亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

題目: Hyperbolic Graph Convolutional Neural Networks

摘要: 圖卷積神經網絡(GCNs)將圖中的節點嵌入到歐幾里德空間中,在嵌入具有無標度或層次結構的真實圖時,歐幾里德空間會產生很大的失真。雙曲幾何提供了一個令人興奮的選擇,因為它使嵌入具有更小的失真。然而,將廣義神經網絡擴展到雙曲幾何中,由于目前尚不清楚如何定義雙曲空間中的特征變換和聚集等神經網絡操作,因此提出了一些獨特的挑戰。此外,由于輸入特征通常是歐幾里德的,因此如何將特征轉換為具有適當曲率的雙曲型嵌入尚不清楚。本文提出了雙曲圖卷積神經網絡(HGCN),它是第一個同時利用GCN和雙曲幾何的表達能力來學習層次圖和無標度圖的歸納節點表示的雙曲型GCN。推導了雙曲空間雙曲面模型的GCN運算,并將歐氏輸入特征映射到每層可訓練曲率不同的雙曲空間中的嵌入。

作者簡介: Ines Chami,斯坦福大學ICME數據科學項目的碩士,她的研究方向包括計算機視覺,自然語言處理,更具體地說,多模態分析。個人主頁://profiles.stanford.edu/ines-chami

Rex Ying,斯坦福大學計算機科學博士,他的研究主要集中在開發應用于圖結構數據的機器學習算法上。個人主頁:

付費5元查看完整內容

相關內容

 機器學習的一個分支,它基于試圖使用包含復雜結構或由多重非線性變換構成的多個處理層對數據進行高層抽象的一系列算法。

知識薈萃

精品入門和進階教程、論文和代碼整理等

更多

查看相關VIP內容、論文、資訊等

本文研究如何更好聚合網絡拓撲信息和特征信息。中心思想是,構造了結構圖,特征圖(feature graph),以及兩者的組合來提取特定的和通用的嵌入,并使用注意機制來學習嵌入的自適應重要性權重。實驗發現,AM-GCN可以從節點特征和拓撲結構中提取自適應地提取相關的信息,對應不同的參數取值。 //arxiv.org/abs/2007.02265

摘要:圖卷積網絡(GCNs)在處理圖數據和網絡數據的各種分析任務方面得到了廣泛的應用。然而,最近的一些研究提出了一個問題,即GCNs是否能夠在一個信息豐富的復雜圖形中優化地整合節點特征和拓撲結構。在本文中,我們首先提出一個實驗研究。令人驚訝的是,我們的實驗結果清楚地表明,當前的GCNs融合節點特征和拓撲結構的能力遠遠不是最優的,甚至是令人滿意的。由于GCNs無法自適應地學習拓撲結構與節點特征之間的一些深層次關聯信息,這一弱點可能會嚴重阻礙GCNs在某些分類任務中的能力。我們能否彌補這一缺陷,設計出一種新型的GCNs,既能保留現有GCNs的優勢,又能大幅度提高拓撲結構和節點特征融合的能力?為了解決這個問題,我們提出了一種自適應多通道半監督分類圖卷積網絡。其核心思想是同時從節點特征、拓撲結構及其組合中提取具體的和常見的嵌入,并利用注意機制學習嵌入的自適應重要度權值。我們在基準數據集上進行的大量實驗表明,AM-GCN從節點特征和拓撲結構中提取了最多的相關信息,顯著提高了分類精度。

付費5元查看完整內容

主題: Low-Dimensional Hyperbolic Knowledge Graph Embeddings

摘要: 知識圖譜(KG)嵌入學習實體和關系的低維表示,以預測缺失的內容。 KG通常表現出必須保留在嵌入空間中的分層和邏輯模式。對于分層數據,雙曲線嵌入方法已顯示出對高保真和簡約表示的希望。但是,現有的雙曲線嵌入方法無法解決KG中的豐富邏輯模式。在這項工作中,我們介紹了一類雙曲KG嵌入模型,該模型同時捕獲層次結構和邏輯模式。我們的方法將雙曲線反射和旋轉結合在一起,以注意對復雜的關系模式進行建模。在標準KG基準上的實驗結果表明,我們的方法在較低維度上的平均倒數排名(MRR)比以前的基于歐幾里德和雙曲線的方法提高了6.1%。此外,我們觀察到,不同的幾何變換捕獲不同類型的關系,而基于注意力的變換則泛化為多個關系。在高維度上,我們的方法在WN18RR上產生了49.6%的最新技術水平,在YAGO3-10上產生了57.7%的最新技術水平。

付費5元查看完整內容

題目: Convolutional Kernel Networks for Graph-Structured Data

摘要:

本文介紹了一系列多層圖核,并在圖卷積神經網絡和核方法之間建立了新的聯系。該方法通過將圖表示為一系列內核特征圖來概括卷積核網絡以繪制結構化數據圖,其中每個節點都承載有關局部圖子結構的信息。一方面,內核的觀點提供了一種無監督,表達性強且易于調整的數據表示形式,這在有限樣本可用時非常有用。另一方面,我們的模型也可以在大規模數據上進行端到端訓練,從而產生新類型的圖卷積神經網絡。并且證明了該方法在幾種圖形分類基準上均具有競爭優勢,同時提供了簡單的模型解釋。

付費5元查看完整內容

題目: Hyperbolic Heterogeneous Information Network Embedding

摘要: 異構信息網絡嵌入(Heterogeneous information network, HIN)以將其投射到低維空間為目標,已經引起了相當多的研究關注。現有的HIN嵌入方法主要是在歐幾里得空間中保留內部網絡結構和語義相關性。然而,一個基本的問題是歐幾里得空間是否是HIN的合適的或內在的等距空間?。近年來的研究認為,復雜網絡的底層可能具有雙曲幾何,因為底層的雙曲幾何可以自然地反映復雜網絡的一些特性,如層次結構和冪律結構。在本文中,我們首次嘗試將HIN嵌入到雙曲空間中。我們分析了兩個實際HIN的結構,發現HIN中也存在冪律分布等性質。為此,我們提出了一種新的雙曲異構信息網絡嵌入模型。具體地說,為了捕獲節點之間的結構和語義關系,我們采用元路徑引導隨機游走對每個節點的序列進行采樣。然后利用雙曲空間中的距離作為近似度量。雙曲距離能滿足三角不等式,并能很好地保持HIN中的傳遞性。我們的模型使節點及其鄰域具有小的雙曲線距離。進一步推導出有效的優化策略,迭代更新雙曲嵌入。實驗結果表明,該模型不僅在網絡重構和鏈路預測任務上具有優越的性能,而且在HIN中通過可視化顯示了捕獲層次結構的能力。

付費5元查看完整內容

題目: Hyperbolic Attention Network

摘要: 最近的方法已經成功地證明了在雙曲空間中學習淺層網絡參數的優勢。我們將雙曲幾何引入到用于計算不同神經網絡結構的注意力機制的嵌入中,從而擴展了這一工作。通過改變object表示的嵌入幾何形狀,可以在不增加模型參數的情況下能更有效地利用嵌入空間。更重要的是,由于查詢的語義距離以指數的速度增長,雙曲幾何與歐幾里得幾何相反—可以編碼那些object而沒有任何干擾。我們的方法在總體上對WMT' 14(英語到德語)的神經機器翻譯、圖學習(合成和現實世界圖任務)和視覺問答(CLEVR)3個任務得到了提升,同時保持神經表征的簡潔。

付費5元查看完整內容

最近,人們對在非歐幾里得空間中表示數據的方法(例如雙曲或球面)越來越感興趣,這些方法提供了對某些真實世界數據屬性(例如無尺度、分層或循環)有用的特定歸納偏差。然而,流行的圖神經網絡目前僅限于通過歐幾里得幾何和相關的向量空間操作來建模數據。在這里,我們通過提出將圖卷積網絡(GCN)在數學基礎上推廣為常曲率空間的(乘積)來彌補這一差距。我們通過i)引入一種統一的形式,可以在所有常曲率幾何之間平滑地插入,ii)利用陀螺質心坐標,推廣了經典的歐幾里德質心概念。當曲率從任何一邊變為零時,我們這類模型平滑地恢復它們的歐幾里得對應模型。根據其離散曲率,我們在非歐幾里得行為的符號數據上的節點分類和失真最小化的任務表現優于歐幾里得GCNs。

//arxiv.org/abs/1911.05076

概述

圖卷積網絡 針對圖像數據的卷積網絡和深度學習的成功啟發了對于共享參數與圖形幾何形狀一致的圖推廣。Bruna等人(2014);Henaff等人(2015)是利用圖上的局部譜濾波器在圖傅里葉空間中開發頻譜圖卷積神經網絡的先驅。然而,為了減少對拉普拉斯特征模式的圖依賴,Defferrard等人(2016)利用Hammond等人(2011)的結果使用Chebyshev多項式近似卷積濾波器。所得到的方法(在附錄A中討論)在計算效率和精度和復雜性方面是優越的。此外,Kipf和Welling(2017)通過考慮一階近似來簡化這種方法,從而獲得高可伸縮性。提出的圖卷積網絡(GCN)是通過對稱歸一化鄰接矩陣來插值節點嵌入,而這種權值共享可以理解為一種有效的擴散式正則化器。最近的工作擴展了GCNs,實現了鏈接預測(Zhang & Chen, 2018)、圖分類(Hamilton等,2017;和節點分類(Klicpera et al., 2019;Velickoviˇc et al .′, 2018)。

ML中的歐幾里得幾何。在機器學習(ML)中,由于各種原因,數據通常在歐幾里得空間中表示。首先,有些數據本質上是歐幾里得的,比如經典力學中三維空間中的位置。其次,直覺在這樣的空間中更容易,因為它們擁有一個吸引人的矢量結構,允許基本的算術和豐富的線性代數理論。最后,許多感興趣的量,如距離和內積在封閉公式中是已知的,可以在現有的硬件上非常有效地計算。這些操作是當今大多數流行的機器學習模型的基本構建模塊。因此,歐幾里得幾何強大的簡單性和效率已經導致許多方法實現了最先進的任務,如機器翻譯(Bahdanau等,2015;wani et al., 2017),語音識別(Graves et al., 2013),圖像分類(He et al., 2016)或推薦系統(He et al., 2017)。

黎曼ML 盡管取得了成功,但某些類型的數據(例如分層數據、無標度數據或球形數據)被證明可以更好地用非歐幾里德幾何表示(Defferrard et al., 2019;Bronstein等,2017;Nickel & Kiela, 2017;Gu et al., 2019),尤其帶來了豐富的流形學習理論(Roweis & Saul, 2000;和信息幾何(Amari & Nagaoka, 2007)。在活力操縱非歐幾里得幾何的數學框架被稱為黎曼幾何(Spivak, 1979)。雖然它的理論導致了許多強而優雅的結果,但它的一些基本量,如距離函數d(·,·),通常不能以封閉的形式提供,這對許多計算方法都是禁止的。

常曲率幾何的代表性優勢。在一般黎曼流形和歐幾里得空間之間的一個有趣的權衡是由常截面曲率流形給出的。他們一起定義了所謂的雙曲(負曲率),橢圓(正曲率)和歐幾里得(零曲率)幾何。正如下面和附錄B中所討論的,歐幾里得空間在嵌入某些類型的數據(如樹)時具有局限性,并且會產生很大的失真。在這些情況下,雙曲空間和球面空間具有代表性的優勢,為各自的數據提供了更好的歸納偏差。

雙曲空間可以直觀地理解為一棵連續樹:球的體積隨半徑呈指數增長,類似于二叉樹的節點數隨深度呈指數增長(圖1)。它的樹狀性質已經被數學研究了很長時間(Gromov, 1987;哈曼,2017;與歐幾里得幾何結構相比,它被證明能夠更好地嵌入復雜網絡(Krioukov et al., 2010)、無標度圖和分層數據(Cho et al., 2019; Sala et al., 2018; Ganea et al., 2018b; Gu et al., 2019; Nickel & Kiela, 2018; 2017; Tifrea et al., 2019)。一些重要的工具或方法找到了它們的雙曲線對應物,例如變分自編碼器(Mathieu et al., 2019;、注意力機制(Gulcehre等,2018)、矩陣乘法、遞歸單位和多項logistic回歸(Ganea等,2018)。

常曲率空間中的GCNs。在這項工作中,我們引入了一個擴展的圖形卷積網絡,它允許學習存在于具有任何曲率符號的常曲率空間(乘積)中的表示。我們通過將導出的統一陀螺框架與GCNs的有效性相結合來實現這一點(Kipf & Welling, 2017)。與我們的工作同時,Chami等人(2019年);Liu等人(2019)考慮了通過切線空間聚合在雙曲空間中學習嵌入的圖神經網絡。他們的方法將在第3.4節中作更詳細的分析。我們的模型更一般化,因為它在一個包含雙曲空間的嚴格超集中產生表示。

付費5元查看完整內容

題目: Hyperbolic Graph Attention Network

摘要: 圖神經網絡(GNN)在圖處理方面表現出了優越的性能,近年來引起了人們的廣泛關注。然而,大多數現有的GNN模型主要是為歐幾里得空間中的圖設計的。最近的研究已經證明,圖數據顯示非歐幾里得潛在的解剖學。不幸的是,到目前為止,很少有研究GNN在非歐幾里得的設置。為了彌補這一缺陷,本文首次對雙曲空間中具有注意機制的GNN進行了研究。雙曲GNN的研究有一些獨特的挑戰:由于雙曲空間不是向量空間,不能進行向量操作(如向量的加法、減法和標量乘法)。為了解決這個問題,我們使用回旋向量空間,它提供了一個優雅的代數形式的雙曲幾何,以轉換圖的特征;在此基礎上,我們提出了基于雙曲接近的注意力聚合機制。此外,由于雙曲空間中的數學運算比歐幾里得空間中的更為復雜,我們進一步設計了一種新的利用對數和指數映射的加速策略來提高模型的效率。通過與其他最先進的基線方法的比較,發現在四個真實數據集上的綜合實驗結果證明了我們提出的雙曲圖注意力網絡模型的性能。

付費5元查看完整內容

主題: Graph Neural Networks with Composite Kernels

摘要: 近年來,對圖結構化數據的學習引起了越來越多人的興趣。諸如圖卷積網絡(GCN)之類的框架已經證明了它們在各種任務中捕獲結構信息并獲得良好性能的能力。在這些框架中,節點聚合方案通常用于捕獲結構信息:節點的特征向量是通過聚集其相鄰節點的特征來遞歸計算的。但是,大多數聚合方案都將圖中的所有連接均等化,而忽略了節點特征的相似性。本文從內核權重的角度重新解釋了節點聚合,并提出了一個框架來考慮特征相似性。我們表明歸一化的鄰接矩陣等效于Kerin空間中基于鄰居的內核矩陣。然后,我們提出功能聚集作為基于原始鄰居的內核和可學習的內核的組成,以在特征空間中編碼特征相似性。我們進一步展示了如何將所提出的方法擴展到圖注意力網絡(GAT)。實驗結果表明,在一些實際應用中,我們提出的框架具有更好的性能。

付費5元查看完整內容

題目: How Powerful are Graph Neural Networks?

摘要: 圖神經網絡(GNNs)是一種有效的圖表示學習框架。GNNs遵循鄰域聚合方案,通過遞歸地聚合和轉換鄰域節點的表示向量來計算節點的表示向量。許多GNN變體已經被提出,并且在節點和圖分類任務上都取得了最新的結果。然而,盡管GNNs給圖形表示學習帶來了革命性的變化,但是對于它們的表示性質和局限性的理解還是有限的。在這里,我們提出了一個理論框架來分析GNNs捕捉不同圖形結構的表現力。我們的結果描述了流行的GNN變體,如圖卷積網絡和圖年齡的辨別能力,并且表明它們不能學習辨別某些簡單的圖結構。然后,我們開發了一個簡單的體系結構,它可以證明是GNNs類中最具表現力的,并且與Weisfeiler-Lehman圖同構測試一樣強大。我們在一些圖形分類基準上實證驗證了我們的理論發現,并證明我們的模型達到了最先進的性能。

作者簡介: Keyulu Xu,麻省理工學院EECS系的研究生,也是CSAIL和機器學習小組的成員。他的興趣是智力和推理理論。

WeiHua Hu,哈爾濱工業大學(深圳)助理教授。

付費5元查看完整內容

報告簡介: 圖形領域的機器學習是一項重要而普遍的任務,其應用范圍從藥物設計到社交網絡中的友情推薦。該領域的主要挑戰是找到一種表示或編碼圖形結構的方法,以便機器學習模型可以很方便地利用它。 報告中介紹了深度學習的技術,自動學習將圖形結構編碼為低維嵌入。以及表示學習的關鍵進展,包括圖形卷積網絡及其表示能力,探討了它在Web級推薦系統、醫療保健、知識表示和推理方面的應用。

嘉賓介紹: 領域的大牛Jure Leskovec,是斯坦福大學計算機學院的副教授,也是圖表示學習方法 node2vec 和 GraphSAGE 作者之一。研究重點是對大型社會和信息網絡進行挖掘和建模,它們的演化,信息的傳播以及對它們的影響。 Jure Leskovec主頁

付費5元查看完整內容
北京阿比特科技有限公司