這個頂點應用項目對海軍陸戰隊作戰測試與評估一(VMX-1)進行了檢查,以確定優化效率的方法,并確定中隊的額外測試能力。該中隊為 AH-1Z、CH-53K、F-35B、MV-22B 和 UH-1Y 飛機進行作戰測試與評估 (OT&E),并為海軍陸戰隊戰術與集成部下屬的許多其他項目進行測試與評估。該項目研究了中隊面臨的每項資源短缺問題,以確定影響中隊完成任務能力的根本問題。用于得出結論的數據包括評估進行 OT&E 的流程,以及分析最近完成的 MV-22 的 AN/APR-39D(V)2雷達預警接收器和 AH-1Z 的聯合空對地導彈項目。該項目建議改進作戰測試主管的培訓和職位任期,改進調度工具以改善中隊內部的溝通,并仔細檢查新出現的測試系統,以便將其納入簡略采購框架。
在訓練中,從演習文件中獲取背景信息可增強真實感。在真實世界行動中創建的文件必須為訓練演習而制作,這是一個耗時耗力的過程,產生的文件無法用于海軍陸戰隊的模擬演習。海軍陸戰隊正在制作 "實時、虛擬、建設性訓練環境"(LVC-TE),使分離的部隊能夠與模擬演習相結合。LVC-TE 包括演習設計工具,但不包括演習文件制作工具。本論文的重點是為直接空中支援中心(DASC)使用 FLAMES 自動仿真訓練器(FAST)進行的指揮與控制(C2)演習制作空中任務指令(ATO)。DASC 部隊無法獲得真實世界的 ATO 進行演習,這意味著 ATO 必須從檔案中提取或手工創建。存檔的 ATO 包括過時的飛機和彈藥,而手工輸入的 ATO 極易出錯。FAST 提供了上傳 ATO 的選項,如果文件正確,系統就會填充航空場景。本論文表明,可以設計和實施一種工具,以方便為任何空中 C2 演習創建 ATO 文件,FAST 可以正確攝取這些文件,從而加快場景生成。通過這一概念驗證,對擴展這一能力進行了初步調查,以簡化所有作戰功能的演習文件創建,并與 LVC-TE 的演習設計工具套件集成。
本論文的目標是為已知封閉道路網絡中的戰術車輛提供目的地預測。這些戰術車輛以輪式野戰炮兵部隊為模型。美海軍研究生院(NPS)的建模虛擬環境與仿真(MOVES)研究所在一個虛構的場景中建模并生成數據。該場景包括典型野戰炮兵部隊在部署環境中會遇到的各種地點和事件。軍事組織由兩個營組成一個團,每個營有四個炮兵連,每個炮兵連有 11 輛車。每個炮兵連有四輛發射車、四輛裝填車、兩輛支援車和一輛指揮控制(C2)車。生成的數據在團、營、炮兵連和車輛一級進行記錄。本研究以炮兵連的移動模式為中心。每個場景都被分解成較小的行程,其中只有一個先前地點和未來目的地。模型擬合中的預測變量描述了每個炮兵連的各種位置屬性。響應變量是每次行程的目的地位置。
本論文主要研究兩個問題。
1.機器學習模型能否準確預測戰術車輛的未來目的地?
2.在戰術應用中,什么是足夠的預測準確度?
本論文只能使用 MOVES 研究所生成的數據。因此,存在一些限制。第一個限制是數據缺乏測量或傳感器誤差。在實際作戰環境中收集完美的數據是不現實的。第二個限制是,生成數據的大小足以適合我們的模型。在新的作戰場景中,數據可能稀少或不可用。
為了預測這些戰術部隊的未來目的地,我們使用了兩種機器學習的監督技術:隨機森林和神經網絡。為了客觀地比較這兩種模型,我們得出了兩個標準來判斷目的地預測的成功與否。每個模型都為行程中每分鐘間隔內的每個地點擬合了一個概率。第一個標準是一半以上的正確地點分配概率超過 80%。第二個標準是,在行程的最后三分鐘內,模型分配給正確目的地的概率是否超過 80%。一個模型必須同時滿足這兩個標準才算成功。在驗證集的所有行程中,隨機森林的成功率為 38.9%,而神經網絡的成功率為 43.2%。我們使用這兩個標準考慮了真實世界的場景。每個行程被縮減到只有最初的五分鐘。在真實情況下,決策者必須在敵人完成行動之前決定行動。在這種情況下,決策者在做出決定前有五分鐘的時間窗口。隨機森林的預測準確率為 19.1%,而神經網絡的預測準確率為 33.9%。這是時間受限情況下預測準確率的上限。隨著誤差和噪聲的引入,預測準確率可能會降低。
本論文通過使用完美數據設定了目的地預測的上限。基于我們的論文,未來的研究領域如下:進一步研究預測建模、處理在不規則時間間隔內收集的帶有測量誤差的數據、使用真實世界數據建模以及多域建模。第一個領域是通過進一步的預測建模來提高預測精度。第二個領域是引入與現實生活中數據收集和匯總困難相似的誤差項。戰場傳感器并不完美,存在局限性。第三個方面是利用實戰部署和訓練中的真實數據建模。最后一個領域是將我們的研究推廣到其他作戰領域:海上、海面下和空中。運動輪廓和運動行為在這些領域中都同樣重要。戰術層面的模型可以為戰略層面的決策提供參考。
美國戰略陸軍條令強調在多域環境中擊敗反區域介入和空中拒止(A2AD)系統。這些防空系統對友軍構成重大威脅,嚴重限制了聯合任務部隊的空中能力。為此,陸軍試圖了解自主無人機蜂群的組成如何影響聯合特遣部隊縱深打擊任務的成功。目標是通過評估自主無人機蜂群的有效性來加強陸軍的作戰行動。利用虛擬戰斗空間模擬器3(VBS3),模擬了不同無人機蜂群組成的俄羅斯防空資產。我們的分析表明,在我們的備選方案中,動能、干擾和誘餌三種無人機類型比例相等的無人機蜂群組合表現最佳。本文旨在說明我們的方法和相關結果。
美國陸軍越來越重視與同行對手保持技術優勢(國會研究服務,2022年)。美國陸軍未來司令部(AFC)正在進行自主無人機群的研發。為了支持陸軍未來司令部和我們的主要利益相關者--系統增強型小型單位(SESU),我們評估了各種自主無人機群的組成。我們的主要評估指標是無人機群在敵后執行后續縱深打擊任務(兩架F-22)的能力。為此,我們使用Virtual Battlespace 3軟件在現代戰場環境中對敵方防空資產進行了一系列隨機模擬。
在整個項目過程中,我們采用了系統設計流程來完成問題定義、解決方案設計和決策制定(Parnell和Driscoll,2010年)。解決方案實施階段不在本工作范圍之內。
為了解問題的范圍,通過一系列面對面訪談和針對每個利益相關者的調查進行了利益相關者分析。這些利益相關者包括項目發起人(MITRE)和陸軍未來司令部,以及其專注于增強無人機蜂群技術的下屬單位(SESU)。利益相關者分析表明,工作重點應放在不同的蜂群組成上,并評估其擊敗敵方防空資產的有效性--有效性由機會之窗(WOO,即實現后續深度打擊資產)標準來衡量。根據利益相關者調查,將敵方防空資產定義為任何車載防空武器(如俄羅斯的SA-19 "格里森")。
經利益相關方同意,制定了如下問題陳述和范圍:
問題陳述: 為了提高作戰效率,分析無人機群的組成對打開針對敵方防空系統的機會之窗(WOO)的影響。
問題范圍: 將模擬無人機群執行任務,打擊俄羅斯摩托化步槍旅理論上適當的防空資產。這些任務將利用具有以下能力的無人機群:誘餌、干擾和動能。
基線替代方案是由120架無人機組成的蜂群,其組成由利益相關方選定。這些無人機分10波發射,每波12架。每個波次由41%的動能無人機、17%的干擾無人機和42%的誘餌無人機組成。除了該基線備選方案外,我們還利用茲威基形態箱開發了另外12種備選方案,其規模(120、60、36)和蜂群組成(動能、誘餌或干擾的比例;或三者的優先級相同)各不相同。
除了利益相關方制定的任務成功/失敗標準(第2.1節)外,我們還利用利益相關方分析和對利益相關方進行的模擬演習的訪問來制定評估標準。這些評估標準衡量了針對理論上旅級規模的俄羅斯防空部隊的成功任務的有效性(圖2)。為了計算這些標準的權重,我們使用了等級加權法。然后,我們使用指數值建模來制定價值曲線。
根據陸軍多域作戰(MDO)條令,從戰術平臺生成及時、準確和可利用的地理空間產品是應對威脅的關鍵能力。美國陸軍工程兵部隊、工程師研究與發展中心、地理空間研究實驗室(ERDC-GRL)正在進行6.2研究,以促進從戰術傳感器創建三維(3D)產品,包括全動態視頻、取景相機和集成在小型無人機系統(sUAS)上的傳感器。本報告描述了ERDCGRL的處理管道,包括定制代碼、開源軟件和商業現成的(COTS)工具,對戰術圖像進行地理空間校正,以獲得權威的基礎來源。根據美國國家地理空間情報局提供的地基數據,處理了來自不同傳感器和地點的四個數據集。結果顯示,戰術無人機數據與參考地基的核心登記從0.34米到0.75米不等,超過了提交給陸軍未來司令部(AFC)和陸軍采購、后勤和技術助理安全局(ASA(ALT))的簡報中描述的1米的精度目標。討論總結了結果,描述了解決處理差距的步驟,并考慮了未來優化管道的工作,以便為特定的終端用戶設備和戰術應用生成地理空間數據。
圖3. ERDC-GRL的自動GCP處理管道。輸入數據為JPEG格式的FMV/Drone圖像、參考/地基圖像和參考/地基高程。藍色方框代表地理空間數據,而綠色方框是處理和分析步驟。
這項研究的目的是開發和評估一個通用本體和概念數據模型(CDM),該模型是為支持海軍領域而創建的,適用于海軍陸戰隊系統司令部(MCSC)和使用《2030年部隊設計》(Congressional Research Service Insight, 2022)作為總體指導的陸地領域。通用本體和CDM的開發是探索性研究的一部分,它考慮了系統數據實體、屬性和關系。這項研究工作確定了一個通用本體,并定義了一個CDM,從多個角度代表感興趣的系統,并允許從整體上探索系統。這是實現基于模型的系統工程(MBSE)環境的基礎。一個簡明的本體允許系統實體被還原到其原子水平,然后通過建立CDM(即數據模式)允許定義系統的虛擬表示。本體和CDM確定了必須開發接口以交換數據的領域,并確定組織、建模語言、表現框架和工具之間的數據邊界。研究方法考慮了設計一個通用本體的重要性,該本體全面地代表了整個生命周期的系統,分析了本體內定義的實體之間的關系,考慮了本體作為權威真理來源的基礎,最后,設計了一個建模計劃,描述了從基于文檔的系統工程過渡到真正基于MBSE的土地領域的建議路徑。總而言之,本體論和CDM的開發是為了定義整個系統在其生命周期中的實體和關系。這些產品利用代表美國海軍陸戰隊陸域的《2030部隊設計》的任務線進行了驗證。利用這個本體和CDM以及衍生的建模計劃,MCSC可以開始從基于文件的系統工程過渡到真正的基于MBSE的陸地領域。
NAVAIR任務工程和分析部(MEAD,AIR4.0M)每年進行一次工程、參與和任務級建模和分析,以支持項目和技術投資決策。Minotaur任務系統正在被海軍收購,以整合到P-8A海神號海上巡邏機和MH-60R海鷹海上直升機上。 Minotaur將"海神"和"海鷹"的傳感器整合到一個全面、共享和聯網的畫面中。Minotaur在速度、準確性和內存容量方面比傳統的、主要是手工的數據融合系統有了明顯的提高。然而, Minotaur對任務有效性的影響還不清楚,因為與傳統的動能效應器(即武器)不同,在現有的AIR-4.0M任務級模擬中,使用海軍模擬系統(NSS)和/或模擬、集成和建模高級框架(AFSIM),無法輕易捕捉到 "更好的 "數據融合對機組人員態勢感知(SA)的影響。
基本的假設是,像Minotaur這樣的系統通過提高SA的準確性來增加價值,同時減少分類和識別感興趣的聯系人的時間。這種改進預計將對水面目標定位、自我保護和協調反潛戰(ASW)行動產生重大影響。由于 Minotaur特別是不融合/協調反潛戰傳感器,它在那里的價值較小,但仍可能增加一些價值,有待確定。本研究中開發的建模和分析方法可以應用于這種調查
本研究的首要目標是為AIR-4.0M提供洞察力,使其了解如何在任務級分析中描述 "Minotaur",包括潛在功能、指標、其當前模型的充分性,以及是否可以或應該使用其他模型或方法的指示。
研究人員使用了一種基于文獻回顧的邏輯方法,與融合、海神和海鷹社區的主題專家進行討論,并對各種建模技術進行調查。由于贊助商使用NSS和AFSIM,所以特別強調了這些建模工具。
從表面上看,研究目標并沒有什么不尋常之處。許多決策者需要分析工具和程序來協助投資決策。不過,研究結果比預期的要更廣泛,范圍更廣:
在解決研究目的中指出的建模挑戰時,很明顯,NSS提供了一個 "足夠好 "的解決方案,只需對報告模型做一些補充就可以快速實施。這是通過建立一個新的 "傳感器 "來實現的,它包括檢測、分類和識別的能力,反映了融合系統如何攝取不同的傳感器并創造更大的態勢感知。因為對這個 "傳感器 "的性能進行參數化是一個簡單的問題,基線方案的許多偏離將產生一個查找表,供分析人員與演習/實驗結果進行比較。例如,如果一項實驗表明,Minotaur融合在300納米范圍內將接觸識別率提高到95%(這些數字是名義上的),分析人員可以使用相當于該性能的參數化偏移,將該偏移的操作指標與Minotaur基線進行比較,從而能夠確定潛在的附加值。
不過,NSS的使用并非沒有顧慮。NSS通過相同傳感器的關聯來實現 "融合",而不是像Minotaur那樣通過兩個或更多獨立和不同傳感器的關聯來進行。因此,假設一個具有上述建模質量的 "傳感器 "代表融合,有時可能是錯誤的,例如,如果某個感興趣的接觸點沒有信號發射,沒有廣播自動識別系統(AIS),或者不在一個主動傳感器的范圍內。所以,NSS的建模方法并非100%完美。同樣,這就是為什么研究人員建議將概率值參數化,這樣分析人員就可以在他們的分析中根據需要進行詳細分析。
研究人員認為,AFSIM提供了替代性的建模方法,但與NSS相比,它的基礎水平更高。NSS在核心軟件中預先開發了一些融合過程的功能表示,而AFSIM有一個更開放的框架,提供了一個創建更多系統表示的機會。然而,這意味著對本研究感興趣的過程進行建模需要更詳細的設計和實施工作,同時還要有必要的驗證和確認程序。這可能是一個更苛刻的(和昂貴的)開發水平,而不是贊助商所能容納的。由于使用AFSIM的組織眾多,如果其他組織已經完成了數據融合業務價值研究所需的一些能力的建模,并愿意分享他們的軟件,那么積極參加AFSIM用戶組可以減輕定制開發的成本。
最后,研究人員指出,隨著關于數據和知識表示的新想法在工業界和最終在政府中的爆發,融合領域即將爆發。僅僅融合兩個傳感器曾經是相當具有挑戰性的。現在,新的攝入和分類程序意味著智能算法可以融合幾十個不同的來源來講述一個故事。一位從事融合工作35年的融合主題專家提醒研究人員,"真正的融合實際上仍然只發生在頭腦中"。
研究人員認為,理解不僅是融合的價值,而且利用由大數據、云計算和機器學習提供的日益增長的數據雪崩(很快可用于所有平臺和戰術邊緣)至關重要。圍繞這些新興能力的炒作是巨大的,所以仔細考慮投資是不為過的。因此,研究小組建議對以下領域的建模和分析進行研究:
美國海軍陸戰隊(USMC)正在進行組織和行動上的變革,以適應當今世界新的作戰要求。《美國海軍陸戰隊部隊設計2030》描述了新的概念,如遠征先進基地作戰(EABO),重點是偵察/反偵察和海上攔截。為了檢查和評估新的作戰概念、部隊結構、武器系統、戰術、技術和程序,以及其他對這些行動的調整,美國海軍陸戰隊需要能夠代表與這些預期變化相關的全部變化的模型和模擬。21世紀聯合武器分析工具(COMBATXXI)是由美國海軍陸戰隊和美國陸軍共同開發的戰斗模擬,用于支持建模和分析。在過去的20年里,COMBATXXI擁有研究這些新概念所需的許多基本能力,但目前在一些關鍵領域缺乏真實的表現,如研究海上攔截的新角色的關鍵方面所需的海上水面作戰人員。這種表現需要平臺的識別、瞄準和評估損害,從而確定其繼續執行作戰任務的能力。本研究的目的是檢查與EABO有關的新作戰概念,并利用COMBATXXI模擬確定相關的建模方法。該研究描述了一種建模方法,該方法在COMBATXXI中的初步實施,以及對該模型在支持與美國海軍陸戰隊新作戰概念相關的情景和研究方面的效用的初步評估。研究最后提出了后續工作的建議,以進一步改進或運用所開發的能力。
美海軍陸戰隊作戰發展司令部(MCCDC)作戰分析局(OAD)運行海軍陸戰隊研究系統(MCSS),該系統每季度向整個海軍陸戰隊征求研究提名。每年都有幾項研究需要用高分辨率的戰斗模擬進行建模。21世紀聯合武器分析工具(COMBATXXI)是一個高分辨率的分析性戰斗模擬,自1998年以來,由OAD和美國陸軍白沙導彈發射場研究和分析中心(TRAC-WSMR)共同開發。聯合武器模擬代表了從戰術層面上的單個實體(即車輛、飛機、步兵、艦艇、登陸艇等),直至加強營級單位的行動。
COMBATXXI提供了跨越多個領域的建模能力,包括兩棲作戰、聯合武器作戰和綜合防空。該模擬可用于進行詳細的傳感器到射手的分析,包括直接和間接射擊以及關鍵的指揮、控制、通信、計算機、情報、監視和偵察(C4ISR)的相互作用。對多領域作戰平臺的詳細分析和聯合武器作戰是COMBATXXI的主要功能。這種能力已經由OAD在兩棲戰車(ACV)備選方案分析(AoA)、殺傷人員地雷/集束彈藥(APL/CM)研究、有爭議環境中的兩棲攻擊研究、未來垂直升降能力集3 AoA、ACV中炮能力研究和先進偵察車(ARV)AoA中進行了展示。
目前,OAD正在支持2030年部隊設計(2020年海軍陸戰隊司令部)的幾個方面。帶有概念性戰術、技術和程序(TTPs)的新場景正在被用來進行各種分析。需要包含各種威脅和戰術情況的復雜行為。
海軍研究生院(NPS)建模、虛擬環境和模擬(MOVES)研究所擁有獨特的技術專長,以支持和擴展OAD對COMBATXXI的分析使用。多年來,MOVES開發了創新工具,極大地提高了分析人員使用COMBATXXI模擬的效率和效果。國家核安全局MOVES研究所的任務是通過開發和維護所需的功能,提供技術支持以進行OAD研究和分析技術培訓,提高OAD更充分地運用COMBATXXI的分析能力。MOVES支持OA開發、維護和增強工具和能力,如Behavior Studio、Workbench、Observer/Sensor工具、實體和單位行為,以及Monterey Extensions軟件包。OAD提供COMBATXXI模擬、現有行為、數據、測試方案和文件,作為政府提供的信息(GFI)供NPS使用。分配任務的場景和相關數據庫可以達到營級登陸隊(BLT)或海軍陸戰隊遠征部隊(MEF)的水平,并且可以包括所有海軍陸戰隊空地特遣部隊(MAGTF)的能力(例如,指揮部(CE)、地面戰斗部(GCE)、空中戰斗部(ACE)和后勤戰斗部(LCE))。
2030年部隊設計包括新的組織,如海上瀕海團(MLR)和新的作戰概念,如遠征先進基地作戰(EABO),重點是偵察/反偵察和海上攔截。本項工作的目的是研究與EABO有關的新概念,并利用COMBATXXI模擬確定相關建模方法。該研究描述了一種建模方法,該方法在COMBATXXI中的初步實施,以及對該方法在支持與美國海軍陸戰隊新作戰概念相關的情景和研究方面的效用的初步評估。
美國海軍陸戰隊(USMC)正在進行組織和行動上的變革,以適應當今世界新的作戰要求。美國海軍陸戰隊部隊設計2030描述了新的概念,如遠征先進基地作戰(EABO),需要對部隊結構、任務和作戰能力進行審查。為了檢查和評估新的作戰概念、部隊結構、武器系統、戰術、技術和程序,以及其他適應這種行動的措施,美國海軍陸戰隊需要能夠代表與這些預期變化有關的全部變化的模型和模擬。在過去的20年里,COMBATXXI擁有許多研究這些新概念所需的基本表現,但在一些關鍵領域缺乏現實的表現,例如在研究海上攔截的新作用的關鍵方面所需的海上水面戰斗人員的表現。這種表述需要對這些平臺進行識別、瞄準和評估損害,以確定其繼續執行作戰任務的能力。需要開展工作,審查與EABO有關的新概念,并利用COMBATXXI模擬確定相關的建模方法。
為滿足這一需求,本研究對EABO概念進行了研究,并描述了一個能捕捉到這些概念的關鍵方面的名義情景。本研究審查了當前COMBATXXI的能力,以確定需要哪些額外的或修改的能力來解決新概念。該研究描述了一種建模方法(COMBATXXI需要的能力),在COMBATXXI中的初步實施,以及對該模型在支持與美國海軍陸戰隊新作戰概念相關的情景和研究方面的效用的初步評估。研究的結論是對后續工作的建議,以進一步改進或運用所開發的能力。
在贊助商的指導下,如果技術上可行,開發的新功能應在不修改現有Java代碼的情況下實施。NPS MOVES必須提前通知OAD研究主辦方并獲得批準,任何需要新代碼或修改COMBATXXI核心模型現有代碼的開發工作。這種通知使 OAD 有機會與 TRAC-WSMR 和 COMBATXXI 配置咨詢委員會協調潛在的代碼修改。
第一章是本研究的介紹,提供了關于工作基礎、研究范圍和目標、問題陳述和一般技術方法的背景信息。第二章概述了EABO,作為研究的概念基礎,并描述了一個名義上的情景,目的是確定必須達到的功能能力,以代表感興趣的操作條件,如海上攔截(如船舶代表,瞄準船舶能力,評估船舶能力的損害,并根據所受損害確定持續的任務有效性)。第三章展示了如何在COMBATXXI中實現表示概念場景所需的能力。第四章介紹了在COMBATXXI中執行概念情景的例子,并確定了研究變體的樣本,以檢驗新增能力的應用。第五章提出了研究結論和后續工作的建議。附錄A是報告中使用的術語和縮略語的詞匯表。附錄B提供了用于啟動COMBATXXI中的分層任務網絡(HTN)進程的python腳本清單,以執行概念情景中的實體行為。
為了跟上美國防部(DOD)人工智能(Al)戰略的步伐,美國陸軍在2018年啟動了人工智能集成中心(Al2C)。他們的任務是--與美國各地的公司和大學的人工智能社區溝通,目的是通過人工智能的整合來改善和提高軍隊的能力。
這個頂點項目盡可能地分析了當前美陸軍部(DA)對人工智能的要求狀況,以及它們對人類系統集成(HSI)的包含。該小組審查了發布在獎勵管理系統(SAM)網站上的人工智能合同機會和適用的文件,包括績效工作聲明、工作聲明或目標聲明。第一步是確定這些合同機會中包含的要求是否符合人工智能的定義,即計算機系統有能力執行通常需要人類智慧的任務。如果需求符合人工智能的這一定義,那么分析工作就會繼續進行,并側重于納入HSI,以確保為人類(即操作員、士兵、用戶等)提供便利。研究小組還采訪了主題專家(SMEs),以深入了解軍隊開發和獲取人工智能需求的過程。
在2003年至2022年期間發布到SAM的機會中,只有16%(238個中的40個)在開發過程中足夠成熟,可以考慮進行評估。在這40個被認為足夠成熟的采購開發過程中,只有16個發布的信息包含了相關的文件,可以根據團隊既定的人工智能和HSI標準進行評估。從那里,只有6個帖子符合AL的定義,4個被寬泛地判斷為包括一些對HSI或人為因素的參考。該小組的綜合評估確定,陸軍的人工智能指導還處于起步階段,需要進一步發展和完善。評價還強調,盡管國防部和陸軍指導將HSI納入所有要求,但仍然缺乏對HSI的納入。
這個頂點項目建議,所提出的結果和結論應被用來進一步制定人工智能需求的采購指南,并特別注重納入HSI。我們還建議,未來的研究應納入機密需求以及由其他交易機構通過財團管理的需求。
美國海軍陸戰隊正在建設反水面作戰領域的能力,特別是在獲得地基反艦導彈(GBASM)及其相關發射平臺方面。研究為分析與這種新能力相關的部隊結構提供了一種方法。研究方法使用離散時間馬爾可夫模型對GBASM炮組和敵方水面艦艇之間的戰術級決斗進行建模。這些模型有足夠的復雜性來解決關鍵的部隊設計問題,并且對決斗的關鍵特征進行了參數化,以便進行強有力的敏感性分析。
在海軍導彈作戰中,重要的是確定所需的炮彈規模S,以使炮彈有足夠高的概率殺死敵艦。GBASM概念的獨特之處在于,與從水面艦艇上發射導彈相比,它能夠將這種炮彈分散到幾個平臺上,并以更適合特定戰術場景的方式進行發射。在這種情況下,如果有一個大小為K的禮花彈,并將該禮花彈分散到N個平臺上,那么每個平臺在特定的禮花彈中發射?枚導彈,這樣K × N = S。有了這個公式,就能夠分析平臺數量和每個平臺發射的導彈數量在這些配置的殺傷力和生存能力方面的權衡。這為成本-效益分析提供了基礎。
對GBASM炮臺與敵方水面艦艇發生接觸的情況進行模擬。從簡單的場景開始,然后逐漸復雜化。讓GBASM發射器與一艘敵方水面艦艇進行決斗。GBASM一方被稱為藍方,水面艦艇被稱為紅方。最初假定雙方都有足夠的導彈供應,并且交換的時間是有限的,因此可以把供應視為無限的。GBASM以彈丸為單位進行發射,每個彈丸至少包括一枚導彈。在藍方的炮擊之后,紅方的水面艦艇有機會進行還擊。
在所描述的環境中,假設藍方具有首發優勢。鑒于GBASM的引入在沿岸地區造成的不對稱情況,首發優勢的假設并不是不合理的。GBASM是移動的,有可能移動到難以探測的地方,只有在準備開火時才出來。GBASM的目標是保持不被紅方船只發現,直到它成功瞄準紅方船只。一旦紅方船只成為目標,GBASM系統就會開火并移動到一個新的位置。如果沒有關于GBASM移動的完美信息,紅方艦艇將持續處于不利地位。
此外,該模型捕捉到了紅方對藍方的炮擊進行防御措施的能力。這些防御性的反措施是用參數λ來說明的,這個參數是紅方根據泊松分布可以攔截的藍方導彈的平均數量。以這種方式對紅方采取反措施的能力進行建模,說明了隨著藍方導彈規模的增加,紅方采取反措施的能力也在減弱。同樣,也說明了紅方針對藍方分布式發射器的能力下降。紅方殺死藍方分布式平臺的能力用參數?表示,根據泊松分布,紅方在還擊中可以殺死藍方平臺的平均數量。這再次說明,隨著藍方平臺數量的增加,紅方瞄準和殺死藍方的效果有限。
在對該模型的分析中,遇到了幾個關鍵的發現。首先,最重要的是確定理想的炮擊規模S,以提供足夠高的殺死敵艦的概率。這不是一個簡單的 "越多越好 "的問題,因為炮擊規模有一個收益遞減點。正如人們所期望的那樣,還得出結論,增加平臺的數量K可以提高生存能力,從而提高GBASM炮臺的殺傷力。然而,改進的幅度對其他參數很敏感,當炮彈規模足夠大時,改進的幅度通常很小。
該研究的主要產出是創建的模型和對它們進行進一步分析的能力。本論文中任何地方使用的參數值都不是由具體的GBASM系統或潛在的敵方水面艦艇的能力來決定的。因此,結果應該被看作是對參數空間可能區域的探索的概括。這些模型提供了根據有關特定系統的能力進行具體分析的能力。