亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Code://github.com/Shen-Lab/GraphCL Paper:

對于當前的圖神經網絡(GNNs)來說,圖結構數據的可泛化、可遷移和魯棒表示學習仍然是一個挑戰。與為圖像數據而開發的卷積神經網絡(CNNs)不同,自監督學習和預訓練很少用于GNNs。在這篇文章中,我們提出了一個圖對比學習(GraphCL)框架來學習圖數據的無監督表示。我們首先設計了四種類型的圖擴充來包含不同的先驗。然后,我們在四種不同的環境下系統地研究了圖擴充的各種組合對多個數據集的影響:半監督、無監督、遷移學習和對抗性攻擊。結果表明,與最先進的方法相比,即使不調優擴展范圍,也不使用復雜的GNN架構,我們的GraphCL框架也可以生成類似或更好的可泛化性、可遷移性和健壯性的圖表示。我們還研究了參數化圖增強的范圍和模式的影響,并在初步實驗中觀察了性能的進一步提高。

付費5元查看完整內容

相關內容

圖神經網絡(GNN)已被證明是圖分析的強大工具。關鍵思想是沿著給定圖的邊遞歸地傳播和聚合信息。盡管它們取得了成功,但是,現有的GNN通常對輸入圖的質量很敏感。真實世界的圖通常是噪聲和包含任務無關的邊緣,這可能導致在學習的GNN模型中泛化性能次優。本文提出一種參數化拓撲去噪網絡PTDNet,通過學習丟棄任務無關邊來提高GNNs的魯棒性和泛化性能。PTDNet通過使用參數化網絡懲罰稀疏圖中的邊數來刪除與任務無關的邊。考慮到整個圖的拓撲結構,采用核范數正則化對稀疏圖施加低秩約束,以便更好地泛化。PTDNet可以作為GNN模型的關鍵組件,以提高其在各種任務中的性能,如節點分類和鏈路預測。在合成數據集和基準數據集上的實驗研究表明,PTDNet可以顯著提高GNNs的性能,并且對于噪聲較大的數據集性能增益更大。

//personal.psu.edu/dul262/PTDNet/WSDM2021_PTDNet_camera_ready.pdf

付費5元查看完整內容

以圖結構為目標的擾動已被證明在降低圖神經網絡(GNNs)性能方面非常有效,而傳統的防御手段如對抗性訓練似乎不能提高魯棒性。這項工作的動機是觀察到,反向注入的邊緣有效地可以視為一個節點的鄰域聚集函數的額外樣本,這導致扭曲的聚集在層上累積。傳統的GNN聚合函數,如總和或平均值,可以被一個單獨的離群值任意扭曲。在魯棒統計領域的啟發下,我們提出了一個魯棒聚合函數。我們的方法顯示了0.5的最大可能分解點,這意味著只要節點的對抗邊的比例小于50%,聚合的偏差就有界。我們的新聚合函數,軟Medoid,是Medoid的一個完全可微的泛化,因此很適合端到端深度學習。在Cora ML上配置聚合的GNN,可將結構擾動的魯棒性提高3倍(Citeseer上提高5.5倍),對于低度節點,可提高8倍。

付費5元查看完整內容

圖池化是眾多圖神經網絡(GNN)架構的核心組件。由于繼承了傳統的CNNs,大多數方法將圖池化為一個聚類分配問題,將規則網格中的局部patch的思想擴展到圖中。盡管廣泛遵循了這種設計選擇,但沒有任何工作嚴格評估過它對GNNs成功的影響。我們以代表性的GNN為基礎,并引入了一些變體,這些變體挑戰了在補充圖上使用隨機化或聚類的局部保持表示的需要。引人注目的是,我們的實驗表明,使用這些變體不會導致任何性能下降。為了理解這一現象,我們研究了卷積層和隨后的池層之間的相互作用。我們證明了卷積在學習的表示法中起著主導作用。與通常的看法相反,局部池化不是GNNs在相關和廣泛使用的基準測試中成功的原因。

付費5元查看完整內容

我們解決了監督學習的特征化和尋找最優表示的問題。傳統上,這個問題通過使用信息瓶頸來解決,即壓縮輸入,同時保留關于目標的信息,這種方式與解碼器無關。然而,在機器學習中,我們的目標不是壓縮而是泛化,這與我們感興趣的預測族或譯碼器(例如線性分類器)密切相關。我們提出了可解碼信息瓶頸(DIB),它從預期預測族的角度考慮信息的保留和壓縮。因此,DIB產生了預期測試性能方面的最優表示,并且可以在保證的情況下進行估計。實驗表明,該框架可以在下游分類器上施加一個小的泛化間隙,并預測神經網絡的泛化能力。

//www.zhuanzhi.ai/paper/89c6cd33631078ee766b8b8dc409a503

付費5元查看完整內容

持續學習和適應新任務的能力,同時又不失去對已經獲得的知識的掌握,是生物學習系統的一個特征,這是目前的深度學習系統所欠缺的。在這項工作中,我們提出了一種新的持續學習方法,稱為MERLIN:持續學習的元鞏固。

我們假設一個用于解決任務t的神經網絡的權值是來自于一個元分布p(lenian| t)。這種元分布是逐步學習和鞏固的。我們在具有挑戰性的在線持續學習設置中操作,其中一個數據點只被模型看到一次。

我們對MNIST、CIFAR-10、CIFAR-100和Mini-ImageNet數據集的持續學習基準進行的實驗顯示,在五個基線上,包括最近的最先進水平,都證明了MERLIN的前景。

//arxiv.org/abs/2010.00352

付費5元查看完整內容

在本文中,我們提出了一種端到端的圖學習框架,即迭代深度圖學習(IDGL),用于共同迭代地學習圖結構和圖嵌入。IDGL的關鍵原理是學習基于更好的節點嵌入的更好的圖結構,反之亦然(即基于更好的圖結構的更好的節點嵌入)。我們的迭代方法動態停止時,學習圖接近足夠優化的圖預測任務。此外,我們將圖學習問題轉換為一個相似度量學習問題,并利用自適應圖正則化來控制學習圖的質量。最后,結合基于錨點的近似技術,我們進一步提出了一個可擴展的IDGL版本,即IDGL- anch,在不影響性能的前提下,顯著降低了IDGL的時間和空間復雜度。我們在9個基準上進行的廣泛實驗表明,我們提出的IDGL模型始終能夠優于或匹配最先進的基線。此外,IDGL還能更魯棒地處理對抗圖,并能同時處理傳導學習和歸納學習。

//arxiv.org/abs/2006.13009

付費5元查看完整內容

圖神經網絡(GNNs)已被證明是有效的模型,用于對圖結構數據的不同預測任務。最近關于它們表達能力的工作集中在同構任務和可數特征空間。我們對這個理論框架進行了擴展,使其包含連續的特性——在真實世界的輸入域和gnn的隱藏層中定期出現——并演示了在此上下文中對多個聚合函數的需求。為此,我們提出了一種新的聚合器結構——主鄰域聚合(PNA),它將多個聚合器與度標器相結合,從而推廣了總和聚合器。最后,我們通過一個新的基準來比較不同模型捕獲和利用圖結構的能力,該基準包含了來自經典圖理論的多個任務,以及來自現實領域的現有基準,所有這些都證明了我們模型的強大。通過這項工作,我們希望引導一些GNN研究轉向新的聚合方法,我們認為這對于尋找強大和健壯的模型至關重要。

//www.zhuanzhi.ai/paper/bee47b0e291d163fae01c

付費5元查看完整內容

圖神經網絡(GNNs)通常應用于靜態圖,這些靜態圖可以認為是預先已知的。這種靜態輸入結構通常完全由機器學習從業者的洞察力決定,對于GNN正在解決的實際任務可能不是最佳的。在缺乏可靠的領域專家知識的情況下,人們可能求助于推斷潛在的圖結構,但由于可能的圖的搜索空間很大,這往往是困難的。這里我們引入了點針圖網絡(PGNs),它增加了集合或圖的推斷邊的能力,以提高模型的表達能力。PGNs允許每個節點動態地指向另一個節點,然后通過這些點針傳遞消息。這種可適應圖結構的稀疏性使學習變得容易處理,同時仍然具有足夠的表現力來模擬復雜的算法。關鍵的是,指向機制可以直接監督的,以對經典數據結構上的長期操作序列建模,并結合了來自理論計算機科學的有用的結構歸納偏差。定性地說,我們證明了PGNs可以學習基于點針的數據結構的可并行變體,即不相交集并和鏈接/修剪樹。PGNs在動態圖連通性任務中將分布外概括為5個較大的測試輸入,優于不受限制的GNNs和深度集合。

付費5元查看完整內容

小樣本分類的目的是在只有少量樣本的情況下識別不可見的類。我們考慮了多域小樣本圖像分類的問題,其中不可見的類和樣例來自不同的數據源。人們對這個問題越來越感興趣,并激發了元數據集等基準的開發。在這種多領域設置的一個關鍵挑戰是有效地整合來自不同訓練領域集的特征表示。在這里,我們提出了一個通用表示轉換器(URT)層,該元學會通過動態地重新加權和組合最合適的特定于領域的表示來利用通用特性進行小樣本分類。在實驗中,我們表明,URT在元數據集上設置了一個新的最先進的結果。具體來說,它在三個數據源上的性能超過了之前最好的模型,或者在其他數據源上也有相同的性能。我們分析了城市軌道交通的各種變體,并給出了一個可視化的注意力分數熱圖,以闡明該模型是如何執行跨領域泛化的。我們的代碼可以在//github.com/liulu112601/URT獲得

付費5元查看完整內容

消息傳遞被證明是一種設計圖神經網絡的有效方法,因為它能夠利用排列等方差和對學習局部結構的歸納偏差來實現良好的泛化。然而,當前的消息傳遞體系結構的表達能力有限,無法學習圖的基本拓撲性質。我們解決了這個問題,并提出了一個新的消息傳遞框架,它是強大的同時保持置換等方差。具體來說,我們以單熱點編碼的形式傳播惟一的節點標識符,以便了解每個節點的本地上下文。我們證明了我們的模型在極限情況下是通用的,同時也是等變的。通過實驗,我們發現我們的模型在預測各種圖的拓撲性質方面具有優勢,為新型的、功能強大的等變和計算效率的結構開辟了道路。

付費5元查看完整內容
北京阿比特科技有限公司