亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

主題: Algorithmic Machine Learning and Data Science

介紹: 本課程數學嚴謹,需要以前的機器學習課程(例如CS-UY 4563、CS-GY 6923或ECE-GY 6143)和以前的算法設計和分析課程(例如CS-UY 2413、CS-GY 6033或CS-GY 6043)為基礎。

講師介紹: Christopher Musco,紐約大學坦頓工程學院計算機科學與工程的助理教授。他的研究是關于機器學習和數據科學的算法基礎。他在麻省理工學院完成了計算機科學博士學位。在麻省理工學院之前,他是Redfin的工程師。

付費5元查看完整內容

相關內容

“機器學習是近20多年興起的一門多領域交叉學科,涉及概率論、統計學、逼近論、凸分析、算法復雜度理論等多門學科。機器學習理論主要是設計和分析一些讓 可以自動“ ”的算法。機器學習算法是一類從數據中自動分析獲得規律,并利用規律對未知數據進行預測的算法。因為學習算法中涉及了大量的統計學理論,機器學習與統計推斷學聯系尤為密切,也被稱為統計學習理論。算法設計方面,機器學習理論關注可以實現的,行之有效的學習算法。很多 問題屬于 ,所以部分的機器學習研究是開發容易處理的近似算法。” ——中文維基百科

知識薈萃

精品入門和進階教程、論文和代碼整理等

更多

查看相關VIP內容、論文、資訊等

機器學習方法以有限的資源快速地從大量的數據中提取價值。它們是在廣泛的工業應用中建立起來的工具,包括搜索引擎、DNA測序、股票市場分析和機器人移動,它們的使用正在迅速蔓延。了解這些方法的人可以選擇有回報的工作。這個動手實踐書冊為計算機科學學生打開這些機會。它是專為具有有限的線性代數和微積分背景的大四本科生和碩士生設計的。它在圖模型的框架內開發了從基本推理到高級技術的所有內容。學生們學到的不僅僅是一系列的技巧,他們還會發展分析和解決問題的技巧,這些技巧使他們能夠適應真實的世界。許多例子和練習,以計算機為基礎和理論,包括在每一章。為學生和教師的資源,包括一個MATLAB工具箱,可在網上獲得。

付費5元查看完整內容

【導讀】加州大學伯克利分校統計系及電氣工程與計算機科學系校長教授郁彬發表了最新論文《真實數據科學,Veridical data science》。

可預測性、可計算性和穩定性(PCS)是數據科學的三個核心原則。它們將預測和復制的科學原理嵌入到數據驅動的決策中,同時認識到計算的中心作用。基于這些原則,我們提出了PCS框架,包括工作流程和文檔(在R Markdown或Jupyter Notebook中)。PCS框架旨在跨科學、社會科學、工程、商業和政府領域的負責任的、可靠的、可復制的和透明的分析。它可以作為科學假設生成和實驗設計的推薦系統。特別地,我們建議(基本)PCS推論用于數據結果的可靠性度量,將統計推論擴展到當前數據科學實踐需要的更廣泛的范圍。

付費5元查看完整內容

摘要:

本文將優化描述為一個過程。在許多實際應用中,環境是如此復雜,以致于無法制定一個全面的理論模型,并使用經典算法理論和數學優化。采取一種穩健的方法是必要的,也是有益的,方法是應用一種不斷學習的優化方法,在觀察到問題的更多方面時從經驗中學習。這種將優化視為一個過程的觀點在各個領域都很突出,并在建模和系統方面取得了一些驚人的成功,現在它們已經成為我們日常生活的一部分。

作者介紹:

Elad Hazan是普林斯頓大學計算機科學教授。他于2015年從Technion畢業,當時他是該校運籌學副教授。他的研究重點是機器學習和優化的基本問題的算法設計和分析。他的貢獻包括合作開發用于訓練學習機器的AdaGrad算法,以及第一個用于凸優化的次線性時間算法。他曾(兩次)獲得2012年IBM Goldberg最佳論文獎,以表彰他對機器學習的次線性時間算法的貢獻。2008年,他還獲得了歐洲研究理事會(European Research Council)的一筆撥款、瑪麗?居里(Marie Curie)獎學金和谷歌研究獎(兩次)。他是計算學習協會的指導委員會成員,并擔任COLT 2015的項目主席。

//www.cs.princeton.edu/~ehazan/

付費5元查看完整內容

主題: 《COMS W4995 Applied Machine Learning Spring 2020》

課程描述: 這門課提供了機器學習和數據科學的實踐方法。本課程討論機器學習方法如SVMs、隨機森林、梯度提升和神經網絡在真實世界數據集上的應用,包括數據準備、模型選擇和評估。這個類補充了COMS W4721,因為它完全依賴于scikit-learn和tensor flow中所有實現的可用開源實現。除了應用模型外,我們還將討論與產生離子化機器學習模型相關的軟件開發工具和實踐。

主講人簡介: Andreas C. Müller,哥倫比亞大學數據科學研究所的副研究員,也是O'Reilly《用Python進行機器學習簡介》一書的作者。他是scikit學習機學習庫的核心開發人員之一,我已經合作維護了幾年。他曾在紐約大學數據科學中心從事開源和開放科學研究,并在亞馬遜擔任機器學習科學家。個人主頁://amueller.github.io/

付費5元查看完整內容

題目: Machine learning and the physical sciences

摘要:

機器學習(ML)包含廣泛的算法和建模工具,用于大量的數據處理任務,這些任務近年來已經進入大多數科學學科。本文有選擇地回顧了機器學習與物理科學接口的最新研究進展。這包括由物理洞察力驅動的ML的概念發展,機器學習技術在物理中的幾個領域的應用以及這兩個領域之間的交叉。在介紹了機器學習方法和原理的基本概念之后,舉例說明了如何用統計物理來理解ML中的方法,然后介紹了ML方法在粒子物理和宇宙學、量子多體物理、量子計算、化學和材料物理中的應用。此外,還強調了針對加速ML的新型計算體系結構的研究和開發。每個部分都描述了最近的成功以及特定領域的方法和挑戰。

作者簡介:

Giuseppe Carleo于2018年加入了位于美國計算量子物理中心的Flatiron研究所。2007年,他在羅馬大學獲得物理學學士學位;2011年,他在意大利國際高等研究學院獲得凝聚態理論博士學位。他在法國光學研究所和瑞士蘇黎世聯邦理工學院獲得博士后。他也是蘇黎世聯邦理工學院計算量子物理學的講師。Carleo的主要研究方向是發展先進的數值算法來研究強相互作用量子系統的挑戰性問題。他的研究應用范圍包括凝聚態物質、超冷原子和量子計算。他對量子蒙特卡羅方法的發展做出了貢獻,包括平衡和動態特性,包括時變蒙特卡羅和神經網絡量子態。在CCQ,他正在開發和推廣基于人工智能的新技術來解決量子問題。他是開源項目NetKet的創始人和開發負責人。

付費5元查看完整內容

書名: Python Machine Learning (3nd edition)

主要內容: Python Machine Learning第三版是有關使用Python進行機器學習和深度學習的全面指南。它既是清晰的分步教程,又是構建機器學習系統時將不斷參考的參考書目。本書包含清晰的解釋,可視化效果和工作示例,深入介紹了所有基本的機器學習技術。有些書只教您遵循說明,而Raschka和Mirjalili則教機器學習背后的原理,使您可以自己構建模型和應用程序。這個新的第三版針對TensorFlow 2.0和scikit-learn的最新添加進行了更新。它已擴展為涵蓋兩種最先進的機器學習技術:強化學習和生成對抗網絡。

作者簡介: Sebastian Raschka 從密歇根州立大學獲得博士學位,在計算生物學領域開發新的計算方法。2018年夏天,他加入威斯康星大學麥迪遜分校,擔任統計學助理教授。除此之外,他的研究活動還包括開發新的深度學習架構,以解決生物測定領域的問題。Sebastian Raschka 在Python編程方面有多年的經驗,多年來他舉辦了幾次關于數據科學和機器學習實際應用的研討會,并進行了深入的學習,包括在Python科學計算領先會議SciPy上的機器學習教程。Sebastian Raschka 喜歡寫和談論數據科學、機器學習和Python,他非常有動力幫助人們開發數據驅動的解決方案,而不一定需要機器學習背景。他的工作和貢獻最近獲得了2016-2017年度系優秀研究生獎的認可。個人主頁://sebastianraschka.com/

Vahid Mirjalili,密歇根州立大學計算機科學與工程專業的博士生。2014年,他獲得了我的第一個機械工程博士學位,研究生物分子結構大規模計算模擬的新方法。他的研究重點是機器學習和計算機視覺領域的深度學習的應用。個人主頁:

付費5元查看完整內容

課程介紹

在人工智能、統計學、計算機系統、計算機視覺、自然語言處理和計算生物學等許多領域中的問題,都可以被視為從局部信息中尋找一致的全局結論。概率圖模型框架為這些普遍問題提供了統一的視角解決方案,支持在具有大量屬性和龐大數據集的問題中進行有效的推理、決策和學習。本研究生課程將為您運用圖模型到復雜的問題和解決圖模型的核心研究課題提供堅實的基礎。

課程大綱

  • 模塊1 - 簡介,表示形式和精確推斷
  • 模塊2 - 近似推斷
  • 模塊3 - 深度學習和生成模型
  • 模塊4 - 通過GM中的推理進行強化學習和控制
  • 模塊5 - 非參數方法
  • 模塊6 - 模塊化和可擴展的算法和系統

講師:邢波

講師簡介

邢波,卡耐基梅隆大學教授,曾于2014年擔任國際機器學習大會(ICML)主席。主要研究興趣集中在機器學習和統計學習方法論及理論的發展,和大規模計算系統和架構的開發。他創辦了Petuum 公司,這是一家專注于人工智能和機器學習的解決方案研發的公司,騰訊曾投資了這家公司。

個人主頁

//www.cs.cmu.edu/~epxing/

付費5元查看完整內容
北京阿比特科技有限公司