近年來,隨著web2.0的普及,使用圖挖掘技術進行異常檢測受到人們越來越多的關注.圖異常檢測在欺詐檢測、入侵檢測、虛假投票、僵尸粉絲分析等領域發揮著重要作用.本文在廣泛調研國內外大量文獻以及最新科研成果的基礎上,按照數據表示形式將面向圖的異常檢測劃分成靜態圖上的異常檢測與動態圖上的異常檢測兩大類,進一步按照異常類型將靜態圖上的異常分為孤立個體異常和群組異常檢測兩種類別,動態圖上的異常分為孤立個體異常、群體異常以及事件異常三種類型.對每一類異常檢測方法當前的研究進展加以介紹,對每種異常檢測算法的基本思想、優缺點進行分析、對比,總結面向圖的異常檢測的關鍵技術、常用框架、應用領域、常用數據集以及性能評估方法,并對未來可能的發展趨勢進行展望.
//www.jos.org.cn/jos/ch/reader/view_abstract.aspx?file_no=6100&flag=1
我們生活在一個由大量不同模態內容構建而成的多媒體世界中,不同模態信息之間具有高度的相關性和互補性,多模態表征學習的主要目的就是挖掘出不同模態之間的共性和特性,產生出可以表示多模態信息的隱含向量.該文章主要介紹了目前應用較廣的視覺語言表征的相應研究工作,包括傳統的基于相似性模型的研究方法和目前主流的基于語言模型的預訓練的方法.目前比較好的思路和解決方案是將視覺特征語義化然后與文本特征通過一個強大的特征抽取器產生出表征,其中Transformer[1]作為主要的特征抽取器被應用表征學習的各類任務中.文章分別從研究背景、不同研究方法的劃分、測評方法、未來發展趨勢等幾個不同角度進行闡述.
//www.jos.org.cn/jos/ch/reader/view_abstract.aspx?file_no=6125&flag=1
人工智能技術因其強大的學習和泛化能力已經被廣泛應用到各種真實場景中.然而,現有人工智能技術還面臨著三大挑戰.第一,現有AI技術使用門檻高,依賴于AI從業者選擇合適模型、設計合理參數、編寫程序,因此很難被廣泛應用到非計算機領域;第二,現有AI算法訓練效率低,造成了大量計算資源浪費,甚至延誤決策時機;第三、現有AI技術強依賴高質量數據,如果數據質量較低,可能造成計算結果的錯誤.數據庫技術可以有效解決這三個難題,因此目前面向AI的數據管理得到了廣泛關注.本文首先給出AI中數據管理的整體框架,然后詳細綜述基于聲明式語言模型的AI系統、面向AI優化的計算引擎、執行引擎和面向AI的數據治理引擎四個方面.最后展望未來的研究方向和挑戰.
//www.jos.org.cn/jos/ch/reader/view_abstract.aspx?file_no=6121&flag=1
對于容量快速增長、日趨多元化的大數據,業界亟需開發可行性更好的存儲工具。為滿足大數據存儲需求,存儲機制已經形成從傳統數據管理系統到NoSQL技術的結構化轉移。然而,目前可用的大數據存儲技術無法為持續增長的異構數據提供一致、可擴展和可用的解決方案。在科學實驗、醫療保健、社交網絡和電子商務等實際應用中,存儲是大數據分析的第一步。截至目前,亞馬遜、谷歌和阿帕奇等公司形成了大數據存儲方案的行業標準,但尚未有關于大數據存儲技術性能和容量提升的深入調查和文獻報告。本文旨在對目前可用于大數據的最先進的存儲技術進行全面調查,提供了一個明確的大數據存儲技術分類方法,以幫助數據分析師和研究人員了解和選擇更適合其需求的存儲機制。我們使用布魯爾的CAP定理比較和分析了現有存儲方法,評估了不同存儲架構的性能,討論了存儲技術的意義、應用及其對其他類別數據的支持。為了加快部署可靠和可擴展的存儲系統,文中還突出了未來研究面臨的幾個挑戰。
視頻中的異常檢測是一個研究了十多年的問題。這一領域因其廣泛的適用性而引起了研究者的興趣。正因為如此,多年來出現了一系列廣泛的方法,這些方法從基于統計的方法到基于機器學習的方法。在這一領域已經進行了大量的綜述,但本文著重介紹了使用深度學習進行異常檢測領域的最新進展。深度學習已成功應用于人工智能的許多領域,如計算機視覺、自然語言處理等。然而,這項調查關注的是深度學習是如何改進的,并為視頻異常檢測領域提供了更多的見解。本文針對不同的深度學習方法提供了一個分類。此外,還討論了常用的數據集以及常用的評價指標。然后,對最近的研究方法進行了綜合討論,以提供未來研究的方向和可能的領域。
句法分析的目標是分析輸入句子并得到其句法結構,是自然語言處理領域的經典任務之一。目前針對該任務的研究主要集中于如何通過從數據中自動學習來提升句法分析器的精度。該文對句法分析方向的前沿動態進行了調研,分別從有監督句法分析、無監督句法分析和跨領域跨語言句法分析三個子方向梳理和介紹了2018—2019年發表的新方法和新發現,并對句法分析子方向的研究前景進行了分析和展望。
題目: 基于深度學習的主題模型研究
摘要: 主題模型作為一個發展二十余年的研究問題,一直是篇章級別文本語義理解的重要工具.主題模型善于從一組文檔中抽取出若干組關鍵詞來表達該文檔集的核心思想,因而也為文本分類、信息檢索、自動摘要、文本生成、情感分析等其他文本分析任務提供重要支撐.雖然基于三層貝葉斯網絡的傳統概率主題模型在過去十余年已被充分研究,但隨著深度學習技術在自然語言處理領域的廣泛應用,結合深度學習思想與方法的主題模型煥發出新的生機.研究如何整合深度學習的先進技術,構建更加準確高效的文本生成模型成為基于深度學習主題建模的主要任務.本文首先概述并對比了傳統主題模型中四個經典的概率主題模型與兩個稀疏約束的主題模型.接著對近幾年基于深度學習的主題模型研究進展進行綜述,分析其與傳統模型的聯系、區別與優勢,并對其中的主要研究方向和進展進行歸納、分析與比較.此外,本文還介紹了主題模型常用公開數據集及評測指標.最后,總結了主題模型現有技術的特點,并分析與展望了基于深度學習的主題模型的未來發展趨勢。
摘要:大數據是多源異構的。在信息技術飛速發展的今天,多模態數據已成為近來數據資源的主要形式。研究多模態學習方法,賦予計算機理解多源異構海量數據的能力具有重要價值。本文歸納了多模態的定義與多模態學習的基本任務,介紹了多模態學習的認知機理與發展過程。在此基礎上,重點綜述了多模態統計學習方法與深度學習方法。此外,本文系統歸納了近兩年較為新穎的基于對抗學習的跨模態匹配與生成技術。本文總結了多模態學習的主要形式,并對未來可能的研究方向進行思考與展望。
【簡介】在智能交通系統中交通預測扮演著重要的角色。精準的交通預測有助于優化通行路線,指導車輛調度,緩解交通擁堵。由于道路網絡中不同區域之間復雜且動態的時空依賴關系,這一問題具有很大挑戰性。最近幾年,有大量的研究工作推進了這一領域的發展,提高了交通系統預測交通的能力。這篇論文對于近些年的交通預測發展提供了一個全面的綜述。具體來說,我們對目前的交通預測方法進行了總結,并且對它們進行了分類。然后,我們列舉了應用交通預測的常見領域,以及這些應用任務的最新進展。同時,我們也收集和整理了幾個相關的公共數據集,并分別在兩個數據集上通過對相關的交通預測方法的表現進行了評估。最后,我們對這一領域未來的發展方向進行了探討。
簡介:
如今,深度學習已被廣泛應用于圖像分類和圖像識別的問題中,取得了令人滿意的實際效果,成為許多人 工智能應用的關鍵所在.在對于模型準確率的不斷探究中,研究人員在近期提出了“對抗樣本”這一概念.通過在原有 樣本中添加微小擾動的方法,成功地大幅度降低原有分類深度模型的準確率,實現了對于深度學習的對抗目的,同時 也給深度學習的攻方提供了新的思路,對如何開展防御提出了新的要求.在介紹對抗樣本生成技術的起源和原理的 基礎上,對近年來有關對抗樣本的研究和文獻進行了總結,按照各自的算法原理將經典的生成算法分成兩大類——全像素添加擾動和部分像素添加擾動.之后,以目標定向和目標非定向、黑盒測試和白盒測試、肉眼可見和肉眼不可見的二級分類標準進行二次分類.同時,使用 MNIST 數據集對各類代表性的方法進行了實驗驗證,以探究各種方法的優缺點.最后總結了生成對抗樣本所面臨的挑戰及其可以發展的方向,并就該技術的發展前景進行了探討.
內容簡介:
本文重點對生成對抗樣本的已有研究工作進行綜述,主要選取了近年來有代表性的或取得比較顯著效果的方法進行詳細的原理介紹和優缺點分析.按照其生成方式和原理的不同,分為全像素添加擾動和部分像素添 加擾動兩類.在此基礎上,根據目標是否定向、是否黑盒和是否肉眼可見這 3 個標準進行細分,將各類方法中的 代表性算法在統一數據集(MNIST)上進行測試,驗證并分析其優缺點,終總結提出未來的發展前景. 本文第 1 節主要介紹對抗樣本的基本概念和基礎知識,包括對抗樣本本身的定義、其延伸有關的相關概念 以及基本操作流程.第 2 節則指出對抗樣本是從深度學習中衍生出來的概念,同時介紹了對抗樣本有效性的評估方法.第 3 節則介紹對抗樣本的起源,說明了對抗樣本的產生契機和原理解釋.第 4 節介紹生成對抗樣本的發展狀況,以全像素添加擾動和部分像素添加擾動兩大類進行算法說明,同時總結生成方法中常用的數據集.第 5 節是對第 4 節中代表方法的實驗,結合對同一數據集的效果測試來說明各類方法的優缺點.通過這些優缺點,在 第 6 節中討論對抗樣本生成技術面臨的挑戰和前景預測.
目錄:
1 簡 介
2 前 傳
3 起源
4 發 展
5 實驗結果對比
6 面臨挑戰與前景預測