本書通過使用Python的案例研究來探索數據分析和統計的基礎知識。這本書將向你展示如何自信地用Python編寫代碼,以及如何使用各種Python庫和函數來分析任何數據集。該代碼在Jupyter 筆記本中提出,可以進一步調整和擴展。
這本書分為三個部分——用Python編程,數據分析和可視化,以及統計。首先介紹Python——語法、函數、條件語句、數據類型和不同類型的容器。然后,您將回顧更高級的概念,如正則表達式、文件處理和用Python解決數學問題。
本書的第二部分將介紹用于數據分析的Python庫。將有一個介紹性的章節涵蓋基本概念和術語,和一個章節的NumPy(科學計算庫),NumPy(數據角力庫)和可視化庫,如Matplotlib和Seaborn。案例研究將包括作為例子,以幫助讀者理解一些實際應用的數據分析。
本書的最后幾章集中在統計學上,闡明了與數據科學相關的統計學的重要原則。這些主題包括概率、貝葉斯定理、排列和組合、假設檢驗(方差分析、卡方檢驗、z檢驗和t檢驗),以及Scipy庫如何簡化涉及統計的繁瑣計算。
你會: 進一步提高你的Python編程和分析技能 用Python解決微積分、集合論和代數中的數學問題 使用Python中的各種庫來結構化、分析和可視化數據 使用Python進行實際案例研究 回顧基本的統計概念,并使用Scipy庫來解決統計方面的問題
自然語言處理(Natural Language Processing,NLP)是計算機科學領域與人工智能領域中的一個重要方向。它研究能夠實現人與電腦之間用自然語言進行有效通信的各種理論和方法,涉及所有用計算機對自然語言進行的操作。
//www.datascienceassn.org/sites/default/files/Natural%20Language%20Processing%20with%20Python.pdf
伯德、克萊恩、洛佩爾編著的這本《Python自然語言處理》是自然語言處理領域的一本實用入門指南,旨在幫助讀者學習如何編寫程序來分析書面語言。《Python自然語言處理》基于Python編程語言以及一個名為NLTK的自然語言工具包的開源庫,但并不要求讀者有Python編程的經驗。全書共11章,按照難易程度順序編排。第1章到第3章介紹了語言處理的基礎,講述如何使用小的Python程序分析感興趣的文本信息。第4章討論結構化程序設計,以鞏固前面幾章中介紹的編程要點。第5章到第7章介紹語言處理的基本原理,包括標注、分類和信息提取等。第8章到第10章介紹了句子解析、句法結構識別和句意表達方法。第11章介紹了如何有效管理語言數據。后記部分簡要討論了NLP領域的過去和未來。
《Python自然語言處理》的實踐性很強,包括上百個實際可用的例子和分級練習。《Python自然語言處理》可供讀者用于自學,也可以作為自然語言處理或計算語言學課程的教科書,還可以作為人工智能、文本挖掘、語料庫語言學等課程的補充讀物。
利用Python及其標準庫中的數值和數學模塊,以及流行的開源數值Python包,如NumPy、SciPy、FiPy、matplotlib等。這個完全修訂的版本,更新了每個包的最新細節和更改Jupyter項目,演示了如何在大數據,云計算,金融工程,商業管理和更多的數字計算解決方案和數學模型應用。
Numerical Python,第二版,提供了許多使用Python在數據科學和統計中應用的全新案例研究示例,以及對以前的許多示例的擴展。由于Python的語法簡單而高級,以及數據分析的多種選項,因此它們都展示了Python在快速開發和探索性計算方面的強大功能。
閱讀本書后,讀者將熟悉許多計算技術,包括基于數組和符號計算,可視化和數字文件I/O,方程求解,優化,插值和積分,以及領域特定的計算問題,如微分方程求解,數據分析,統計建模和機器學習。
科學和數值計算是研究、工程和分析領域的一個蓬勃發展的領域。在過去的幾十年里,計算機行業的革命為計算機從業者提供了新的和強大的工具。這使得前所未有的規模和復雜性的計算工作成為可能。結果,整個領域和行業如雨后春筍般涌現出來。這種發展仍在繼續,隨著硬件、軟件和算法的不斷改進,它正在創造新的機會。最終,實現這一運動的技術是近幾十年來發展起來的強大的計算硬件。然而,對于計算從業者來說,用于計算工作的軟件環境與執行計算的硬件同等重要(如果不是更重要的話)。這本書是關于一個流行的快速增長的數值計算環境:Python編程語言及其用于計算工作的庫和擴展的充滿活力的生態系統。
計算是一項跨學科的活動,需要理論和實踐學科的經驗和專業知識:對數學和科學思維的牢固理解是有效計算工作的基本要求。同樣重要的是在計算機編程和計算機科學方面的扎實訓練。這本書的作用是通過介紹如何使用Python編程語言和圍繞該語言出現的計算環境來完成科學計算,從而將這兩個主題連接起來。在這本書中,假定讀者先前有一些數學和數值方法的訓練,以及Python編程的基本知識。這本書的重點是介紹用Python解決計算問題的實用方法。簡要介紹的理論涵蓋的主題給出在每一章,以介紹符號和提醒讀者的基本方法和算法。然而,這本書并不是對數值方法的自洽處理。為了幫助讀者以前不熟悉這本書的一些主題,進一步閱讀的參考文獻在每一章的結尾。同樣,沒有Python編程經驗的讀者可能會發現,將這本書和一本專注于Python編程語言本身的書一起閱讀會很有用
//www.programmer-books.com/wp-content/uploads/2019/02/Numerical-Python-2nd-Edition.pdf
當你正在匆忙編寫代碼并且需要一個答案時,你可以閱讀這本書。它是對核心語言的一個易于使用的引用,包括對常用模塊和工具包的描述,以及關于最近的變化、新特性和升級的內置組件的指南——所有這些更新都涵蓋了Python 3。X和版本2.6。您還可以通過方便的索引快速找到所需的內容。
由Mark Lutz編寫——被廣泛認為是世界領先的Python培訓師——Python Pocket Reference,第四版,是O'Reilly的經典Python教程的完美伙伴,也由Mark: Learning Python and Programming Python編寫。
內置對象類型,包括數字、列表、字典等 用于創建和處理對象的語句和語法 用于構造和重用代碼的函數和模塊 Python的面向對象編程工具 異常處理模型 內置函數、異常和屬性 特殊的操作符重載方法 廣泛使用的標準庫模塊和擴展 命令行選項和開發工具 Python的習慣用法和提示
學習使用Python分析數據和預測結果的更簡單和更有效的方法
Python機器學習教程展示了通過關注兩個核心機器學習算法家族來成功分析數據,本書能夠提供工作機制的完整描述,以及使用特定的、可破解的代碼來說明機制的示例。算法用簡單的術語解釋,沒有復雜的數學,并使用Python應用,指導算法選擇,數據準備,并在實踐中使用訓練過的模型。您將學習一套核心的Python編程技術,各種構建預測模型的方法,以及如何測量每個模型的性能,以確保使用正確的模型。關于線性回歸和集成方法的章節深入研究了每種算法,你可以使用書中的示例代碼來開發你自己的數據分析解決方案。
機器學習算法是數據分析和可視化的核心。在過去,這些方法需要深厚的數學和統計學背景,通常需要結合專門的R編程語言。這本書演示了機器學習可以如何實現使用更廣泛的使用和可訪問的Python編程語言。
使用線性和集成算法族預測結果
建立可以解決一系列簡單和復雜問題的預測模型
使用Python應用核心機器學習算法
直接使用示例代碼構建自定義解決方案
機器學習不需要復雜和高度專業化。Python使用了更簡單、有效和經過良好測試的方法,使這項技術更容易為更廣泛的受眾所接受。Python中的機器學習將向您展示如何做到這一點,而不需要廣泛的數學或統計背景。
這本書的前半部分快速而徹底地概述了Python的所有基礎知識。你不需要任何以前的經驗與編程開始,我們將教你一切你需要知道,一步一步。
第二部分著重于用Python以實用的方式解決有趣的、真實的問題。一旦你掌握了基礎知識,你就會通過跟隨我們的動手編程練習和項目迅速提高。
我們在書中的每一頁都精心安排了漂亮的排版,代碼示例的語法高亮顯示,以及教學截圖,這樣你可以有效地處理和記憶信息:
所有材料都是Python 3.9的最新版本,Python編程語言在2020年發布的最新和最好的版本。簡而言之,以下是你將學到的Python基礎知識:Python 3的實用介紹:
安裝和運行Python:在Windows、macOS或Linux上設置Python 3.9編碼環境
核心Python 3概念和約定:解釋器會話、腳本、查找和修復代碼bug、如何組織代碼和構造Python程序、如何有效地學習和實踐
Python 3.9基本原理:變量、基本數據類型、函數和循環、條件邏輯和控制流、字符串格式、列表/元組/字典、文件輸入和輸出、錯誤處理。
中級Python概念:面向對象編程(OOP)、正則表達式、名稱空間和作用域、異常處理、安裝第三方包。
Python的實際使用:創建和修改PDF文件、使用數據庫、從web下載和抓取內容、數據科學基礎(科學計算和繪圖)、圖形用戶界面和GUI編程。
本書基于易于理解且具有數據科學相關的豐富的庫的Python語言環境,從零開始講解數據科學工作。具體內容包括:Python速成,可視化數據,線性代數,統計,概率,假設與推斷,梯度下降法,如何獲取數據,k近鄰法,樸素貝葉斯算法,等等。作者借助大量具體例子以及數據挖掘、統計學、機器學習等領域的重要概念,詳細展示了什么是數據科學。
介紹數據科學基本知識的重量級讀本,Google數據科學家作品。
數據科學是一個蓬勃發展、前途無限的行業,有人將數據科學家稱為“21世紀頭號性感職業”。本書從零開始講解數據科學工作,教授數據科學工作所必需的黑客技能,并帶領讀者熟悉數據科學的核心知識——數學和統計學。
作者選擇了功能強大、簡單易學的Python語言環境,親手搭建工具和實現算法,并精心挑選了注釋良好、簡潔易讀的實現范例。書中涵蓋的所有代碼和數據都可以在GitHub上下載。
簡單易懂,讀起來很有趣,介紹Python對于初學者和語言新手都是理想的。作者Bill Lubanovic帶您從基礎知識到更復雜和更多樣的主題,混合教程和烹飪書風格的代碼配方來解釋Python 3中的概念。章節結尾的練習可以幫助你練習所學的內容。
您將獲得該語言的堅實基礎,包括測試、調試、代碼重用和其他開發技巧的最佳實踐。本書還向您展示了如何使用各種Python工具和開放源碼包將Python用于商業、科學和藝術領域的應用程序。
Python是一種多范式編程語言,已經成為數據科學家進行數據分析、可視化和機器學習的首選語言。有沒有想過如何成為有效處理數據分析問題的專家,解決這些問題,并從數據中提取所有可用信息?好了,別再找了,這就是你要的書!
通過這個全面的指南,您將探索數據,并以一種有意義的方式展示統計分析的結果和結論。您將能夠快速準確地執行實際操作的排序、縮減和后續分析,并充分理解數據分析方法如何支持業務決策。
您將首先了解Python中可用的數據分析工具,然后探索用于識別數據模式的統計模型。漸漸地,您將使用Python、panda和SciPy回顧統計推斷。在此之后,我們將集中于使用計算工具執行回歸,您將了解如何用算法的方式識別數據中的集群。最后,我們將深入探討使用貝葉斯方法量化因果關系的高級技術,您將發現如何使用Python的工具進行監督機器學習。
你會學到什么
在Python中獲得操作、處理、清理和處理數據集的完整說明。本實用指南的第二版針對Python 3.6進行了更新,其中包含了大量的實際案例研究,向您展示了如何有效地解決廣泛的數據分析問題。在這個過程中,您將學習最新版本的panda、NumPy、IPython和Jupyter。
本書由Python panda項目的創建者Wes McKinney編寫,是對Python中的數據科學工具的實用的、現代的介紹。對于剛接觸Python的分析人員和剛接觸數據科學和科學計算的Python程序員來說,它是理想的。數據文件和相關材料可以在GitHub上找到。
本書是為那些對數據科學感興趣的Python程序員編寫的。唯一的先決條件是Python的基本知識。不需要有使用復雜算法的經驗。數學背景不是必須的。讀完這本書的業余愛好者將獲得獲得第一份高薪數據科學工作所必需的技能。這些技能包括:
開放式解決問題的能力對于數據科學職業來說是必不可少的。不幸的是,這些能力不能通過閱讀來獲得。要成為一個問題解決者,你必須堅持解決困難的問題。帶著這種想法,我的書圍繞著案例研究展開:以真實世界為模型的開放式問題。案例研究范圍從在線廣告分析到使用新聞數據跟蹤疾病暴發。