亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

自然語言處理(Natural Language Processing,NLP)是計算機科學領域與人工智能領域中的一個重要方向。它研究能夠實現人與電腦之間用自然語言進行有效通信的各種理論和方法,涉及所有用計算機對自然語言進行的操作。

//www.datascienceassn.org/sites/default/files/Natural%20Language%20Processing%20with%20Python.pdf

伯德、克萊恩、洛佩爾編著的這本《Python自然語言處理》是自然語言處理領域的一本實用入門指南,旨在幫助讀者學習如何編寫程序來分析書面語言。《Python自然語言處理》基于Python編程語言以及一個名為NLTK的自然語言工具包的開源庫,但并不要求讀者有Python編程的經驗。全書共11章,按照難易程度順序編排。第1章到第3章介紹了語言處理的基礎,講述如何使用小的Python程序分析感興趣的文本信息。第4章討論結構化程序設計,以鞏固前面幾章中介紹的編程要點。第5章到第7章介紹語言處理的基本原理,包括標注、分類和信息提取等。第8章到第10章介紹了句子解析、句法結構識別和句意表達方法。第11章介紹了如何有效管理語言數據。后記部分簡要討論了NLP領域的過去和未來。



《Python自然語言處理》的實踐性很強,包括上百個實際可用的例子和分級練習。《Python自然語言處理》可供讀者用于自學,也可以作為自然語言處理或計算語言學課程的教科書,還可以作為人工智能、文本挖掘、語料庫語言學等課程的補充讀物。
付費5元查看完整內容

相關內容

自然語言處理(NLP)是語言學,計算機科學,信息工程和人工智能的一個子領域,與計算機和人類(自然)語言之間的相互作用有關,尤其是如何對計算機進行編程以處理和分析大量自然語言數據 。

知識薈萃

精品入門和進階教程、論文和代碼整理等

更多

查看相關VIP內容、論文、資訊等

本書使用高級Python語言首次介紹科學應用的計算機編程。該闡述以實例和問題為導向,其中應用程序取自數學、數值微積分、統計學、物理學、生物學和金融。這本書教授“matlab風格”和過程編程以及面向對象編程。高中數學是一個必要的背景,它有利于學習經典和數字一元微積分并行閱讀這本書。除了學習如何編寫計算機程序,讀者還將學習如何利用數值方法和程序設計來解決科學和工程的各個分支中出現的數學問題。通過混合編程,數學和科學應用,這本書為實踐計算科學奠定了堅實的基礎。

這本書的目的是使用從數學和自然科學的例子來教授計算機編程。我們選擇使用Python編程語言,因為它結合了非凡的表達能力和非常干凈、簡單和緊湊的語法。Python很容易學習,非常適合作為計算機編程的入門。Python也非常類似于MATLAB,是一種很好的數學計算語言。將Python與編譯語言(如Fortran、C和c++)相結合很容易,這些語言被廣泛用于科學計算。

本書中的例子將編程與數學、物理、生物和金融的應用程序相結合。讀者需要具備基本的一元微積分知識,在高中數學強化課程中教授。這當然是一個優勢,以并行的大學微積分課程,最好包含經典和數值方面的微積分。雖然不是嚴格要求,高中物理背景使許多例子更有意義。

許多入門編程書籍都很緊湊,重點是列出編程語言的功能。然而,學習編程就是學習如何像程序員一樣思考。這本書主要關注的是思考過程,或者等價地說: 編程是一種解決問題的技術。這就是為什么大多數頁面都致力于編程中的案例研究,在這里我們定義一個問題并解釋如何創建相應的程序。新的結構和編程風格(我們可以稱之為理論)通常也通過示例介紹。

付費5元查看完整內容

這本書是為任何想學習如何開發機器學習系統的人準備的。我們將從理論和實踐兩方面涵蓋關于機器學習算法的最重要概念,并將使用Python編程語言中的Scikit-learn庫實現許多機器學習算法。在第一章中,您將學習機器學習最重要的概念,在下一章中,您將主要學習分類。在最后一章中,你將學習如何訓練你的模型。我假定你已經了解了編程的基礎知識。

付費5元查看完整內容

學習使用Python分析數據和預測結果的更簡單和更有效的方法

Python機器學習教程展示了通過關注兩個核心機器學習算法家族來成功分析數據,本書能夠提供工作機制的完整描述,以及使用特定的、可破解的代碼來說明機制的示例。算法用簡單的術語解釋,沒有復雜的數學,并使用Python應用,指導算法選擇,數據準備,并在實踐中使用訓練過的模型。您將學習一套核心的Python編程技術,各種構建預測模型的方法,以及如何測量每個模型的性能,以確保使用正確的模型。關于線性回歸和集成方法的章節深入研究了每種算法,你可以使用書中的示例代碼來開發你自己的數據分析解決方案。

機器學習算法是數據分析和可視化的核心。在過去,這些方法需要深厚的數學和統計學背景,通常需要結合專門的R編程語言。這本書演示了機器學習可以如何實現使用更廣泛的使用和可訪問的Python編程語言。

使用線性和集成算法族預測結果

建立可以解決一系列簡單和復雜問題的預測模型

使用Python應用核心機器學習算法

直接使用示例代碼構建自定義解決方案

機器學習不需要復雜和高度專業化。Python使用了更簡單、有效和經過良好測試的方法,使這項技術更容易為更廣泛的受眾所接受。Python中的機器學習將向您展示如何做到這一點,而不需要廣泛的數學或統計背景。

付費5元查看完整內容

近年來,自然語言處理的研究方法取得了一些突破。這些突破來源于兩個新的建模框架以及在計算和詞匯資源的可用性的改進。在這個研討會小冊子中,我們將回顧這些框架,以一種可以被視為現代自然語言處理開端的方法論開始:詞嵌入。我們將進一步討論將嵌入式集成到端到端可訓練方法中,即卷積神經網絡和遞歸神經網絡。這本小冊子的第二章將討論基于注意力的模型的影響,因為它們是最近大多數最先進的架構的基礎。因此,我們也將在本章中花很大一部分時間討論遷移學習方法在現代自然語言處理中的應用。最后一章將會是一個關于自然語言生成的說明性用例,用于評估最先進的模型的訓練前資源和基準任務/數據集。

//compstat-lmu.github.io/seminar_nlp_ss20/

在過去的幾十年里,人工智能技術的重要性和應用不斷得到關注。在當今時代,它已經與構成人類塑造環境的大部分環境密不可分。因此,商業、研究和開發、信息服務、工程、社會服務和醫學等無數部門已經不可逆轉地受到人工智能能力的影響。人工智能有三個主要領域組成了這項技術:語音識別、計算機視覺和自然語言處理(見Yeung (2020))。在這本書中,我們將仔細研究自然語言處理(NLP)的現代方法。

這本小冊子詳細介紹了用于自然語言處理的現代方法,如深度學習和遷移學習。此外,本研究亦會研究可用于訓練自然語言處理任務的資源,并會展示一個將自然語言處理應用于自然語言生成的用例。

為了分析和理解人類語言,自然語言處理程序需要從單詞和句子中提取信息。由于神經網絡和其他機器學習算法需要數字輸入來進行訓練,因此應用了使用密集向量表示單詞的詞嵌入。這些通常是通過有多個隱藏層的神經網絡學習的,深度神經網絡。為了解決容易的任務,可以應用簡單的結構神經網絡。為了克服這些簡單結構的局限性,采用了遞歸和卷積神經網絡。因此,遞歸神經網絡用于學習不需要預先定義最佳固定維數的序列的模型,卷積神經網絡用于句子分類。第二章簡要介紹了NLP中的深度學習。第三章將介紹現代自然語言處理的基礎和應用。在第四章和第五章中,將解釋和討論遞歸神經網絡和卷積神經網絡及其在自然語言處理中的應用。

遷移學習是每個任務或領域的學習模型的替代選擇。在這里,可以使用相關任務或領域的現有標記數據來訓練模型,并將其應用到感興趣的任務或領域。這種方法的優點是不需要在目標域中進行長時間的訓練,并且可以節省訓練模型的時間,同時仍然可以(在很大程度上)獲得更好的性能。遷移學習中使用的一個概念是注意力,它使解碼器能夠注意到整個輸入序列,或自注意,它允許一個Transformer 模型處理所有輸入單詞,并建模一個句子中所有單詞之間的關系,這使得快速建模一個句子中的長期依賴性成為可能。遷移學習的概念將在小冊子的第6章簡要介紹。第七章將通過ELMo、ULMFiT和GPT模型來描述遷移學習和LSTMs。第八章將詳細闡述注意力和自注意力的概念。第九章將遷移學習與自注意力相結合,介紹了BERT模型、GTP2模型和XLNet模型。

為NLP建模,需要資源。為了找到任務的最佳模型,可以使用基準測試。為了在基準實驗中比較不同的模型,需要諸如精確匹配、Fscore、困惑度或雙語評估替補學習或準確性等指標。小冊子的第十章簡要介紹了自然語言處理的資源及其使用方法。第11章將解釋不同的指標,深入了解基準數據集SQuAD、CoQa、GLUE和SuperGLUE、AQuA-Rat、SNLI和LAMBADA,以及可以找到資源的預訓練模型和數據庫,如“帶代碼的論文”和“大壞的NLP數據庫”。

在小冊子的最后一章中,介紹了生成性NLP處理自然語言生成,從而在人類語言中生成可理解的文本。因此,不同的算法將被描述,聊天機器人和圖像字幕將被展示,以說明應用的可能性。

本文對自然語言處理中各種方法的介紹是接下來討論的基礎。小冊子的各個章節將介紹現代的NLP方法,并提供了一個更詳細的討論,以及各種示例的潛力和限制。

付費5元查看完整內容

自然語言處理(NLP)為解決人工智能方面的問題提供了無限的機會,使Amazon Alexa和谷歌翻譯等產品成為可能。如果您是NLP和深度學習的新手,那么本實用指南將向您展示如何使用PyTorch(一個基于python的深度學習庫)應用這些方法。

作者Delip Rao和Brian McMahon為您提供了關于NLP和深度學習算法的堅實基礎,并演示了如何使用PyTorch構建應用程序,其中包含針對您所面臨問題的文本的豐富表示。每一章包括幾個代碼示例和插圖。

  • 探索計算圖表和監督學習范式
  • 掌握PyTorch優化張量操作庫的基礎知識
  • 對傳統的NLP概念和方法進行概述
  • 學習建立神經網絡的基本概念
  • 使用嵌入來表示單詞、句子、文檔和其他特性
  • 探索序列預測并生成序列對序列模型
  • 學習構建生產NLP系統的設計模式

//www.oreilly.com/library/view/natural-language-processing/9781491978221/

付費5元查看完整內容

如果您是用Python編程的新手,并且正在尋找可靠的介紹,那么這本書就是為您準備的。由計算機科學教師開發,在“為絕對初學者”系列叢書通過簡單的游戲創造教授編程的原則。您將獲得實際的Python編程應用程序所需的技能,并將了解如何在真實場景中使用這些技能。在整個章節中,你會發現一些代碼示例來說明所提出的概念。在每一章的結尾,你會發現一個完整的游戲,展示了這一章的關鍵思想,一章的總結,以及一系列的挑戰來測試你的新知識。當你讀完這本書的時候,你將非常精通Python,并且能夠將你所學到的基本編程原理應用到你要處理的下一種編程語言。

付費5元查看完整內容

使用Python的高級數據科學和分析使數據科學家能夠繼續發展他們的技能,并將其應用于商業和學術設置中。這本書中討論的主題是補充和后續主題討論的數據科學和分析與Python。其目的是使用Python開發的工具,如SciKit-learn、Pandas、Numpy、Beautiful Soup、NLTK、NetworkX等,覆蓋數據科學中重要的高級領域。使用Keras、TensorFlow、Core ML等框架,以及用于iOS和MacOS應用開發的Swift來支持模型開發。

付費5元查看完整內容

管理統計和數據科學的原理包括:數據可視化;描述性措施;概率;概率分布;數學期望;置信區間;和假設檢驗。方差分析;簡單線性回歸;多元線性回歸也包括在內。另外,本書還提供了列聯表、卡方檢驗、非參數方法和時間序列方法。

教材:

  • 包括通常在入門統計學課程中涵蓋的學術材料,但與數據科學扭曲,較少強調理論
  • 依靠Minitab來展示如何用計算機執行任務
  • 展示并促進來自開放門戶的數據的使用
  • 重點是發展對程序如何工作的直覺
  • 讓讀者了解大數據的潛力和目前使用它的失敗之處
付費5元查看完整內容

簡單易懂,讀起來很有趣,介紹Python對于初學者和語言新手都是理想的。作者Bill Lubanovic帶您從基礎知識到更復雜和更多樣的主題,混合教程和烹飪書風格的代碼配方來解釋Python 3中的概念。章節結尾的練習可以幫助你練習所學的內容。

您將獲得該語言的堅實基礎,包括測試、調試、代碼重用和其他開發技巧的最佳實踐。本書還向您展示了如何使用各種Python工具和開放源碼包將Python用于商業、科學和藝術領域的應用程序。

  • 學習簡單的數據類型,以及基本的數學和文本操作
  • 在Python的內置數據結構中使用數據協商技術
  • 探索Python代碼結構,包括函數的使用
  • 用Python編寫大型程序,包括模塊和包
  • 深入研究對象、類和其他面向對象的特性
  • 檢查從平面文件到關系數據庫和NoSQL的存儲
  • 使用Python構建web客戶機、服務器、api和服務
  • 管理系統任務,如程序、進程和線程
  • 了解并發性和網絡編程的基礎知識

付費5元查看完整內容

介紹使用spaCy使用Python進行自然語言處理,spaCy是一個領先的Python自然語言處理庫。

使用Python和spaCy進行自然語言處理將向您展示如何快速輕松地創建聊天機器人、文本壓縮腳本和訂單處理工具等NLP應用程序。您將了解如何利用spaCy庫智能地從文本中提取含義;如何確定句子中詞語之間的關系(句法依賴分析);識別名詞、動詞和其他詞類(詞性標注);并將專有名詞分類,如人員、組織和地點(識別命名實體)。你甚至會學到如何將陳述轉換成問題來保持對話的進行。您還將學習如何:

  • 使用單詞向量進行數學運算,找到含義相似的單詞(第5章)
  • 使用spaCy內置的displaCy visualizer識別數據中的模式(第7章)
  • 自動從用戶輸入中提取關鍵字并將其存儲在關系數據庫中(第9章)
  • 部署聊天機器人應用程序,在互聯網上與用戶互動(第11章)

每一章的“嘗試這個”部分鼓勵您通過擴展該書的示例腳本來處理更廣泛的輸入、添加錯誤處理和構建專業質量的應用程序,從而實踐您所學到的知識。在本書的最后,您將使用Python和spaCy創建自己的NLP應用程序。

//nostarch.com/NLPPython

Yuli Vasiliev是一名程序員、自由撰稿人和顧問,專門從事開源開發、Oracle數據庫技術和自然語言處理。

Introduction

Chapter 1: How Natural Language Processing Works Chapter 2: The Text-Processing Pipeline Chapter 3: Working with Container Objects and Customizing spaCy Chapter 4: Extracting and Using Linguistic Features Chapter 5: Working with Word Vectors Chapter 6: Finding Patterns and Walking Dependency Trees Chapter 7: Visualizations Chapter 8: Intent Recognition Chapter 9: Storing User Input in a Database Chapter 10: Training Models Chapter 11: Deploying Your Own Chatbot Chapter 12: Implementing Web Data and Processing Images Linguistic Primer

付費5元查看完整內容
北京阿比特科技有限公司