關于大數據技術的信息很多,但將這些技術拼接到端到端企業數據平臺是一項艱巨的任務,沒有得到廣泛的討論。通過這本實用的書,您將學習如何在本地和云中構建大數據基礎設施,并成功地構建一個現代數據平臺。
本書非常適合企業架構師、IT經理、應用程序架構師和數據工程師,它向您展示了如何克服Hadoop項目期間出現的許多挑戰。在深入了解以下內容之前,您將在一個徹底的技術入門中探索Hadoop和大數據領域中可用的大量工具:
-平臺: 了解部署、操作、安全性、高可用性和災難恢復的各個方面,以及將平臺與企業IT的其他部分集成在一起所需了解的所有內容
管理統計和數據科學的原理包括:數據可視化;描述性措施;概率;概率分布;數學期望;置信區間;和假設檢驗。方差分析;簡單線性回歸;多元線性回歸也包括在內。另外,本書還提供了列聯表、卡方檢驗、非參數方法和時間序列方法。
教材:
這本書以一種結構化的、直觀的、友好的方式學習c++編程語言。這本書教授現代c++編程語言、c++標準庫和現代c++標準的基礎知識。不需要以前的編程經驗。
c++是一種不同于其他語言的語言,它的復雜性令人驚訝,但在許多方面都非常優美和優雅。它也是一種不能通過猜測來學習的語言,是一種很容易出錯的語言。為了克服這一點,每個部分都充滿了現實世界中逐漸增加復雜性的例子。面向絕對初學者的現代c++教的不僅僅是用c++ 20編程。它提供了一個可在其上進行構建的堅實的c++基礎。
作者帶您了解c++編程語言、標準庫和c++ 11到c++ 20標準基礎知識。每一章都附有適量的理論和大量的源代碼示例。
您將使用c++ 20個特性和標準,同時還將比較和查看以前的c++版本。您將使用大量相關的源代碼示例來實現此目的。
你將學到什么
這本書是給誰的
對于語音計算領域的開發者來說,這是一個激動人心的時刻:谷歌上每4次搜索中就有1次是支持語音的,亞馬遜Alexa剛剛超過1萬個技能,WhatsApp上每天完成1億個通話。但是你從哪里開始學習如何在這個領域編碼呢?
無論您是一位經驗豐富的開發人員還是剛剛起步,這本書都將指導您使用Python構建基于語音的應用程序。
?介紹
這本書在保持非常務實的教導和結果導向付出很大的精力。構建聊天機器人不只是完成一個教程或遵循幾個步驟,它本身就是一種技能。這本書肯定不會用大量的文本和過程讓你感到無聊;相反,它采用的是邊做邊學的方法。到目前為止,在你的生活中,你肯定至少使用過一個聊天機器人。無論你是不是一個程序員,一旦你瀏覽這本書,你會發現構建模塊的聊天機器人,所有的奧秘將被揭開。建立聊天機器人可能看起來很困難,但這本書將讓你使它如此容易。我們的大腦不是用來直接處理復雜概念的;相反,我們一步一步地學習。當你讀這本書的時候,從第一章到最后一章,你會發現事情的進展是多么的清晰。雖然你可以直接翻到任何一章,但我強烈建議你從第一章開始,因為它肯定會支持你的想法。這本書就像一個網絡系列,你在讀完一章之后就無法抗拒下一章的誘惑。在閱讀完這本書后,你所接觸到的任何聊天機器人都會在你的腦海中形成一幅關于聊天機器人內部是如何設計和構建的畫面。
這本書適合誰?
這本書將作為學習與聊天機器人相關的概念和學習如何建立他們的一個完整的資源。那些將會發現這本書有用的包括: Python web開發人員希望擴大他們的知識或職業到聊天機器人開發。 學生和有抱負的程序員想獲得一種新的技能通過親身體驗展示的東西,自然語言愛好者希望從頭開始學習。 企業家如何構建一個聊天機器人的偉大的想法,但沒有足夠的技術關于如何制作聊天機器人的可行性信息。 產品/工程經理計劃與聊天機器人相關項目。
如何使用這本書?
請記住,這本書的寫作風格和其他書不一樣。讀這本書的時候要記住,一旦你完成了這本書,你就可以自己建造一個聊天機器人,或者教會別人如何建造一個聊天機器人。在像閱讀其他書籍一樣閱讀這本書之前,務必記住以下幾點:
內容概要
本書涵蓋了這些領域中使用Python模塊演示的概率、統計和機器學習的關鍵思想。整本書包括所有的圖形和數值結果,都可以使用Python代碼及其相關的Jupyter/IPython Notebooks。作者通過使用多種分析方法和Python代碼的有意義的示例,開發了機器學習中的關鍵直覺,從而將理論概念與具體實現聯系起來。現代Python模塊(如panda、y和Scikit-learn)用于模擬和可視化重要的機器學習概念,如偏差/方差權衡、交叉驗證和正則化。許多抽象的數學思想,如概率論中的收斂性,都得到了發展,并用數值例子加以說明。本書適合任何具有概率、統計或機器學習的本科生,以及具有Python編程的基本知識的人。
Manning最暢銷的Java 8書籍已經被修訂為Java 9和Java 10!在Modern Java In Action中,讀者可以使用最新的特性和技術,在已有的Java語言技能的基礎上進行構建。
Java 9的發布建立在Java 8令人激動的基礎之上。除了Java 8的lambdas和streams之外,Java 9還添加了許多自己的新特性。它包含了新的庫特性來支持響應式編程,這為用戶提供了一種新的方式來思考編程和編寫更易于閱讀和維護的代碼。
簡單易懂,讀起來很有趣,介紹Python對于初學者和語言新手都是理想的。作者Bill Lubanovic帶您從基礎知識到更復雜和更多樣的主題,混合教程和烹飪書風格的代碼配方來解釋Python 3中的概念。章節結尾的練習可以幫助你練習所學的內容。
您將獲得該語言的堅實基礎,包括測試、調試、代碼重用和其他開發技巧的最佳實踐。本書還向您展示了如何使用各種Python工具和開放源碼包將Python用于商業、科學和藝術領域的應用程序。
在線推薦系統幫助用戶找到電影、工作、餐館——甚至愛情!這是一種將統計數據、人口統計數據和查詢條件相結合以獲得令他們滿意的結果的藝術。學習建立一個推薦系統的正確方法:它可以使你的應用成功或失敗!
對這項技術
推薦系統無處不在,幫助你找到從電影到工作,從餐館到醫院,甚至是愛情的一切。利用行為和人口統計數據,這些系統可以預測用戶在特定時間最感興趣的內容,從而得到高質量、有序、個性化的建議。推薦系統實際上是保持網站內容最新、有用和有趣的必要手段。
關于這本書
實用推薦系統解釋如何推薦系統的工作,并顯示如何創建和應用它們為您的網站。在介紹了基礎知識之后,您將看到如何收集用戶數據并生成個性化的推薦。您將學習如何使用最流行的推薦算法,并在Amazon和Netflix等網站上看到它們的實例。最后,這本書涵蓋了規模問題和其他問題,你會遇到的網站成長。
里面有什么
本書概述了現代數據科學重要的數學和數值基礎。特別是,它涵蓋了信號和圖像處理(傅立葉、小波及其在去噪和壓縮方面的應用)、成像科學(反問題、稀疏性、壓縮感知)和機器學習(線性回歸、邏輯分類、深度學習)的基礎知識。重點是對方法學工具(特別是線性算子、非線性逼近、凸優化、最優傳輸)的數學上合理的闡述,以及如何將它們映射到高效的計算算法。
//mathematical-tours.github.io/book/
它應該作為數據科學的數字導覽的數學伴侶,它展示了Matlab/Python/Julia/R對這里所涵蓋的所有概念的詳細實現。
本書通過提供真實的案例研究和示例,為使用Python庫進行機器學習提供了堅實的基礎。它涵蓋了諸如機器學習基礎、Python入門、描述性分析和預測分析等主題。包括高級機器學習概念,如決策樹學習、隨機森林、增強、推薦系統和文本分析。這本書在理論理解和實際應用之間采取了一種平衡的方法。所有的主題都包括真實世界的例子,并提供如何探索、構建、評估和優化機器學習模型的逐步方法。