亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

課程名稱: Deep Learning

課程地址: //github.com/glouppe/info8010-deep-learning

課程簡介: 深度機器學習的最新發展使視覺識別、語音和文本理解或自主智能體系統取得了前所未有的巨大進步。在此背景下,本課程將深入探討深度學習架構的細節,重點是學習這些任務的端到端模型。學生將學習實施、訓練和調試自己的神經網絡,并對該領域的前沿研究有詳細的了解。該課程還將介紹推理方法的最新創新,包括微分推理、對抗性訓練和貝葉斯深度學習。

課程大綱: 引言 機器學習基礎 多層感知器 自動微分 訓練神經網絡 卷積神經網絡 計算機視覺 遞歸神經網路 注意力機制與Transformer 生成式對抗網絡 不確定性 深度強化學習

你講學習到:

  • 在本課程結束時,您將獲得一個堅實和詳細的深度學習領域的理解
  • 您將學習如何為廣泛的高級概率推理任務設計深度神經網絡,以及如何訓練它們。
  • 這些在課程中看到的模型適用于各種各樣的人工智能問題,在工程和科學中有很多應用。

講師介紹: Gilles Louppe是比利時列日大學人工智能和深度學習的副教授。他曾是紐約大學物理系和數據科學中心的博士后助理,與歐洲核子研究中心的阿特拉斯實驗關系密切。他的研究處于機器學習、人工智能和物理科學的交叉點上,他目前的研究興趣包括使用和設計新的機器學習算法,以新的和變革性的方式處理來自基礎科學的數據驅動的問題。個人官網:

付費5元查看完整內容

相關內容

 機器學習的一個分支,它基于試圖使用包含復雜結構或由多重非線性變換構成的多個處理層對數據進行高層抽象的一系列算法。

知識薈萃

精品入門和進階教程、論文和代碼整理等

更多

查看相關VIP內容、論文、資訊等

由吳恩達與 Kian Katanforoosh 指導的 CS230(深度學習)課程2021開始。

深度學習是人工智能中最受歡迎的技能之一。在CS230課程中,你將學習深度學習的基礎,了解如何構建神經網絡,以及如何完成一個成功的機器學習項目。你將學習卷積網絡、RNNs、LSTM、Adam、Dropout、BatchNorm、Xavier/He初始化等方法。

課程地址://web.stanford.edu/class/cs230/

課程簡介:深度學習是 AI 領域中最受歡迎的技能之一。這門課程將幫助你學好深度學習。你將學到深度學習的基礎,理解如何構建神經網絡,并學習如何帶領成功的機器學習項目。你將學到卷積神經網絡(CNN)、循環神經網絡(RNN)、長短期記憶網絡(LSTM)、Adam 優化器、Dropout 方法、BatchNorm 方法、Xavier/He 初始化方法等。你將在醫療、自動駕駛、手語識別、音樂生成和自然語言處理等領域中進行案例研究。你不僅能掌握理論,還能看到深度學習如何應用到產業中。我們將需要使用 Python 和 TensorFlow 來實現所有的項目,課程中也會教這一部分。完成這門課程后,你將能以創新的方式將深度學習應用到你的工作中。該課程是以翻轉課堂的形式教學的。你將先在家里觀看 Coursera 視頻、完成編程任務以及在線測驗,然后來到課堂上做進一步討論和完成項目。該課程將以開放式的最終項目結束,教學團隊會在過程中提供幫助。

付費5元查看完整內容

機器學習暑期學校(MLSS)系列開始于2002年,致力于傳播統計機器學習和推理的現代方法。今年因新冠疫情在線舉行,從6月28號到7月10號講述了眾多機器學習主題。本文推薦來自深度學習大佬Yoshua Bengio教授講述《深度學習教程》,104頁ppt系統性講述了深度學習基礎知識和最新進展,非常干貨。

Yoshua Bengio

Yoshua Bengio,蒙特利爾大學教授。Bengio 教授憑《Learning Deep Architectures for AI》、《A neural probabilistic language model》兩篇經典之作在內的 300 多篇論文,對深度學習的發展起到了巨大的推動作用,他與 Geoff Hinton、Yann LeCun 兩位一起造就了 2006 年始的深度學習復興,并稱深度學習三巨頭。Yoshua Bengio 教授于 2017 年獲得加拿大總督功勛獎。

Bengio 教授研究人工智能的動力就是發掘它的潛能,而不是對它的恐懼。他的研究成果不僅是如今 AI 熱浪的基石,也是加拿大在人工智能時代占據一席領導者位置的重要原因。「要讓電腦能像人類那樣思考,或者起碼能像人類那樣理解世界,我們現在離那一步還太遠」,Bengio 教授說,「但是人工智能現在的發展已經足以對經濟和人類的福祉產生巨大的影響。」

深度學習 AI

深度學習指的是用計算機模擬神經元網絡,以此逐漸“學會”各種任務的過程,比如識別圖像、理解語音甚或是自己做決策。這項技術的基礎是所謂的“人工神經網絡”,它是現代人工智能的核心元素。人工神經網絡和真實的大腦神經元工作方式并不完全一致,事實上它的理論基礎只是普通的數學原理。但是經過訓練后的人工神經網絡卻可以完成很多任務,比如識別照片中的人物和物體,或是在幾種主要語言之間互相翻譯等等。

付費5元查看完整內容

本文為大家帶來了一份斯坦福大學的最新課程CS234——強化學習,主講人是斯坦福大學Emma Brunskill,她是斯坦福大學計算機科學助理教授,任職斯坦福大學人類影響力實驗室、斯坦福人工智能實驗室以及統計機器學習小組,主要研究強化學習。要實現人工智能的夢想和影響,需要能夠學會做出正確決策的自主系統。強化學習是這樣做的一個強有力的范例,它與大量的任務相關,包括機器人、游戲、消費者建模和醫療保健。本課程通過講課、書面作業和編碼作業的結合,學生將精通強化學習的關鍵思想和技術。

1.課程介紹(Description)

要實現人工智能的夢想和影響,需要能夠學會做出正確決策的自主系統。強化學習是這樣做的一個強有力的范例,它與大量的任務相關,包括機器人、游戲、消費者建模和醫療保健。本課程將為強化學習領域提供扎實的介紹,學生將學習包括通用化和探索在內的核心挑戰和方法。通過講課、書面作業和編碼作業的結合,學生將精通強化學習的關鍵思想和技術。作業將包括強化學習和深度強化學習的基礎,這是一個極有前途的新領域,將深度學習技術與強化學習相結合。此外,學生將通過期末專題來增進對強化學習領域的理解。

課程地址:

//web.stanford.edu/class/cs234/schedule.html

2.預備知識(Prerequisites)

1)熟練Python

所有的課程都將使用Python(使用numpy和Tensorflow,也可以使用Keras)。這里有一個針對那些不太熟悉Python的人的教程。如果你有很多使用不同語言(如C/ c++ / Matlab/ Javascript)的編程經驗,可能會很好。

2)大學微積分,線性代數(如 MATH 51, CME 100)

你應該能夠熟練地進行(多變量)求導,理解矩陣/向量符號和運算。

3)基本概率及統計(例如CS 109 或同等課程)

你應該了解基本的概率,高斯分布,均值,標準差等。

4)機器學習基礎

我們將闡述成本函數,求導數,用梯度下降法進行優化。CS 221或CS 229均可涵蓋此背景。使用一些凸優化知識,一些優化技巧將更加直觀。

3.主講:Emma Brunskill

Emma Brunskill是斯坦福大學計算機科學助理教授,任職斯坦福大學人類影響力實驗室、斯坦福人工智能實驗室以及統計機器學習小組。

主要研究強化學習系統,以幫助人們更好地生活。并處理一些關鍵技術。最近的研究重點包括:1)有效強化學習的基礎。一個關鍵的挑戰是要了解代理商如何平衡勘探與開發之間的局限性。2)如果要進行順序決策,該怎么辦。利用巨大數量的數據來改善在醫療保健,教育,維護和許多其他應用程序中做出的決策,這是一個巨大的機會。這樣做需要假設/反事實推理,以便在做出不同決定時對潛在結果進行推理。3)人在回路系統。人工智能具有極大地擴大人類智能和效率的潛力。我們正在開發一個系統,用其他眾包商(CHI 2016)生產的(機器)固化材料對眾包商進行訓練,并確定何時擴展系統規格以包括新內容(AAAI 2017)或傳感器。我們也有興趣研究確保機器學習系統在人類用戶的意圖方面表現良好(Arxiv 2017),也被稱為安全和公平的機器學習。

個人主頁:

4.課程安排

01: 強化學習導論(Introduction to Reinforcement Learning)

02: 表格MDP規劃(Tabular MDP planning)

03: 表格RL政策評估(Tabular RL policy evaluation)

04: Q-learning

05: 帶函數逼近的強化學習(RL with function approximation)

06: 帶函數逼近的強化學習(RL with function approximation)

07: 帶函數逼近的強化學習(RL with function approximation)

08: 從馬爾可夫決策過程到強化學習(Policy search)

09: 從馬爾可夫決策過程到強化學習(Policy search)

10: 課堂中期(In-class Midterm)

11: 模仿學習/探索(Imitation learning/Exploration)

12: 探索/開發(Exploration/Exploitation)

13: 探索/開發(Exploration/Exploitation)

14: 批處理強化學習(Batch Reinforcement Learning)

15: 嘉賓講座:Craig Boutilier(Guest Lecture: Craig Boutilier)

16: 課堂測驗(In-class Quiz)

17: 蒙特卡洛樹搜索算法(Monte Carlo Tree Search)

18: 墻報展示(Poster presentations)

付費5元查看完整內容

課程名稱: Deep Learning

課程簡介:

深度機器學習的最新發展使視覺識別、語音和文本理解或自主智能體系統取得了前所未有的巨大進步。在此背景下,本課程將深入探討深度學習架構的細節,重點是學習這些任務的端到端模型。學生將學習實施、訓練和調試自己的神經網絡,并對該領域的前沿研究有詳細的了解。該課程還將介紹推理方法的最新創新,包括微分推理、對抗性訓練和貝葉斯深度學習。

課程大綱:

  • 機器學習基礎
  • 神經網絡
  • 卷積神經網絡
  • 訓練神經網絡
  • 遞歸神經網路
  • 自動編碼器和生成模型
  • 生成式對抗網絡
  • 不確定性
  • 對抗性攻擊與防御

講師介紹:

Gilles Louppe是比利時列日大學人工智能和深度學習的副教授。他曾是紐約大學物理系和數據科學中心的博士后助理,與歐洲核子研究中心的阿特拉斯實驗關系密切。他的研究處于機器學習、人工智能和物理科學的交叉點上,他目前的研究興趣包括使用和設計新的機器學習算法,以新的和變革性的方式處理來自基礎科學的數據驅動的問題。個人官網:

下載索引:鏈接:

付費5元查看完整內容

課程名稱: Introduction to Articial Intelligence

課程簡介:

本課程主要講述了人工智能相關知識,包括基本理論、練習和項目。

課程部分大綱:

  • 人工智能導論
  • 智能體
    • 教程:Python入門
  • 通過搜索來解決問題
    • 練習1:通過搜索來解決問題
    • 項目1:搜索算法
  • 約束滿足問題
    • 練習2:約束滿足問題
  • 游戲對抗性搜索
    • 練習3:游戲對抗性搜索
  • 表示不確定知識
    • 練習4:不確定性下的推理(第1部分)
  • 貝葉斯網絡中的推論
    • 練習5:不確定性下的推理(第二部分)
  • 隨時間推移的推理(第1部分)
  • 隨時間推移的推理(第2部分)

講師介紹:

Gilles Louppe是比利時列日大學人工智能和深度學習的副教授。他曾是紐約大學物理系和數據科學中心的博士后助理,與歐洲核子研究中心的阿特拉斯實驗關系密切。他的研究處于機器學習、人工智能和物理科學的交叉點上,他目前的研究興趣包括使用和設計新的機器學習算法,以新的和變革性的方式處理來自基礎科學的數據驅動的問題。

下載索引:鏈接://pan.baidu.com/s/1aUGwQx3YUWLit3RfKNNDNw;提取碼:c8lc

付費5元查看完整內容

課程名稱: Deep Learning and Bayesian Methods

課程介紹: 在Deep|Bayes暑期學校,我們將討論如何將Bayes方法與Deep Learning相結合,并在機器學習應用程序中帶來更好的結果。 最近的研究證明,貝葉斯方法的使用可以通過各種方式帶來好處。 學校參與者將學習對理解當前機器學習研究至關重要的方法和技術。 他們還將具有使用概率模型來構建神經生成和判別模型的動手經驗,學習神經網絡的現代隨機優化方法和正則化技術,并掌握推理神經網絡及其權重不確定性的方法,預測。

部分邀請嘉賓: Maurizio Filippone,AXA計算統計主席,EURECOM副教授

Novi Quadrianto,薩塞克斯大學助理教授

課程大綱:

  • 貝葉斯方法介紹
  • 貝葉斯推理
  • EM算法
  • 隨機變分推理與變分自編碼器
  • GAN
  • 高斯分布與貝葉斯優化
  • 貝葉斯神經網絡
付費5元查看完整內容

課程題目: Emerging Challenges in Deep Learning

課程大綱:

  • 知識嵌入在語言神經網絡中,但是它們可以推理嗎?
  • 基于機器學習的蛋白質和小分子設計
  • 人與人之間的高效深度學習
  • 使ML目標與人類價值觀相一致
  • 靈活的神經網絡和元學習的前言
  • 價值函數近似的強化學習的難點
  • 特征空間中的強化學習:復雜性和遺憾
  • 決策過程中策略梯度方法的最優性和逼近性
  • 政策外政策優化
  • 推薦系統中的強化學習:一些挑戰
  • 通過優化鏡頭進行強化學習
  • 邁向經過驗證的深度學習
  • 將約束集成到具有結構化的深度學習架構中
  • 公平的衡量與錯誤衡量
  • 采購作為政策:機器學習的管理流程
  • 本地解釋范式的內在取舍
  • 如何失敗的可解釋性研究
  • 從過去更好地學習:反事實/批量RL
  • 設計健壯的學習者

主講人: Chris Manning,托馬斯·西貝爾(Thomas M. Siebel)機器學習教授,語言學和計算機科學教授,斯坦福人工智能實驗室(SAIL)主任,以人為中心的人工智能研究所副主任。

Jennifer Listgarten,是加州大學伯克利分校 EECS系 和計算生物學中心的教授, 伯克利AI研究(BAIR)實驗室指導委員會成員 ,以及 Chan Zuckerberg研究人員。

Zachary Lipton,在UCSD 人工智能小組進行了出色的4年博士學位研究之后,加入了卡內基梅隆大學(CMU),擔任Tepper商學院的助理教授,并在機器學習系(MLD)和亨氏公共政策學院擔任副教授等。

課程鏈接: //simons.berkeley.edu/workshops/schedule/10629

付費5元查看完整內容

本文為大家帶來了一份斯坦福大學的最新課程CS236——深度生成模型,目前更新到第一課,感興趣的同學可以多多關注,跟隨學習。

生成式模型被廣泛應用到人工智能和機器學習的諸多領域當中。最近,通過結合隨機梯度下降的優化方法,使用深度神經網絡參數化這些模型所取得的進展,已經使得對于包括圖像,文本和語音在內的復雜,高維度數據建模成為可能。在本次課程中,我們將要學習深度生成式模型的概率基礎和學習算法,包括自動編碼器(AE)的各種變體,生成式對抗網絡,自回歸模型和標準化流模型(normalizing flow models)。本課程還將討論從深度生成式模型中獲益的應用領域,例如計算機視覺,語音,自然語言處理,圖挖掘和強化學習。

付費5元查看完整內容
北京阿比特科技有限公司