在復雜的以人為中心的系統中,每天的決策都具有決策相關信息不完全的特點。現有決策理論的主要問題是,它們沒有能力處理概率和事件不精確的情況。在這本書中,我們描述了一個新的理論的決策與不完全的信息。其目的是將決策分析和經濟行為的基礎從領域二價邏輯轉向領域模糊邏輯和Z約束,從行為決策的外部建模轉向組合狀態的框架。
這本書將有助于在模糊邏輯,決策科學,人工智能,數學經濟學,和計算經濟學的專業人員,學者,經理和研究生。
讀者:專業人士,學者,管理者和研究生在模糊邏輯,決策科學,人工智能,數學經濟學,和計算經濟學。
這些筆記的第一個版本是為第一年的研究生代數課程編寫的。和大多數這類課程一樣,講義集中在抽象群,特別是有限群。然而,大多數數學家遇到的群并不是抽象的群,而是代數群、拓撲群或李群,而且感興趣的不僅僅是群本身,還有它們的線性表示。我的意圖是(將來的某一天)擴展筆記以考慮到這一點,并制作一本規模適中(c200頁)的書,為數學、物理和相關領域的剛開始學習的研究生提供更全面的關于群論的介紹。
本書涵蓋了這些領域中使用Python模塊演示的概率、統計和機器學習的關鍵思想。整本書包括所有的圖形和數值結果,都可以使用Python代碼及其相關的Jupyter/IPython Notebooks。作者通過使用多種分析方法和Python代碼的有意義的示例,開發了機器學習中的關鍵直覺,從而將理論概念與具體實現聯系起來。現代Python模塊(如panda、y和Scikit-learn)用于模擬和可視化重要的機器學習概念,如偏差/方差權衡、交叉驗證和正則化。許多抽象的數學思想,如概率論中的收斂性,都得到了發展,并用數值例子加以說明。本書適合任何具有概率、統計或機器學習的本科生,以及具有Python編程的基本知識的人。
機器學習是計算機科學中增長最快的領域之一,具有深遠的應用。本書的目的是介紹機器學習,以及它所提供的算法范例。本書對機器學習的基本原理和將這些原理轉化為實際算法的數學推導提供了理論解釋。在介紹了基礎知識之后,這本書涵蓋了以前教科書沒有涉及到的一系列廣泛的中心主題。這些包括討論學習的計算復雜性和凸性和穩定性的概念;重要的算法范例包括隨機梯度下降、神經網絡和結構化輸出學習;以及新興的理論概念,如PAC-Bayes方法和基于壓縮的界限。本文面向高級本科生或剛畢業的學生,使統計學、計算機科學、數學和工程學領域的學生和非專業讀者都能接觸到機器學習的基本原理和算法。
//www.cse.huji.ac.il/~shais/UnderstandingMachineLearning/index.html
概述
機器學習是指自動檢測數據中有意義的模式。在過去的幾十年里,它已經成為幾乎所有需要從大數據集中提取信息的任務的通用工具。我們被一種基于機器學習的技術包圍著:搜索引擎學習如何給我們帶來最好的結果(同時投放有利可圖的廣告),反垃圾郵件軟件學習如何過濾我們的電子郵件信息,信用卡交易被一種學習如何偵測欺詐的軟件保護著。數碼相機學會識別人臉,智能手機上的智能個人輔助應用學會識別語音指令。汽車配備了使用機器學習算法構建的事故預防系統。機器學習還廣泛應用于生物信息學、醫學和天文學等科學領域。
所有這些應用程序的一個共同特征是,與計算機的更傳統使用相比,在這些情況下,由于需要檢測的模式的復雜性,人類程序員無法提供關于這些任務應該如何執行的明確、詳細的規范。以智慧生物為例,我們的許多技能都是通過學習我們的經驗(而不是遵循給我們的明確指示)而獲得或改進的。機器學習工具關注的是賦予程序“學習”和適應的能力。
這本書的第一個目標是提供一個嚴格的,但易于遵循,介紹機器學習的主要概念: 什么是機器學習?
本書的第二個目標是介紹幾種關鍵的機器學習算法。我們選擇展示的算法一方面在實踐中得到了成功應用,另一方面提供了廣泛的不同的學習技術。此外,我們特別關注適合大規模學習的算法(又稱“大數據”),因為近年來,我們的世界變得越來越“數字化”,可用于學習的數據量也在急劇增加。因此,在許多應用中數據量大,計算時間是主要瓶頸。因此,我們明確地量化了學習給定概念所需的數據量和計算時間。
目錄:
Part I: Foundations
Part II: From Theory to Algorithms
Part III: Additional Learning Models
Part IV: Advanced Theory
Appendices
這本全面的教科書向讀者介紹了博弈論的主要思想和應用,以一種結合了嚴謹性和可達性的風格。Steven Tadelis從對理性決策的簡明描述開始,接著討論了具有完全信息的策略性和廣泛的形式博弈、貝葉斯博弈和具有不完全信息的廣泛的形式博弈。他涵蓋了一系列的主題,包括多階段重復博弈、討價還價理論、拍賣、尋租博弈、機制設計、信號博弈、信譽構建和信息傳遞博弈。與其他博弈論書籍不同,這本書從理性的概念開始,通過諸如主導策略和理性化等概念,探討其對多人決策問題的影響。只有這樣,它才提出了納什均衡及其導數的問題。
《博弈論》是高等本科和研究生的理想教材。在整個過程中,概念和方法是解釋使用真實世界的例子支持精確的分析材料。這本書有許多重要的應用經濟學和政治學,以及大量的練習,集中在如何正式的非正式情況,然后分析他們。
介紹博弈論的核心思想和應用 包含靜態和動態博弈,包含完整和不完整的信息 提供各種各樣的例子、應用程序和練習 主題包括重復博弈、討價還價、拍賣、信號、聲譽和信息傳輸 適合本科及研究生 為教師提供完整的解決方案,為學生提供精選的解決方案
這本基礎專著介紹了信息理論和編碼的概率和代數方面。它是由作者在本科階段多年的教學經驗發展而來的,包括幾門劍橋大學的數學三等獎課程。這本書提供了相關的背景材料,廣泛的工作示例和明確的解決方案的問題,從真正的考試試卷。對于本科生和研究生,或者對于想要掌握基本原理的研究人員和工程師來說,這是一種很有價值的教學輔助手段。
現代博弈論的權威性和定量方法,應用于經濟、政治科學、軍事科學和金融等不同領域。
探索當前博弈論文本中未涉及的領域,包括對零和博弈的深入研究;提供博弈論的入門材料,包括討價還價,室內游戲,體育,網絡游戲和動態游戲;探討議價模式,探討議價模式下的資源分配、買賣指示、信譽等新結果;在每一章的結尾,都會給出理論結果以及大量的例子和詳細的解決方案;平衡了博弈論的理論基礎和復雜應用。
統計學習理論是一個新興的研究領域,它是概率論、統計學、計算機科學和最優化的交叉領域,研究基于訓練數據進行預測的計算機算法的性能。以下主題將包括:統計決策理論基礎;集中不平等;監督學習和非監督學習;經驗風險最小化;complexity-regularized估計;學習算法的泛化界VC維與復雜性;極大極小下界;在線學習和優化。利用一般理論,我們將討論統計學習理論在信號處理、信息論和自適應控制方面的一些應用。
數學與計算為計算復雜性理論提供了一個廣泛的、概念性的概述——高效計算的數學研究。計算復雜性理論在計算機科學和工業中有著重要的實際應用,它已經發展成為一個高度跨學科的領域,與大多數數學領域和越來越多的科學研究有著密切的聯系。
Avi Wigderson對復雜性理論進行了全面的研究,強調了該領域的洞察力和挑戰。他解釋了導致關鍵模型、概念和結果的想法和動機。特別是,他研究了算法和復雜性,計算和證明,隨機性和相互作用,量子和算術計算,密碼學和學習,所有這些都是一個緊密結合的整體的一部分,有許多相互影響。威格德森闡述了這一領域的廣闊,它的美麗和豐富,以及它與數學其他領域的多樣化和日益增長的相互作用。最后,他全面介紹了計算理論、計算方法和愿望,以及它在塑造和將進一步塑造科學、技術和社會方面的獨特而基本的方式。為進一步閱讀,廣泛的參考書目提供了所有的主題。
數學與計算對于數學、計算機科學及相關領域的本科生和研究生,以及這些領域的研究人員和教師都很有用。許多部分只需要很少的背景知識,對于那些想要了解計算理論的新手來說,這是一種邀請。
Avi Wigderson是新澤西州普林斯頓高等研究院數學學院的Herbert H. Maass教授。
前言: 目標:本課程旨在讓學生對人工智能的基本概念和實踐有一個堅實的(通常是有點理論性的)基礎。這門課程在第一學期主要涉及符號化的人工智能,有時也被稱為優秀的老式人工智能(GofAI),并在第二學期提供統計方法的基礎。事實上,一個完整的基于機器學習的AI應該有專業課程,并且需要比我們在這門課程中更多的數學基礎。
課程內容:
目標: 使學生對人工智能領域的基本概念和實踐有一個堅實的基礎。該課程將基于Russell/Norvig的書《人工智能》:現代方法[RN09]
Artificial Intelligence I(第一部分): 介紹人工智能作為一個研究領域,討論作為人工智能統一概念范式的理性代理,并涵蓋問題解決、搜索、約束傳播、邏輯、知識表示和規劃。
Artificial Intelligence II(第二部分): 更傾向于讓學生接觸基于統計的人工智能的基礎知識:我們從不確定性下的推理開始,用貝葉斯網絡建立基礎,并將其擴展到理性決策理論。在此基礎上,我們介紹了機器學習的基礎知識。