序、進程和線程
  • 了解并發性和網絡編程的基礎知識

付費5元查看完整內容

通過機器學習的實際操作指南深入挖掘數據

機器學習: 為開發人員和技術專業人員提供實踐指導和全編碼的工作示例,用于開發人員和技術專業人員使用的最常見的機器學習技術。這本書包含了每一個ML變體的詳細分析,解釋了它是如何工作的,以及如何在特定的行業中使用它,允許讀者在閱讀過程中將所介紹的技術融入到他們自己的工作中。機器學習的一個核心內容是對數據準備的強烈關注,對各種類型的學習算法的全面探索說明了適當的工具如何能夠幫助任何開發人員從現有數據中提取信息和見解。這本書包括一個完整的補充教師的材料,以方便在課堂上使用,使這一資源有用的學生和作為一個專業的參考。

機器學習的核心是一種基于數學和算法的技術,它是歷史數據挖掘和現代大數據科學的基礎。對大數據的科學分析需要機器學習的工作知識,它根據從訓練數據中獲得的已知屬性形成預測。機器學習是一個容易理解的,全面的指導,為非數學家,提供明確的指導,讓讀者:

  • 學習機器學習的語言,包括Hadoop、Mahout和Weka
  • 了解決策樹、貝葉斯網絡和人工神經網絡
  • 實現關聯規則、實時和批量學習
  • 為安全、有效和高效的機器學習制定戰略計劃

通過學習構建一個可以從數據中學習的系統,讀者可以在各個行業中增加他們的效用。機器學習是深度數據分析和可視化的核心,隨著企業發現隱藏在現有數據中的金礦,這一領域的需求越來越大。對于涉及數據科學的技術專業人員,機器學習:為開發人員和技術專業人員提供深入挖掘所需的技能和技術。

付費5元查看完整內容

從數據科學的角度研究Python,并學習用于做出關鍵業務決策的數據可視化的成熟技術。從介紹Python的數據科學開始,您將進一步了解Python環境,并熟悉Jupyter Notebook和Spyder等編輯器。通過Python編程入門之后,您將掌握數據科學中使用的基本Python編程技術。接下來是數據可視化,您將看到它如何滿足現代業務需求并形成決策的關鍵因素。您還將了解Python中一些流行的數據可視化庫。

將重點轉移到數據結構,您將從數據科學的角度了解數據結構的各個方面。然后使用Python處理文件I/O和正則表達式,然后收集和清理數據。繼續探索和分析數據,您將看到Python中的高級數據結構。然后,您將深入研究數據可視化技術,了解Python中的許多繪圖系統。

最后,您將完成一個詳細的案例研究,您將有機會重溫到目前為止介紹的概念。

你會學到什么

  • 在數據科學中使用Python編程技術
  • Python中的主數據收集
  • 為BI系統創建引人入勝的可視化
  • 部署收集和清理數據的有效策略
  • 整合Seaborn和Matplotlib繪圖系統

這本書是給誰看的

具有基本Python編程知識的開發人員希望采用使用Python進行數據分析和可視化的關鍵策略。

付費5元查看完整內容

在Python中獲得操作、處理、清理和處理數據集的完整說明。本實用指南的第二版針對Python 3.6進行了更新,其中包含了大量的實際案例研究,向您展示了如何有效地解決廣泛的數據分析問題。在這個過程中,您將學習最新版本的panda、NumPy、IPython和Jupyter。

本書由Python panda項目的創建者Wes McKinney編寫,是對Python中的數據科學工具的實用的、現代的介紹。對于剛接觸Python的分析人員和剛接觸數據科學和科學計算的Python程序員來說,它是理想的。數據文件和相關材料可以在GitHub上找到。

  • 使用IPython外殼和Jupyter筆記本進行探索性計算
  • 學習NumPy (Numerical Python)中的基本和高級特性
  • 開始使用pandas庫的數據分析工具
  • 使用靈活的工具來加載、清理、轉換、合并和重塑數據
  • 使用matplotlib創建信息可視化
  • 應用panda groupby工具對數據集進行切片、切割和匯總
  • 分析和處理有規律和不規則的時間序列數據
  • 學習如何解決現實世界的數據分析問題與徹底的,詳細的例子
付費5元查看完整內容

主題: Python Data Science Cookbook

簡介: 這本書包含了簡單而簡潔的Python代碼示例,以有效地演示實際中的高級概念,使用Python探索編程、數據挖掘、數據分析、數據可視化和機器學習等概念,借助簡單易懂、有見地的方法,快速掌握機器學習算法。

付費5元查看完整內容
北京阿比特科技有限公司