亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

主題: Python Data Science Cookbook

簡介: 這本書包含了簡單而簡潔的Python代碼示例,以有效地演示實際中的高級概念,使用Python探索編程、數據挖掘、數據分析、數據可視化和機器學習等概念,借助簡單易懂、有見地的方法,快速掌握機器學習算法。

付費5元查看完整內容

相關內容

 是一種面向對象的解釋型計算機程序設計語言,在設計中注重代碼的可讀性,同時也是一種功能強大的通用型語言。

有興趣的數據科學專業人士可以通過本書學習Scikit-Learn圖書館以及機器學習的基本知識。本書結合了Anaconda Python發行版和流行的Scikit-Learn庫,演示了廣泛的有監督和無監督機器學習算法。通過用Python編寫的清晰示例,您可以在家里自己的機器上試用和試驗機器學習的原理。

所有的應用數學和編程技能需要掌握的內容,在這本書中涵蓋。不需要深入的面向對象編程知識,因為工作和完整的例子被提供和解釋。必要時,編碼示例是深入和復雜的。它們也簡潔、準確、完整,補充了介紹的機器學習概念。使用示例有助于建立必要的技能,以理解和應用復雜的機器學習算法。

對于那些在機器學習方面追求職業生涯的人來說,Scikit-Learn機器學習應用手冊是一個很好的起點。學習這本書的學生將學習基本知識,這是勝任工作的先決條件。讀者將接觸到專門為數據科學專業人員設計的蟒蛇分布,并將在流行的Scikit-Learn庫中構建技能,該庫是Python世界中許多機器學習應用程序的基礎。

你將學習

  • 使用Scikit-Learn中常見的簡單和復雜數據集
  • 將數據操作為向量和矩陣,以進行算法處理
  • 熟悉數據科學中使用的蟒蛇分布
  • 應用帶有分類器、回歸器和降維的機器學習
  • 優化算法并為每個數據集找到最佳算法
  • 從CSV、JSON、Numpy和panda格式加載數據并保存為這些格式

這本書是給誰的

  • 有抱負的數據科學家渴望通過掌握底層的基礎知識進入機器學習領域,而這些基礎知識有時在急于提高生產力的過程中被忽略了。一些面向對象編程的知識和非常基本的線性代數應用將使學習更容易,盡管任何人都可以從這本書獲益。
付費5元查看完整內容

數據科學庫、框架、模塊和工具包非常適合進行數據科學研究,但它們也是深入研究這一學科的好方法,不需要真正理解數據科學。在本書中,您將了解到許多最基本的數據科學工具和算法都是通過從頭實現來實現的。

如果你有數學天賦和一些編程技能,作者Joel Grus將幫助你熟悉作為數據科學核心的數學和統計,以及作為數據科學家的入門技能。如今,這些雜亂的、充斥著海量數據的數據,為一些甚至沒人想過要問的問題提供了答案。這本書為你提供了挖掘這些答案的訣竅。

參加Python速成班

  • 學習線性代數、統計和概率的基礎知識,并了解如何以及何時在數據科學中使用它們
  • 收集、探索、清理、分析和操作數據
  • 深入了解機器學習的基本原理
  • 實現諸如k近鄰、樸素貝葉斯、線性和邏輯回歸、決策樹、神經網絡和聚類等模型
  • 探索推薦系統、自然語言處理、網絡分析、MapReduce和數據庫
付費5元查看完整內容

簡單易懂,讀起來很有趣,介紹Python對于初學者和語言新手都是理想的。作者Bill Lubanovic帶您從基礎知識到更復雜和更多樣的主題,混合教程和烹飪書風格的代碼配方來解釋Python 3中的概念。章節結尾的練習可以幫助你練習所學的內容。

您將獲得該語言的堅實基礎,包括測試、調試、代碼重用和其他開發技巧的最佳實踐。本書還向您展示了如何使用各種Python工具和開放源碼包將Python用于商業、科學和藝術領域的應用程序。

  • 學習簡單的數據類型,以及基本的數學和文本操作
  • 在Python的內置數據結構中使用數據協商技術
  • 探索Python代碼結構,包括函數的使用
  • 用Python編寫大型程序,包括模塊和包
  • 深入研究對象、類和其他面向對象的特性
  • 檢查從平面文件到關系數據庫和NoSQL的存儲
  • 使用Python構建web客戶機、服務器、api和服務
  • 管理系統任務,如程序、進程和線程
  • 了解并發性和網絡編程的基礎知識

付費5元查看完整內容

?

改進您的編程技術和方法,成為一個更有生產力和創造性的Python程序員。本書探索了一些概念和特性,這些概念和特性不僅將改進您的代碼,而且還將幫助您理解Python社區,并對Python哲學有深入的了解和詳細的介紹。

專業的Python 3,第三版給你的工具寫干凈,創新的代碼。它首先回顧了一些核心的Python原則,這些原則將在本書后面的各種概念和示例中進行說明。本書的前半部分探討了函數、類、協議和字符串的各個方面,描述了一些技術,這些技術可能不是常見的知識,但它們共同構成了堅實的基礎。后面的章節涉及文檔、測試和應用程序分發。在此過程中,您將開發一個復雜的Python框架,該框架將整合在本書中所學到的思想。

這個版本的更新包括Python 3中迭代器的角色、用Scrapy和BeautifulSoup進行web抓取、使用請求調用沒有字符串的web頁面、用于分發和安裝的新工具等等。在本書的最后,您將準備好部署不常見的特性,這些特性可以將您的Python技能提升到下一個級別。

你將學習

  • 用各種類型的Python函數實現程序
  • 使用類和面向對象編程
  • 使用標準庫和第三方庫中的字符串
  • 使用Python獲取web站點數據
  • 通過編寫測試套件來自動化單元測試
  • 回顧成像、隨機數生成和NumPy科學擴展
  • 理解Python文檔的精髓,以幫助您決定分發代碼的最佳方式

這本書是給誰看的 熟悉Python的中級程序員,希望提升到高級水平。您應該至少編寫了一個簡單的Python應用程序,并且熟悉基本的面向對象方法、使用交互式解釋器和編寫控制結構。

付費5元查看完整內容

本書通過提供真實的案例研究和示例,為使用Python庫進行機器學習提供了堅實的基礎。它涵蓋了諸如機器學習基礎、Python入門、描述性分析和預測分析等主題。包括高級機器學習概念,如決策樹學習、隨機森林、增強、推薦系統和文本分析。這本書在理論理解和實際應用之間采取了一種平衡的方法。所有的主題都包括真實世界的例子,并提供如何探索、構建、評估和優化機器學習模型的逐步方法。

付費5元查看完整內容

在Python中獲得操作、處理、清理和處理數據集的完整說明。本實用指南的第二版針對Python 3.6進行了更新,其中包含了大量的實際案例研究,向您展示了如何有效地解決廣泛的數據分析問題。在這個過程中,您將學習最新版本的panda、NumPy、IPython和Jupyter。

本書由Python panda項目的創建者Wes McKinney編寫,是對Python中的數據科學工具的實用的、現代的介紹。對于剛接觸Python的分析人員和剛接觸數據科學和科學計算的Python程序員來說,它是理想的。數據文件和相關材料可以在GitHub上找到。

  • 使用IPython外殼和Jupyter筆記本進行探索性計算
  • 學習NumPy (Numerical Python)中的基本和高級特性
  • 開始使用pandas庫的數據分析工具
  • 使用靈活的工具來加載、清理、轉換、合并和重塑數據
  • 使用matplotlib創建信息可視化
  • 應用panda groupby工具對數據集進行切片、切割和匯總
  • 分析和處理有規律和不規則的時間序列數據
  • 學習如何解決現實世界的數據分析問題與徹底的,詳細的例子
付費5元查看完整內容

這本教科書解釋的概念和技術需要編寫的程序,可以有效地處理大量的數據。面向項目和課堂測試,這本書提出了一些重要的算法,由例子支持,給計算機程序員面臨的問題帶來意義。計算復雜性的概念也被介紹,演示什么可以和不可以被有效地計算,以便程序員可以對他們使用的算法做出明智的判斷。特點:包括介紹性和高級數據結構和算法的主題,與序言順序為那些各自的課程在前言中提供; 提供每個章節的學習目標、復習問題和編程練習,以及大量的說明性例子; 在相關網站上提供可下載的程序和補充文件,以及作者提供的講師資料; 為那些來自不同的語言背景的人呈現Python的初級讀本。

付費5元查看完整內容

掌握通過機器學習和深度學習識別和解決復雜問題的基本技能。使用真實世界的例子,利用流行的Python機器學習生態系統,這本書是你學習機器學習的藝術和科學成為一個成功的實踐者的完美伴侶。本書中使用的概念、技術、工具、框架和方法將教會您如何成功地思考、設計、構建和執行機器學習系統和項目。

使用Python進行的實際機器學習遵循結構化和全面的三層方法,其中包含了實踐示例和代碼。

第1部分側重于理解機器學習的概念和工具。這包括機器學習基礎,對算法、技術、概念和應用程序的廣泛概述,然后介紹整個Python機器學習生態系統。還包括有用的機器學習工具、庫和框架的簡要指南。

第2部分詳細介紹了標準的機器學習流程,重點介紹了數據處理分析、特征工程和建模。您將學習如何處理、總結和可視化各種形式的數據。特性工程和選擇方法將詳細介紹真實數據集,然后是模型構建、調優、解釋和部署。

第3部分探討了多個真實世界的案例研究,涵蓋了零售、交通、電影、音樂、營銷、計算機視覺和金融等不同領域和行業。對于每個案例研究,您將學習各種機器學習技術和方法的應用。動手的例子將幫助您熟悉最先進的機器學習工具和技術,并了解什么算法最適合任何問題。

實用的機器學習與Python將授權您開始解決您自己的問題與機器學習今天!

你將學習:

  • 執行端到端機器學習項目和系統
  • 使用行業標準、開放源碼、健壯的機器學習工具和框架實現實踐示例
  • 回顧描述機器學習和深度學習在不同領域和行業中的應用的案例研究
  • 廣泛應用機器學習模型,包括回歸、分類和聚類。
  • 理解和應用深度學習的最新模式和方法,包括CNNs、RNNs、LSTMs和transfer learning。

這本書是給誰看的 IT專業人士、分析師、開發人員、數據科學家、工程師、研究生

目錄:

Part I: Understanding Machine Learning

  • Chapter 1: Machine Learning Basics
  • Chapter 2: The Python Machine Learning Ecosystem Part II: The Machine Learning Pipeline
  • Chapter 3: Processing, Wrangling and Visualizing Data
  • Chapter 4: Feature Engineering and Selection
  • Chapter 5: Building, Tuning and Deploying Models Part III: Real-World Case Studies
  • Chapter 6: Analyzing Bike Sharing Trends
  • Chapter 7: Analyzing Movie Reviews Sentiment
  • Chapter 8: Customer Segmentation and Effective Cross Selling
  • Chapter 9: Analyzing Wine Types and Quality
  • Chapter 10: Analyzing Music Trends and Recommendations
  • Chapter 11: Forecasting Stock and Commodity Prices

Chapter 12: Deep Learning for Computer Vision

付費5元查看完整內容

本書是為那些對數據科學感興趣的Python程序員編寫的。唯一的先決條件是Python的基本知識。不需要有使用復雜算法的經驗。數學背景不是必須的。讀完這本書的業余愛好者將獲得獲得第一份高薪數據科學工作所必需的技能。這些技能包括:

  • 概率論和統計學的基礎。
  • 監督和非監督機器學習技術。
  • 關鍵的數據科學圖書館,如NumPy, SciPy, panda, Matplotlib和Scikit-Learn。
  • 解決問題的能力。

開放式解決問題的能力對于數據科學職業來說是必不可少的。不幸的是,這些能力不能通過閱讀來獲得。要成為一個問題解決者,你必須堅持解決困難的問題。帶著這種想法,我的書圍繞著案例研究展開:以真實世界為模型的開放式問題。案例研究范圍從在線廣告分析到使用新聞數據跟蹤疾病暴發。

付費5元查看完整內容

簡介:

科學專業人員可以通過本書學習Scikit-Learn庫以及機器學習的基礎知識。該書將Anaconda Python發行版與流行的Scikit-Learn庫結合在一起,展示了各種有監督和無監督的機器學習算法。通過Python編寫的清晰示例向讀者介紹機器學習的原理,以及相關代碼。

本書涵蓋了掌握這些內容所需的所有應用數學和編程技能。不需要深入的面向對象編程知識,因為可以提供并說明完整的示例。必要時,編碼示例很深入且很復雜。它們也簡潔,準確,完整,是對引入的機器學習概念的補充。處理示例有助于建立理解和應用復雜機器學習算法所需的技能。

本書的學生將學習作為勝任力前提的基礎知識。讀者將了解專門為數據科學專業人員設計的Python Anaconda發行版,并將在流行的Scikit-Learn庫中構建技能,該庫是Python領域許多機器學習應用程序的基礎。

本書內容包括:

  • 使用Scikit-Learn通用的簡單和復雜數據集
  • 將數據處理為向量和矩陣以進行算法處理
  • 熟悉數據科學中使用的Anaconda發行版
  • 通過分類器,回歸器和降維應用機器學習
  • 調整算法并為每個數據集找到最佳算法
  • 從CSV,JSON,Numpy和Pandas格式加載數據并保存

內容介紹:

這本書分為八章。 第1章介紹了機器學習,Anaconda和Scikit-Learn的主題。 第2章和第3章介紹算法分類。 第2章對簡單數據集進行分類,第3章對復雜數據集進行分類。 第4章介紹了回歸預測模型。 第5章和第6章介紹分類調整。 第5章調整簡單數據集,第6章調整復雜數據集。 第7章介紹了預測模型回歸調整。 第8章將所有知識匯總在一起,以整體方式審查和提出發現。

作者介紹:

David Paper博士是猶他州立大學管理信息系統系的教授。他寫了兩本書-商業網絡編程:Oracle的PHP面向對象編程和Python和MongoDB的數據科學基礎。他在諸如組織研究方法,ACM通訊,信息與管理,信息資源管理期刊,AIS通訊,信息技術案例與應用研究期刊以及遠程計劃等參考期刊上發表了70余篇論文。他還曾在多個編輯委員會擔任過各種職務,包括副編輯。Paper博士還曾在德州儀器(TI),DLS,Inc.和鳳凰城小型企業管理局工作。他曾為IBM,AT&T,Octel,猶他州交通運輸部和空間動力實驗室執行過IS咨詢工作。 Paper博士的教學和研究興趣包括數據科學,機器學習,面向對象的程序設計和變更管理。

目錄:

付費5元查看完整內容
北京阿比特科技有限公司