亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

美國海軍(USN)和美國海岸警衛隊(USCG)正在轉向應用和使用無人系統,通過協調一系列作戰多樣性,為其視角任務集提供價值。這項研究工作旨在評估在使用標準成像傳感器的同時使用市場上可買到的小型無人機系統(sUAS)的可行性,以提高海上艦隊對水下威脅和夜間反潛戰的態勢感知能力。研究小組開展了三項工作:前兩項工作是非機密的,涉及鯨魚探測;第三項工作是機密的,處理真實的實地數據,并作為補充資料列入。這兩項非保密工作是在有人駕駛飛機和無人駕駛飛機上安裝市場上可買到的成像傳感器,目的是在夜間利用生物發光探測鯨魚。比較了固定翼和旋轉式 sUAS 作為飛行平臺與紅綠藍 (RGB) 和多光譜成像傳感器。發現并克服了許多挑戰,包括減少來自環境和飛機的光污染、批準無人駕駛航空飛行器在夜間超出視線范圍運行,以及圖像拉長的復雜性。最終確定,配備 MicaSense RedEdge-P 的旋轉式無人機系統是在夜間從移動平臺發射時捕捉次表層生物發光傳輸的最佳平臺。

付費5元查看完整內容

相關內容

人工智能在軍事中可用于多項任務,例如目標識別、大數據處理、作戰系統、網絡安全、后勤運輸、戰爭醫療、威脅和安全監測以及戰斗模擬和訓練。

本論文論證了將小巧、輕便、低成本的商用現貨(COTS)多光譜傳感器集成到小型戰術無人機系統(UAS)中的可行性,以增強對偽裝目標和戰場異常的探測能力。與目前設計中使用的普通電子光學和紅外傳感器(EO/IR)相比,這種能力增強了對此類目標的探測能力。

無人系統在現代軍事行動中應用廣泛,可為戰場指揮官和軍事規劃人員提供新的或增強的能力和作戰概念。它們的主要優勢在于能夠以更高效、規避風險和低成本的方式執行枯燥、骯臟和危險的任務。由于這些原因,無人系統,特別是無人機系統,如今正在執行大多數監視和偵察行動,在所有作戰層面提供必要的情報。

為了應對在現代戰場上擴大使用戰術和戰區級無人機系統進行偵察和監視的情況,地面兵力正在加大力度隱藏其資產,使用偽裝,或利用地形和植被。此外,正規軍和非正規軍廣泛使用地雷和簡易爆炸裝置,對地面部隊構成重大威脅。這些戰術給情報搜集行動帶來了新的挑戰,需要新一代無人機系統加以解決,特別是在戰術層面。

在過去的十年中,多光譜成像技術不斷發展,提供了結構緊湊、成本低廉的傳感器,可增強戰術無人機系統的能力,使其能夠擊敗偽裝,探測普通傳感器無法看到的戰場異常情況。與普通成像傳感器相比,多光譜設備可在可見光和紅外光譜的特定窄波段內成像。此外,多光譜設備還能利用不同材料在這些波段中的吸收和反射率差異,對這些波段進行算法融合。

這項研究旨在回答兩個研究問題,要求探索 COTS 多光譜傳感器探測偽裝人造目標或戰場異常的能力,并將其性能與 RGB 和全色傳感器進行比較。為了回答這些問題,我們使用集成在小型戰術級無人機系統中的多光譜傳感器對偽裝目標進行了幾次實驗性飛行。從這些飛行中收集的數據被用來評估傳感器的性能,并探索融合多光譜數據和生成成像產品的方法。

利用 MATLAB 編程環境開發了一種算法,以實現多光譜數據的融合。該算法可對各個多光譜波段數據進行對齊,并實施三種融合方法。使用歸一化差異植被指數(NDVI)、彩色紅外(CIR)和歸一化差異紅邊藍邊指數(NDREB)對多光譜數據進行融合。歸一化差異植被指數廣泛用于商業農業應用,以區分植被和環境。CIR 還能在多色成像中突出植被。最后,NDREB 是為本論文開發的,它利用了人造目標與環境在紅邊和藍帶反射率上的差異。

對實驗飛行所收集數據的解讀證明,COTS 多光譜傳感器能夠探測偽裝目標和戰場異常,其性能優于普通的 EO/IR 傳感器。此外,還在多個目標場景中評估了所使用的三種融合方法的性能。最后,確定了當前算法在實時操作方面的局限性。成功評估了低成本、緊湊型多光譜傳感器在探測偽裝目標方面的性能,為其在戰術無人機系統中的應用提供了概念證明,并為該領域的未來研究奠定了基礎。

付費5元查看完整內容

這個頂點應用項目對海軍陸戰隊作戰測試與評估一(VMX-1)進行了檢查,以確定優化效率的方法,并確定中隊的額外測試能力。該中隊為 AH-1Z、CH-53K、F-35B、MV-22B 和 UH-1Y 飛機進行作戰測試與評估 (OT&E),并為海軍陸戰隊戰術與集成部下屬的許多其他項目進行測試與評估。該項目研究了中隊面臨的每項資源短缺問題,以確定影響中隊完成任務能力的根本問題。用于得出結論的數據包括評估進行 OT&E 的流程,以及分析最近完成的 MV-22 的 AN/APR-39D(V)2雷達預警接收器和 AH-1Z 的聯合空對地導彈項目。該項目建議改進作戰測試主管的培訓和職位任期,改進調度工具以改善中隊內部的溝通,并仔細檢查新出現的測試系統,以便將其納入簡略采購框架。

付費5元查看完整內容

陸基反艦導彈(GBASM)武器系統是美國海軍陸戰隊當前最優先的現代化項目,也是其最新作戰概念--"遠征先進作戰"(EABO)的基石。EABO 的目標是支持海軍的海上控制和海上封鎖任務,尤其是在太平洋地區;GBASM 為海軍陸戰隊提供了遠程火力能力,使其能夠控制重要的海上交通線。迄今為止,GBASM 的研究僅僅集中在武器的有效性以及射擊戰術、技術和程序(TTPs)的開發上,尚未對該系統的后勤考慮因素進行研究。本論文旨在通過對武器系統及其補給站進行建模來填補這一空白,從而深入了解考慮后勤因素時的戰斗動態。

在這項研究中,建立了三個模型:離散時間馬爾可夫鏈(DTMC)、蒙特卡羅模擬和分析模型。用于分析的主要模型是蒙特卡羅模擬。DTMC 用于驗證模擬結果,而分析模型則是對模擬結果的補充和加強。

模擬了 GBASM 發射器("藍方")在補給站支持下與對手海上目標("紅方")之間的炮火對決。決戰開始時,所有藍方射手向紅方目標開火,殺傷概率為 ??。如果 "紅方 "目標仍然活著,則向射手和倉庫還擊,射手的擊殺概率為 ??,倉庫的擊殺概率為 ??。對決一直持續到滿足三個勝利條件之一為止: 1) 藍方摧毀紅方;2) 紅方摧毀藍方所有射手;或 3) 紅方摧毀藍方倉庫。衡量模型有效性的標準是獲勝概率。

該模型有幾個基本假設和限制。假設藍方總是先開火,這與 GBASM 的使用概念一致,即強調在準備開火前隱藏武器。我們假定紅方擁有無限量的導彈供應;在基礎模型中,為了簡單起見,我們對藍方也做了同樣的假定,但在擴展模型中,這一假定被放寬了。我們假定所有藍方射手在每次發射時都會開火;單位戰術和火力控制不在模型中。該模型的一個主要限制是沒有考慮時間和距離,這意味著藍方無需前往補給站重新裝彈。我們認為這一假設并不影響主要結論,因為我們模擬了幾個波次的交戰,而且每波交戰后炮臺都會重新裝填彈藥。此外,該研究并未使用實際的武器殺傷概率,因為這會提高研究的等級。

我們運行上述基本模型,以了解藍方和紅方行為的趨勢。然后,我們運行了兩個擴展模型,一個是將藍方的彈藥限制在 GBASM 排實際擁有的導彈數量,另一個是考慮與紅方的兩個目標進行決斗。

研究得出了幾個重要發現。首先,"紅方 "的最優策略是一種閾值策略。在紅方面對的藍方射手數量的某個臨界值以下,紅方向射手開火更有利;在臨界值以上,紅方瞄準藍方倉庫更有利。這一現象在多次不同的迭代模擬中都能觀察到,分析模型也證實了這一點。這為 GBASM 部隊提供了兩個重要啟示:1)藍方射手的生存能力會隨著部署射手數量的增加而提高;2)補給站的特征管理至關重要,因為它很可能成為敵方的誘人機會目標。

研究的另一個關鍵發現與藍方補給站的規模有關。我們進行了多次模擬,同時改變藍方可用導彈的數量。我們發現,在某個臨界值之后,藍方獲勝的概率保持不變,這表明根據藍方射手的數量,補給站的規模是合適的。因此,對 GBASM 部隊的啟示是,后勤計劃人員應謹慎平衡部署到某一地點的藍方射手數量與增加可能不需要的彈藥的功效。

這項研究為 GBASM 操作人員和后勤人員提供了有關戰斗動態的重要見解,可用于武器 TTPs 的持續開發。值得注意的是,研究的具體數值結果在很大程度上取決于模型假設和參數值,不應被視為預測結果;相反,研究的關鍵產出是觀察到的總體趨勢和見解。

付費5元查看完整內容

蜂群是戰爭的下一個進化步驟。激光武器系統(LWSs)將是在這個新的戰斗空間中競爭的一種具有成本效益的方法。無人機系統正被用于各個層面,從恐怖組織到世界超級大國,廉價的無人機系統作為采用蜂群戰的一種方式。目前,無人機群已經被用于異質配置,并在軍事演示中被展示出來(Hambling 2021)。作為反擊,國防部必須制定一個具有成本效益的對策,而LWSs具有每次射擊成本低、見效時間短的優點。

隨著通信方法、機器學習和蜂群理論的發展,無人機系統的能力也在增長。它們按重量、范圍和速度的不同組合進行分類。無人機系統執行廣泛的任務類型,包括監視、反制、誘餌、傳感器失效和有效載荷的交付。它們通常由高強度低重量的材料制成,如鋁或碳纖維增強聚合物;然而,最近也在探索使用鎂基復合材料以實現更廉價的制造(Hoeche等人,2021)。容易獲得和廉價的無人機系統使得形成蜂群成為一種具有成本效益的方式。LWS將是準備應對這種新型威脅的有效方式。

通過適當的使用,LWS將成為對廉價的蜂群攻擊的相稱和有效的反應,變得非常寶貴。擬議的每發1美元將使海軍在這些交戰中贏得經濟損耗(Smalley 2014; Perkins 2017)。然而,也有一些需要注意的障礙,如大氣效應、湍流和熱膨脹。LWS還需要能力很強的傳感器和控制系統來精確跟蹤遠距離目標,并在所需的停留時間內保持訓練好的光束。這種需求在海洋環境中被放大了,船舶的湍流和運動使問題更加復雜。戰術官做出的復雜決定是對蜂群戰和LWS使用的另一個關注。在蜂群戰環境中,交戰時間可能短至個位數分鐘。幫助決策者快速過濾大量信息的自動化決策輔助工具將是贏得這些快速小規模戰斗的關鍵所在。這篇論文探討了各種無人機威脅情況和LWS交戰策略,以確定一些關鍵因素。

無人機群可能由同質群或異質群組成。使用同質群可以簡化獲取和使用具有成本效益的蜂群,而異質群則會增加蜂群的復雜性和能力。同質蜂群的操作者可以改變攻擊的規模和隊形。異質蜂群可以利用各種角色的單位,如戰斗機、轟炸機、誘餌、干擾器和偵察兵。改變蜂群的組成可能會對整體的成功機會產生相當大的影響。

使用的LWS交戰策略會嚴重影響交戰的結果。最直接的技術是基于距離的方法,即武器系統僅根據距離來確定目標的優先次序。最短交戰 "算法提供了一個模型,它也考慮了LWS的回轉時間。如果來襲的威脅是一個異質的蜂群,LWS可以采用更復雜的策略,優先考慮蜂群的各種功能,如感知或通信。這些異質性交戰方法將要求防御者對蜂群有大量的了解,因此需要有能力很強的傳感器和數據融合系統。

本論文使用建模虛擬環境和模擬(MOVES)研究所的一個名為 "蜂群指揮官戰術"(SCT)的程序來探索和模擬蜂群戰環境。SCT被用來測試各種蜂群編隊,包括直線、楔形和波浪形楔形。此外,本論文還開發了一種采用誘餌無人機來掩護轟炸機部隊的異質蜂群編隊。對于LWS,本論文評估了一種交戰策略,使轟炸機部隊優先于任何其他部隊。

主要的發現是,最大限度地增加單位之間的角位移的蜂群編隊比緊密聚集的群體更成功。這些結果是由于每個目標之間需要增加LWS的回轉時間。裝甲誘餌方案增加了整個蜂群的存活率,因此也增加了性能。在艦艇幸存的模擬中,轟炸機能夠活得更久,在被摧毀前更接近艦艇。在艦艇被摧毀的模擬中,有更多的轟炸機幸存下來。關于LWS的交戰策略,這一轉變對結果造成了巨大的影響。在艦艇存活的模擬中,交戰時間要短得多,轟炸機被摧毀的距離也遠得多。在艦艇被摧毀的模擬中,交戰持續時間更長,轟炸機群的大部分被摧毀。這些結果強調了利用各種編隊、異質無人機群以及制定LWS交戰策略來對付它們的潛在好處。

圖1. 使用艦載LWS來防御無人機群的威脅。改編自洛克希德-馬丁公司(2020)和愛德華茲公司(2021)。

付費5元查看完整內容

在購置海軍平臺的資本有限的限制下,需要應對海上挑戰。像波浪滑翔機這樣的無人平臺可能有助于解決這個問題。波浪滑翔機是一種無人水下航行器,它可以配備一個被動陣列,并可以在感興趣的區域(AOI)保持長時間的部署。它們能夠提供分層防御,防止對手在不被發現的情況下穿越該區域,從而提供低成本、持久性的反潛戰(ASW)解決方案。在2016年由英國皇家海軍領導的 "無人勇士 "演習中,展示了反潛波浪滑翔機成功追蹤一艘載人潛艇的能力。然而,如何部署一定數量的波浪滑翔機來探測一艘過境的對手潛艇的問題仍然相對沒有被探索。本論文旨在開發一個模型,以確定部署的波浪滑翔機的探測能力,該模型考慮了與探測水下接觸有關的變量,在具有聲學挑戰性的水下環境中使用被動聲納,并在部署無人資產方面受到限制。該模型規定了實現特定探測概率所需的波浪滑翔機的最佳數量,并為其在AOI中的位置提供了參考,以盡量減少對手潛艇穿越該區域而不被發現的概率。

為了利用無人系統提供的無數優勢,近年來,它們在軍事行動中的地位越來越突出。無人系統,在這里是指無人水下航行器(UUV),被用于各種任務,如海洋學、反地雷、情報、監視和偵察(ISR),僅舉幾例。最近,UUV在反潛戰(ASW)領域的使用也有所發展。本論文探討了在反潛戰中使用 "波浪滑翔機"--一種配備了被動陣列的UUV。該方案圍繞著反潛波浪滑翔機在AUO中的最佳位置發展,以最大限度地提高探測到穿越該地區的敵方潛艇的概率。開發了一個模型來計算具有特定估計聲納范圍(ESR)的特定數量的波浪滑翔機所累積的探測概率。

為了開發這個模型,使用被動聲納方程闡明了裝有被動聲納的波浪滑翔機的水下探測特性。諸如設備、目標和環境特征等方面的因素被考慮到方程中。還考慮了影響聲音在水下傳播的各種因素,如傳輸損耗和水下噪聲的存在,它阻礙了從目標接收的整體聲音。被動聲納方程和其中涉及的參數被用來計算聲納的性能,稱為優點數字(FOM)和信號過剩(SE),它告訴我們目標發出的信號是否會被波浪滑翔機上的傳感器檢測到(Urick,1967)。此后,Poisson掃描模型(Washburn,2014年),它將探測模擬成一個Poisson過程,被用來制定探測的累積概率的表達。該表達式為橫向范圍函數鋪平了道路,該函數描述了在給定的環境條件下,波浪滑翔機在特定范圍內探測目標的能力。

為了最大限度地提高總體探測概率,探索了將波浪滑翔機置于不同的編隊中--即AOO中的障礙物、扇形、圓形和多障礙物。實驗是通過模擬潛艇穿越該地區周邊的隨機點來進行的。然后改變不同編隊中的ESR和波浪滑翔機的數量,以深入了解特定情況下的最佳位置。通過改變關鍵參數,如目標速度、泊松過程的檢測率和模擬中的FOM,也進行了敏感性分析,以分析它們對總體檢測概率的影響。模擬結果表明,將波浪滑翔機放置在AOO的障礙物陣中,可以最大限度地探測到穿越該區域的海底接觸物的概率。盡管屏障編隊總是比多屏障編隊提供更高的探測概率,但它可以作為一種戰術選擇,使潛艇在較長的時間內處于防御狀態,因為潛艇必須穿越穿插在一起的波浪滑翔機層。探測的概率隨著ESR探測率的增加而增加,而保持所有其他因素不變,則隨著目標速度的增加而減少。

付費5元查看完整內容

在過去的十年中,空軍和空中機動性司令部(AMC)進行了大量的研究、活動計劃、愿景和范圍文件、作戰概念和路線圖,指出需要改進機動性空軍(MAF)的態勢感知(SA)能力和全球安全指揮與控制(C2)通信。最近,聯合作戰部門正在開發聯合全域指揮和控制,而空軍已經發布了描述敏捷戰斗力(ACE)和相關任務類型指令(MTO)的條令。空軍和聯合作戰部門都在努力解決的基本問題是任務保證。這項研究采用了AMC全球安全指揮與控制-空對地通信能力評估中的機載信息交換要求(IER)綜合清單,并試圖在任務保障方面對其進行描述和優先排序。一個IER框架被提出來,以幫助告知通信差距,并描述在MTO執行期間需要什么類型的決定。任務規劃人員可以根據預期的環境,根據潛在的通信退化情況,建立分支和序列來執行指揮官的意圖。這特別有助于根據飛機指揮官可能需要執行的決定類型進行風險指導。SA數據 "類別中的通信要求是最關鍵的,因為MAF飛機必須與其他飛機協同執行ACE行動。因此,任務保證,如任務基本功能的執行,與SA信息交流最密切相關。

付費5元查看完整內容

由于固有的設計復雜性、無限的測試空間和缺乏自主性的具體措施,自主和協作無人系統的實施和測試具有挑戰性。這些挑戰限制了美國空軍部署和利用這些系統所提供的戰術和戰略優勢能力。這項研究在廣域搜索(WAS)場景中實例化了一個自主系統參考架構(ASRA),作為自主和協作系統的快速原型設計和評估的測試平臺。該研究旨在提供一個框架,以評估系統實現任務和自主目標的能力,開發可重復使用的自主行為,并開發可重復使用的協作決策算法。對于這項研究和對WAS任務的應用,自主性的衡量標準來自于自主系統的要求:響應性、穩健性和感知的準確性。自主行為,包括結合簡單(原子)行為的更復雜行為被開發出來,各種協作決策規則被定義。隨后的評估在四個場景中實施了立體實驗設計。按照嚴格的測試計劃,測試是在仿真中進行的,實現了自動測試和快速分析。測試結果被用來創建一個響應模型來描述系統,并進行多重響應優化,以確定一個最佳配置,在給定的目標密度下,使搜索面積、檢測百分比和感知精度最大化。

付費5元查看完整內容

最近小型無人駕駛飛行器(UAV)技術的進步重新激發了對民用和軍用廣域搜索(WAS)算法的額外研究需求。但由于無人機環境和設計的差異性極大,利用數字工程(DE)來減少推進這項技術所需的時間、成本和精力。數字工程還允許快速設計和評估利用和支持WAS算法的自主系統。現代WAS算法可以大致分為基于決策的算法、統計算法和人工智能(AI)/機器學習(ML)算法。這項研究繼續了Hatzinger和Gertsman的工作,創建了一個基于決策的算法,該算法將搜索區域細分為被稱為單元的子區域,決定一個最佳的下一個單元進行搜索,并將搜索結果分配給其他合作搜索資產。每個合作搜索資產將存儲以下四個關鍵數組,以決定搜索哪個單元:每個單元的當前估計目標密度;一個單元中的當前資產數量;每個合作資產的下一個搜索單元;以及任何資產在一個單元中的總時間。一個基于軟件的模擬環境,即模擬、集成和建模高級框架(AFSIM),被用來完成驗證過程,創建測試環境和被測系統(SUT)。此外,該算法針對各種分布的威脅進行了測試,以模擬目標的集群。最后,從人工智能和ML中引入了新的有效性措施(MOEs),包括精確度、召回率和F分數。使用方差分析(ANOVA)和協方差矩陣對Hatzinger和Gertsman的新的和原始的MOEs進行了分析。這項研究的結果顯示,該算法對原始MOEs或新MOEs沒有明顯的影響,這可能是由于與Hatzinger和Gertsman相比,網絡化協作自主彈藥(NCAM)的傳播情況相似。該結果與目標分布標準差的減少即目標聚類呈負相關。這第二個結果更令人驚訝,因為更緊密的目標分布可能會導致更少的搜索區域,但NCAM繼續分布它們的位置,而不管確定的集群。

付費5元查看完整內容

美國海軍陸戰隊正在建設反水面作戰領域的能力,特別是在獲得地基反艦導彈(GBASM)及其相關發射平臺方面。研究為分析與這種新能力相關的部隊結構提供了一種方法。研究方法使用離散時間馬爾可夫模型對GBASM炮組和敵方水面艦艇之間的戰術級決斗進行建模。這些模型有足夠的復雜性來解決關鍵的部隊設計問題,并且對決斗的關鍵特征進行了參數化,以便進行強有力的敏感性分析。

在海軍導彈作戰中,重要的是確定所需的炮彈規模S,以使炮彈有足夠高的概率殺死敵艦。GBASM概念的獨特之處在于,與從水面艦艇上發射導彈相比,它能夠將這種炮彈分散到幾個平臺上,并以更適合特定戰術場景的方式進行發射。在這種情況下,如果有一個大小為K的禮花彈,并將該禮花彈分散到N個平臺上,那么每個平臺在特定的禮花彈中發射?枚導彈,這樣K × N = S。有了這個公式,就能夠分析平臺數量和每個平臺發射的導彈數量在這些配置的殺傷力和生存能力方面的權衡。這為成本-效益分析提供了基礎。

對GBASM炮臺與敵方水面艦艇發生接觸的情況進行模擬。從簡單的場景開始,然后逐漸復雜化。讓GBASM發射器與一艘敵方水面艦艇進行決斗。GBASM一方被稱為藍方,水面艦艇被稱為紅方。最初假定雙方都有足夠的導彈供應,并且交換的時間是有限的,因此可以把供應視為無限的。GBASM以彈丸為單位進行發射,每個彈丸至少包括一枚導彈。在藍方的炮擊之后,紅方的水面艦艇有機會進行還擊。

在所描述的環境中,假設藍方具有首發優勢。鑒于GBASM的引入在沿岸地區造成的不對稱情況,首發優勢的假設并不是不合理的。GBASM是移動的,有可能移動到難以探測的地方,只有在準備開火時才出來。GBASM的目標是保持不被紅方船只發現,直到它成功瞄準紅方船只。一旦紅方船只成為目標,GBASM系統就會開火并移動到一個新的位置。如果沒有關于GBASM移動的完美信息,紅方艦艇將持續處于不利地位。

此外,該模型捕捉到了紅方對藍方的炮擊進行防御措施的能力。這些防御性的反措施是用參數λ來說明的,這個參數是紅方根據泊松分布可以攔截的藍方導彈的平均數量。以這種方式對紅方采取反措施的能力進行建模,說明了隨著藍方導彈規模的增加,紅方采取反措施的能力也在減弱。同樣,也說明了紅方針對藍方分布式發射器的能力下降。紅方殺死藍方分布式平臺的能力用參數?表示,根據泊松分布,紅方在還擊中可以殺死藍方平臺的平均數量。這再次說明,隨著藍方平臺數量的增加,紅方瞄準和殺死藍方的效果有限。

在對該模型的分析中,遇到了幾個關鍵的發現。首先,最重要的是確定理想的炮擊規模S,以提供足夠高的殺死敵艦的概率。這不是一個簡單的 "越多越好 "的問題,因為炮擊規模有一個收益遞減點。正如人們所期望的那樣,還得出結論,增加平臺的數量K可以提高生存能力,從而提高GBASM炮臺的殺傷力。然而,改進的幅度對其他參數很敏感,當炮彈規模足夠大時,改進的幅度通常很小。

該研究的主要產出是創建的模型和對它們進行進一步分析的能力。本論文中任何地方使用的參數值都不是由具體的GBASM系統或潛在的敵方水面艦艇的能力來決定的。因此,結果應該被看作是對參數空間可能區域的探索的概括。這些模型提供了根據有關特定系統的能力進行具體分析的能力。

付費5元查看完整內容

美國海軍陸戰隊正在探索使用人機協作來控制前線部署環境中的無人駕駛航空系統(UAS),其任務范圍廣泛,包括情報、監視和偵察(ISR)、電子戰(EW)、通信中繼和動能殺傷。美國海軍陸戰隊設想使用未來的垂直起降平臺(VTOL)來支持混合戰爭任務并實現軍事優勢。對于美國海軍陸戰隊的混合戰爭應用,以實現任務優勢和戰爭主導權,美國海軍陸戰隊需要了解VTOL機組和無人機系統之間錯綜復雜的人機互動和關系,以獲得戰斗空間態勢感知,并有效地計劃和執行針對常規和不對稱威脅的旋轉翼行動。這項研究的重點是美國海軍陸戰隊在海洋環境中的打擊協調和偵察(SCAR)任務,以促進遠征基地先進作戰(EABO)在沿岸地區。有多種復雜的功能必須加以考慮和評估,以支持人機協作互動,提高任務的有效性:任務規劃、移動和滲透、區域偵察、偵察戰斗交接和過渡。

這份頂點報告探討了SCAR任務期間三個系統之間的人機協作:UAS、VTOL和地面控制站(GCS)。該研究從VTOL項目的文獻回顧開始,研究了美國海軍陸戰隊SCAR任務戰術和用于促進EABO的理論概念。此外,它還包括對自主性和自動化、人工智能和機器學習的研究。通過使用合作設計模型來探索這三個系統的人機協作互動和過程,文獻回顧探討了如何使用基于三個因素的相互依賴性分析(IA)框架來確定人類執行者和機器團隊成員之間的相互依賴性:可觀察性、可預測性和可指導性。

通過基于模型的系統工程(MBSE)工具,將SCAR任務的高級功能分解為分層次的任務和子任務,系統分析被用來支持聯合設計方法。根據Johnson(2014)的說法,合作設計方法研究了相互依賴的概念,并使用IA框架作為設計工具。IA框架捕捉了主要執行者和支持團隊成員之間的互動,以發展支持每個主要任務和分層子任務的所需能力,從而產生HMT要求。這份頂點報告分析了兩種選擇。第一個方案認為UAS是主要執行者,VTOL和GCS是輔助團隊成員。第二種方案認為VTOL是主要執行者,UAS和GCS是輔助團隊成員。基于這兩種選擇,IA框架評估了17個主要任務、33個分層子任務和85個執行SCAR任務的所需能力。

此外,研究發現需要一個強大的數字任務規劃系統,如升級后的海軍陸戰隊規劃和行動后系統(MPAAS),通過存儲以前的任務和經驗教訓的數據來促進機器學習。美國海軍陸戰隊將面臨無人機系統的處理能力和信息存儲方面的挑戰。應盡一切努力增加UAS的處理能力。必須實施一個有效的主要、備用、應急和緊急(PACE)通信計劃,以確保UAS、VTOL和GCS之間所有通信平臺的冗余。美國海軍陸戰隊必須實施支持信任、提供快速反饋和簡單操作的接口。

最后,為了準確評估VTOL、UAS和GCS之間的HMT要求,頂點報告促成了一個探索性實驗的發展,該實驗將在海軍研究生院(NPS)建模虛擬環境和模擬(MOVES)實驗室使用,以促進未來的研究。制定了操作要求和測量方法,以確定HMT要求的有效性。

這項頂點研究為在SCAR任務中執行VTOL/UAS混合行動的人機互動復雜性提供了明確的證據。該頂點研究確定了使用系統分析和協同設計作為一種有效的方法,通過IA框架促進人機協作需求的發展。此外,該研究確定了對復雜的自主性和技術準備程度的需求,這可能是目前還沒有的。頂點建議美國海軍陸戰隊繼續研究人機協作,并利用SCAR任務探索性實驗來進一步完善和研究VTOL/UAS的高級系統要求,以支持具有前沿部署的UAS的混合行動,重點是實現4級自主權。

付費5元查看完整內容
北京阿比特科技有限公司