在訓練中,從演習文件中獲取背景信息可增強真實感。在真實世界行動中創建的文件必須為訓練演習而制作,這是一個耗時耗力的過程,產生的文件無法用于海軍陸戰隊的模擬演習。海軍陸戰隊正在制作 "實時、虛擬、建設性訓練環境"(LVC-TE),使分離的部隊能夠與模擬演習相結合。LVC-TE 包括演習設計工具,但不包括演習文件制作工具。本論文的重點是為直接空中支援中心(DASC)使用 FLAMES 自動仿真訓練器(FAST)進行的指揮與控制(C2)演習制作空中任務指令(ATO)。DASC 部隊無法獲得真實世界的 ATO 進行演習,這意味著 ATO 必須從檔案中提取或手工創建。存檔的 ATO 包括過時的飛機和彈藥,而手工輸入的 ATO 極易出錯。FAST 提供了上傳 ATO 的選項,如果文件正確,系統就會填充航空場景。本論文表明,可以設計和實施一種工具,以方便為任何空中 C2 演習創建 ATO 文件,FAST 可以正確攝取這些文件,從而加快場景生成。通過這一概念驗證,對擴展這一能力進行了初步調查,以簡化所有作戰功能的演習文件創建,并與 LVC-TE 的演習設計工具套件集成。
隨著必須考慮的大規模作戰行動環境的廣泛性,美國陸軍網絡作戰的重要性也在不斷增加。傳統上,網絡作戰支持被視為一種戰略資產。美國陸軍網絡司令部(ARCYBER)認識到戰術指揮官需要利用網絡效應,并發布了最新政策,允許戰術指揮官提交網絡支持請求。由于網絡目標的影響深遠,而網絡支持資源的能力有限,因此有效處理這些請求非常重要。效率是衡量有效性的主要標準,體現為處理請求的及時性。計算建模提供了一種在幾分鐘內生成和處理超過一百萬個請求的途徑,同時還能比較流程的不同變體,而不是等待在現場吸取經驗教訓。本文創建了一個仿真模型來表示這一請求流程,同時在支持團隊的熟練程度和學習行為中加入隨機變化,然后通過設計的實驗進行結構化測試,以深入了解流程的性能。請求服務時間、到達率、起始熟練程度和學習曲線對整體效率起著重要作用。建議在收集到更多數據后進行進一步實驗。此方法為類似研究中的人類行為效果建模奠定了基礎。
這個頂點應用項目對海軍陸戰隊作戰測試與評估一(VMX-1)進行了檢查,以確定優化效率的方法,并確定中隊的額外測試能力。該中隊為 AH-1Z、CH-53K、F-35B、MV-22B 和 UH-1Y 飛機進行作戰測試與評估 (OT&E),并為海軍陸戰隊戰術與集成部下屬的許多其他項目進行測試與評估。該項目研究了中隊面臨的每項資源短缺問題,以確定影響中隊完成任務能力的根本問題。用于得出結論的數據包括評估進行 OT&E 的流程,以及分析最近完成的 MV-22 的 AN/APR-39D(V)2雷達預警接收器和 AH-1Z 的聯合空對地導彈項目。該項目建議改進作戰測試主管的培訓和職位任期,改進調度工具以改善中隊內部的溝通,并仔細檢查新出現的測試系統,以便將其納入簡略采購框架。
軍事決策過程(MDMP)包括分析地形以確保任務成功的關鍵任務。然而,傳統的地形分析方法,如二維(2D)模擬地圖、PowerPoint 演示文稿和任務式指揮系統,資源密集、耗時長,而且會使決策者無所適從。因此,本研究側重于使用移動頭戴式增強現實(AR)顯示技術進行三維(3D)地形可視化,以應對這些挑戰。AR 技術可讓用戶觀察到疊加在物理環境上的虛擬物體,從而增強身臨其境的體驗。該工具允許用戶查看和操作三維地形,添加軍事資源的表示,檢查由此產生的配置,并參與 MDMP。可用性研究評估了界面的有效性、效率和用戶滿意度,重點是三維可視化任務、衍生地形信息提取以及在有爭議的潮濕空隙穿越場景中的部隊部署。結果表明,AR 地形可視化原型為決策者提供了更全面、更準確的信息,使任務規劃和執行取得了成功。這項研究凸顯了三維地形可視化和 AR 技術在改進 MDMP、讓決策者更好地了解環境并做出更明智決策方面的潛力。
本研究側重于利用增強現實(AR)技術來支持軍事決策過程(MDMP),這是任務規劃的一個重要方面。該工具可使用戶與描述地形的本地三維(3D)數據集進行交互,并允許使用一套 3D工具。因此,該工具具有增強決策過程和提高 MDMP 會議效率的潛力。
傳統上,美國陸軍在規劃任務時依賴于二維(2D)圖形信息。然而,獲取更詳細的地形信息需要大量的時間和資源,例如創建額外的二維圖形表示法。相比之下,如果地形已被捕獲并表示為三維數據集,工作人員就能獲得所有必要信息,從而參與 MDMP 并做出更明智的決策。
論文研究包括設計和開發一種增強現實(AR)可視化工具,該工具可與三維虛擬地形一起操作,并支持 MDMP,尤其強調濕間隙穿越(WGC)的任務規劃。本論文旨在通過提供虛擬地形的精確數據、允許使用三維工具和更好地做出決策,改善 MDMP 期間的人員協作。此外,這項研究還有助于理解在 MDMP 中促進小團隊合作所需的技術前提條件。
技術進步往往會超越其采用和融入現有系統和流程的速度,這是一種常見現象。例如,在軍事任務中使用 AR 和虛擬現實(VR)技術進行信息共享,可以顯著改善復雜多變行動的規劃和執行。然而,將這些技術納入現有的任務式指揮系統和程序可能具有挑戰性且耗時較長,這主要是由于軍事行動對安全性和可靠性的要求。此外,用戶可能會抵制引入他們不熟悉的新解決方案和技術。因此,盡管信息共享技術進展迅速,但其融入軍事部門的速度卻慢得多。因此,復雜多變的軍事行動仍在使用過時的協議進行規劃和執行,任務式指揮系統長期以來也只是略有改進。
美國陸軍在 MDMP 期間使用各種方法提取信息和分析地形。主要是陸軍的每個作戰職能部門使用二維地圖提取地形信息;參謀部門通過情報地形科請求獲得更詳細的信息。然后,參謀部門將從二維地圖上收集的信息和情報科提供的信息制作成 PowerPoint 演示文稿。指揮官利用這套演示文稿做出最終決定。然而,由于二維地圖的固有局限性及其表現形式(在 PowerPoint 幻燈片中展示靜態二維地圖),參謀部無法始終從地形中提取衍生信息,從而做出明智的決策。如果能以本地三維數據格式顯示地形,并使用一系列合適的三維工具,工作人員就能從地形中提取衍生信息,加強協作,并更好地理解共同行動圖(COP)。
增強現實技術在軍事領域并不新鮮,但在 MDMP 期間尚未得到廣泛應用。通過在 MDMP 期間使用 AR 可視化工具,工作人員可以獲得以前無法用于工作和協作的系統功能。通過 AR 顯示三維虛擬地形并與之互動,每個 WWF 都可以使用簡單的手勢在地形周圍導航,操作這些數據集,操縱和放大縮小地形,并提取決策所需的衍生信息。因此,WWF 可以通過對地形具體情況的透徹了解來證實他們的決策,并更好地闡明他們向指揮官推薦特定行動方案的原因。此外,因誤解二維數據集而可能產生的錯誤也會減少,甚至消除。
關注 WGC 是部署 AR 技術和使用 3D 數據表示的沃土,這是有充分理由的。對于美國陸軍人員來說,WGC 是最具挑戰性的聯合武器任務之一;由于需要投入大量資源和人力資本,這類任務的規劃非常復雜(美國陸軍聯合武器中心,2019 年)。美國陸軍中的六個 WFF 必須緊密配合,以確保 WGC 的安全進行。在 MDMP 開始時,美國陸軍的每個 WFF 都要聽取情報部門關于地形分析的簡報;這一階段稱為戰場情報準備(IPB)。IPB 代表了對部隊行動區(AO)內地形的高層次審視,并提供了有關地形預期的歷史數據(陸軍部總部,2019 年);他們的大部分決策都是基于二維地圖做出的。進行 IPB 后,WFF 根據情報科提供的信息制定行動方案 (COA)。然而,依賴二維地圖有許多固有的局限性。例如,無法從任何給定點查看地形(數據集沒有三維記錄),因此缺少富有成效的 MDMP 所需的豐富地形信息。因此,使用卓越的數據表示,最大限度地減少出錯的可能性,并投入時間有效地研究替代方案和決策,有可能為此類復雜的軍事行動帶來急需的改進和戰略優勢。
本論文探討以下研究問題:
1.有可能為聯合武器 MDMP 提供最有效支持的技術框架是什么?
2.AR 支持的 MDMP 工具能否通過提供有關地形分析的衍生信息來增強作戰職能部門對地形的理解?
3.AR 支持的 MDMP 工具能否有效協助資源管理?
4.AR 支持的 MDMP 工具能否有效協助軍事參謀人員在聯合作戰場景中開展協作?
本論文僅限于開發一種 AR 可視化工具和虛擬環境,以支持 "濕間隙穿越 "和提取 MDMP 期間每個 WWF 所需的地形衍生信息。此外,同一工具還可實現軍事參謀部門之間的人員協作和信息交流。
用于解決所有研究問題的方法包括以下步驟:
1.文獻綜述:進行文獻綜述,提供論文中使用的基本構造的背景信息。
2.任務分析:對當前開展 MDMP 的實踐進行分析,以跨越濕間隙。這包括但不限于詳細分析行動方案制定過程中不同作戰功能之間的報告和互動、當前地形可視化實踐以及團隊協作。
3.設計 AR 可視化工具: 為工具和用戶界面設計支持系統架構。此外,選擇一套支持用戶任務所需的三維對象和地形。
4.可用性研究:開展可用性研究,重點關注支持 AR 的 MDMP 工具的功能和性能。
5.數據分析:分析在可用性研究中收集的綜合數據集。
6.得出結論并提出未來工作建議。
第一章:導言。本章介紹研究空間的最關鍵要素:領域、問題、研究問題、范圍以及用于解決所有研究問題的方法。
第二章:背景和文獻綜述。本章討論美國陸軍如何開展 ADM 和 MDMP 以規劃軍事行動。本章還討論了 VR 和 AR 過去和當前的使用情況,以及在 MDMP 過程中軍事人員合作時 AR 的潛在用途。
第三章:任務分析: 當前 MDMP 實踐。本章分析了當前陸軍參謀人員在 MDMP 期間分析地形時使用的方法和工具,以及如何向指揮官推薦 COA。此外,本章還討論了向指揮官提供 2D 信息時存在的知識差距。
第四章:原型系統設計與實施。本章討論了 AR 可視化工具、系統架構、用戶界面和模擬環境的設計與開發。文中還描述了 WGC 場景和為可用性研究所需的虛擬環境而構建的 3D 模型。
第五章: 可用性研究。本章討論了使用 AR 可視化工具進行可用性研究的方法,包括制定完整的機構審查委員會文件。此外,文中還討論了虛擬環境、技術要求以及在可用性研究中收集的客觀和主觀數據集。最后,本章分析了可用性研究的結果。
第六章:結論和未來工作。本章概述了研究的要點,并對今后的工作提出了建議。
本論文的目標是為已知封閉道路網絡中的戰術車輛提供目的地預測。這些戰術車輛以輪式野戰炮兵部隊為模型。美海軍研究生院(NPS)的建模虛擬環境與仿真(MOVES)研究所在一個虛構的場景中建模并生成數據。該場景包括典型野戰炮兵部隊在部署環境中會遇到的各種地點和事件。軍事組織由兩個營組成一個團,每個營有四個炮兵連,每個炮兵連有 11 輛車。每個炮兵連有四輛發射車、四輛裝填車、兩輛支援車和一輛指揮控制(C2)車。生成的數據在團、營、炮兵連和車輛一級進行記錄。本研究以炮兵連的移動模式為中心。每個場景都被分解成較小的行程,其中只有一個先前地點和未來目的地。模型擬合中的預測變量描述了每個炮兵連的各種位置屬性。響應變量是每次行程的目的地位置。
本論文主要研究兩個問題。
1.機器學習模型能否準確預測戰術車輛的未來目的地?
2.在戰術應用中,什么是足夠的預測準確度?
本論文只能使用 MOVES 研究所生成的數據。因此,存在一些限制。第一個限制是數據缺乏測量或傳感器誤差。在實際作戰環境中收集完美的數據是不現實的。第二個限制是,生成數據的大小足以適合我們的模型。在新的作戰場景中,數據可能稀少或不可用。
為了預測這些戰術部隊的未來目的地,我們使用了兩種機器學習的監督技術:隨機森林和神經網絡。為了客觀地比較這兩種模型,我們得出了兩個標準來判斷目的地預測的成功與否。每個模型都為行程中每分鐘間隔內的每個地點擬合了一個概率。第一個標準是一半以上的正確地點分配概率超過 80%。第二個標準是,在行程的最后三分鐘內,模型分配給正確目的地的概率是否超過 80%。一個模型必須同時滿足這兩個標準才算成功。在驗證集的所有行程中,隨機森林的成功率為 38.9%,而神經網絡的成功率為 43.2%。我們使用這兩個標準考慮了真實世界的場景。每個行程被縮減到只有最初的五分鐘。在真實情況下,決策者必須在敵人完成行動之前決定行動。在這種情況下,決策者在做出決定前有五分鐘的時間窗口。隨機森林的預測準確率為 19.1%,而神經網絡的預測準確率為 33.9%。這是時間受限情況下預測準確率的上限。隨著誤差和噪聲的引入,預測準確率可能會降低。
本論文通過使用完美數據設定了目的地預測的上限。基于我們的論文,未來的研究領域如下:進一步研究預測建模、處理在不規則時間間隔內收集的帶有測量誤差的數據、使用真實世界數據建模以及多域建模。第一個領域是通過進一步的預測建模來提高預測精度。第二個領域是引入與現實生活中數據收集和匯總困難相似的誤差項。戰場傳感器并不完美,存在局限性。第三個方面是利用實戰部署和訓練中的真實數據建模。最后一個領域是將我們的研究推廣到其他作戰領域:海上、海面下和空中。運動輪廓和運動行為在這些領域中都同樣重要。戰術層面的模型可以為戰略層面的決策提供參考。
訓練一名步兵軍官在軍事行動中選擇合適的排陣型,傳統上需要大量的訓練資源。步兵訓練將受益于在普遍可用的平臺上進一步發展高容量的訓練。2018年,創建了一個基于計算機的模擬排級編隊決策任務(PFDT),并利用認知與績效目標訓練干預模型(CAPTTIM)來確定哪些參與者達到了最佳決策以及何時發生。本研究在該工作的基礎上,在兩個流行的平臺上完善和測試PFDT。PFDT包括32個場景,每個場景隨機呈現四次,總共128次試驗。在這些場景中,有五個因素被操縱,確認了最佳、可接受和差的決策反應。基礎學院和海軍研究生院的27名學生在三種平臺中的一種完成了PFDT:平板電腦、虛擬現實(VR)或帶編隊的VR(為參與者提供在虛擬背景上描繪編隊的能力)。CAPTTIM表明,在達到最佳決策所需的試驗數量上不存在平臺效應。此外,參與者的經驗水平并不影響專家或新手在對方之前達到最佳決策。因此,PFDT是一個可行的軍事訓練模擬器,無論所使用的技術平臺或步兵訓練的數量如何。
在購置海軍平臺的資本有限的限制下,需要應對海上挑戰。像波浪滑翔機這樣的無人平臺可能有助于解決這個問題。波浪滑翔機是一種無人水下航行器,它可以配備一個被動陣列,并可以在感興趣的區域(AOI)保持長時間的部署。它們能夠提供分層防御,防止對手在不被發現的情況下穿越該區域,從而提供低成本、持久性的反潛戰(ASW)解決方案。在2016年由英國皇家海軍領導的 "無人勇士 "演習中,展示了反潛波浪滑翔機成功追蹤一艘載人潛艇的能力。然而,如何部署一定數量的波浪滑翔機來探測一艘過境的對手潛艇的問題仍然相對沒有被探索。本論文旨在開發一個模型,以確定部署的波浪滑翔機的探測能力,該模型考慮了與探測水下接觸有關的變量,在具有聲學挑戰性的水下環境中使用被動聲納,并在部署無人資產方面受到限制。該模型規定了實現特定探測概率所需的波浪滑翔機的最佳數量,并為其在AOI中的位置提供了參考,以盡量減少對手潛艇穿越該區域而不被發現的概率。
為了利用無人系統提供的無數優勢,近年來,它們在軍事行動中的地位越來越突出。無人系統,在這里是指無人水下航行器(UUV),被用于各種任務,如海洋學、反地雷、情報、監視和偵察(ISR),僅舉幾例。最近,UUV在反潛戰(ASW)領域的使用也有所發展。本論文探討了在反潛戰中使用 "波浪滑翔機"--一種配備了被動陣列的UUV。該方案圍繞著反潛波浪滑翔機在AUO中的最佳位置發展,以最大限度地提高探測到穿越該地區的敵方潛艇的概率。開發了一個模型來計算具有特定估計聲納范圍(ESR)的特定數量的波浪滑翔機所累積的探測概率。
為了開發這個模型,使用被動聲納方程闡明了裝有被動聲納的波浪滑翔機的水下探測特性。諸如設備、目標和環境特征等方面的因素被考慮到方程中。還考慮了影響聲音在水下傳播的各種因素,如傳輸損耗和水下噪聲的存在,它阻礙了從目標接收的整體聲音。被動聲納方程和其中涉及的參數被用來計算聲納的性能,稱為優點數字(FOM)和信號過剩(SE),它告訴我們目標發出的信號是否會被波浪滑翔機上的傳感器檢測到(Urick,1967)。此后,Poisson掃描模型(Washburn,2014年),它將探測模擬成一個Poisson過程,被用來制定探測的累積概率的表達。該表達式為橫向范圍函數鋪平了道路,該函數描述了在給定的環境條件下,波浪滑翔機在特定范圍內探測目標的能力。
為了最大限度地提高總體探測概率,探索了將波浪滑翔機置于不同的編隊中--即AOO中的障礙物、扇形、圓形和多障礙物。實驗是通過模擬潛艇穿越該地區周邊的隨機點來進行的。然后改變不同編隊中的ESR和波浪滑翔機的數量,以深入了解特定情況下的最佳位置。通過改變關鍵參數,如目標速度、泊松過程的檢測率和模擬中的FOM,也進行了敏感性分析,以分析它們對總體檢測概率的影響。模擬結果表明,將波浪滑翔機放置在AOO的障礙物陣中,可以最大限度地探測到穿越該區域的海底接觸物的概率。盡管屏障編隊總是比多屏障編隊提供更高的探測概率,但它可以作為一種戰術選擇,使潛艇在較長的時間內處于防御狀態,因為潛艇必須穿越穿插在一起的波浪滑翔機層。探測的概率隨著ESR探測率的增加而增加,而保持所有其他因素不變,則隨著目標速度的增加而減少。
訓練一名步兵軍官在軍事行動中選擇適當的排隊,傳統上需要投入大量的訓練資產。步兵訓練將受益于在普遍可用的平臺上進一步發展高容量的訓練。2018年,創建了一個基于計算機的模擬排編隊決策任務(PFDT),并利用認知與績效目標訓練干預模型(CAPTTIM)來確定哪些參與者達到了最佳決策以及何時發生。本研究在該工作的基礎上,在兩個流行的平臺上完善和測試PFDT。PFDT包括32個場景,每個場景隨機呈現四次,總共128次試驗。在這些場景中,有五個因素被操縱,一個中小企業確認了最佳、可接受和差的決策反應。基礎學院和海軍研究生院的27名學生在三種平臺中的一種完成了PFDT:平板電腦、虛擬現實(VR)或帶編隊的VR(為參與者提供在虛擬背景上描繪編隊的能力)。CAPTTIM表明,在達到最佳決策所需的試驗數量上不存在平臺效應。此外,參與者的經驗水平并不影響專家或新手在對方之前達到最佳決策。因此,PFDT是一個可行的軍事訓練模擬器,無論所使用的技術平臺或步兵訓練的數量如何。
隨著海軍特種作戰從過去20年的反恐行動轉向有爭議環境中的同行競爭,他們需要地面部隊指揮官(GFC)為減輕認知過載、運用綜合效應和平衡戰略任務風險做好準備。如果地面部隊指揮官的培訓能夠以合格的理論標準為基礎,那么就可以通過系統化的培訓管道來減少任務的剩余風險和部隊的風險,這可以通過整合目前可用的虛擬現實技術來增加、啟用和加強。GFC崗位傳統上是一個批判性思維、決策和應急管理的角色。隨著戰場的發展,GFC將有比過去更多的資產需要控制,更多的突發事件需要計劃。這項研究評估了當前的GFC培訓和虛擬現實生態系統。海軍特戰界應采用地面部隊指揮官的虛擬現實訓練器,因為它將使GFC在零威脅的環境下進行反復訓練。
由于現行訓練準則的限制,海軍特種作戰社區的地面部隊指揮官沒有充分發揮他們的潛力。初級軍官為成為一名地面部隊指揮官總共接受了八周的正式培訓:六周在初級軍官培訓課程,兩周在地面部隊指揮官課程。初級軍官被期望成功地計劃和執行現實世界的行動,同時只完成極少的現實訓練場景。海軍特戰部隊的士兵至少屬于許多類別中的一種;他們是突破者、聯合終端攻擊控制者、狙擊手、偵察負責人或通信專家。這些專業中的每一個都有正式的訓練和持續演習,可以持續八個星期。訓練也是年復一年地進行,而地面部隊指揮官通常只經過一次正式訓練。想象一下,在未來,海軍特種作戰初級軍官準備在明天的戰爭中帶領各排對抗同行的競爭對手。挑戰將是巨大的,因為地面部隊指揮官沒有足夠的專門訓練時間來完善成為有效的戰斗領導人所需的技能。
本頂點研究主要關注以下內容。海軍特種作戰部如何能更好地準備和訓練其地面部隊指揮官,同時整合不斷進步的虛擬現實技術?通過海軍研究生院國防分析系和計算機科學系的共同努力,這項研究開始在一個合成環境中設計場景,初級軍官最終將能夠使用這些場景作為現有地面部隊指揮官培訓的補充。
虛擬現實在軍隊中并不是一個新概念;不同軍種都在某種程度上使用虛擬現實來加強訓練。海軍特種作戰部甚至有一個虛擬現實系統,是其JTACs的一個記錄項目。該記錄項目證明了特種作戰司令部致力于虛擬現實技術的采用,以確保其操作人員得到最好的培訓質量。這項研究不是為了創造一種新的虛擬現實技術,而是為了了解虛擬現實生態系統,然后為海軍特種作戰找到一種合適的采用方法。虛擬現實生態系統正在成倍增長,正因為如此,倫理和道德正在成為其開發者和使用者中更受歡迎的話題。隨著虛擬現實技術越來越容易被終端用戶使用,在短期內需要進行更多關于虛擬現實技術對個人行為的長期影響的研究。
地面部隊指揮官虛擬現實訓練器并不打算取代現有的培訓或正式課程。它只是作為一種補充。評價是,沒有足夠的專門時間讓初級軍官在成為地面部隊指揮官方面得到有意義的重復訓練。如果虛擬現實訓練器要對海軍特種作戰指揮部產生積極的影響,初級軍官的訓練就需要修改。建議在初級軍官培訓課程中初步實施這項技術,而不是干擾正在準備進行單位級別訓練和部署的海軍特種作戰排。初級軍官在這一階段的訓練中處于學生狀態,還沒有被引入深入的任務規劃或復雜的決策練習。向學生介紹虛擬現實訓練器將提供充足的時間來測試硬件和軟件,然后再將其用于更嚴峻的情況。
在海軍特戰基礎訓練司令部和海軍研究生院的模擬虛擬環境和模擬實驗室之間建立一個反饋回路,將使未來的場景發展和持續的伙伴關系成為可能。對未來研究和發展的建議包括以下內容:海軍研究生院的Bucklew小組和海軍特種作戰基本訓練司令部之間繼續合作,與工業界合作以加快合成環境訓練場景的創建,以及對特種作戰部隊的虛擬現實訓練的有效性進行正式評估。
未來的戰場是一個將受到近鄰對手快速變化的技術能力嚴重影響的戰場。在這種環境下的成功將需要簡單易用的系統,它能適應各種情況,并能與其他部隊和系統整合。多域作戰指揮、控制、計算機、通信、作戰系統和情報(MDOC5i)旨在為海軍陸戰隊準備未來的戰場。由于傳統的機器學習技術存在某些缺點,MDOC5i使用矢量關系數據建模(VRDM),為海軍陸戰隊提供適合動態部署的系統。MDOC5i使用全球信息網絡架構(GINA)作為其VRDM平臺。這項研究使用GINA創建了一個無處不在的決策模型,可以根據美國海軍陸戰隊的場景進行配置。該研究實現了無處不在的模型,并通過一個網絡分析用例證明了其功能。這個決策模型將作為所有GINA實施的基礎模型。快速構建和調整基于場景的GINA模型并將這些模型整合到一個共同的框架中的能力將為海軍陸戰隊提供對抗未來對手的信息優勢。
圖. 超圖描繪了構成 GINA 決策模型的關鍵實體。這是圖 3.2 中描述的“決策者信息”部分的細分。影響力的三個主要領域是現實世界、網絡和網絡。本論文中的模型將僅包含網絡類別的一部分,特別是 XMPP 流量。這三個領域應被視為為大規模網絡診斷設計的決策模型的起點。
在最近的沖突中,美國能夠承擔對其敵人的技術優勢[1]。然而,由于美國已經將重點從反叛亂(COIN)行動轉移到與近距離對手的沖突上,這是一種不能再假設的奢侈。美國和國防部必須不斷尋求獲得并保持對近距離對手的技術優勢。所有軍種的指揮官都強調了這一點,包括司令部的規劃指南[2]。網絡戰場是一個日益復雜和快速發展的領域,在戰爭中從來沒有出現過像現在這樣的能力。目前的對手既有掌握該空間的愿望,也有掌握該空間的能力[1]。人機交互(HCI)將是在未來沖突中實現信息主導的關鍵。人機交互融合了計算機科學、認知科學和人因工程,以 "專注于技術的設計,特別是用戶和計算機之間的互動"[3]。我們必須掌握人機交互,以協助指揮官并保持對敵人的優勢
美國海軍陸戰隊(USMC)沒有很好的裝備來在網絡領域取得成功。美國海軍陸戰隊訓練和教育司令部(TECOM)已經將這一能力差距確定為一個主要的問題聲明:"海軍陸戰隊沒有接受過應對同行威脅的訓練,在這種情況下,我們不再享有數量或技術優勢的歷史優勢。為了在未來的戰場上取勝,我們必須提供一個學習框架,以發展適應性和決定性的海軍陸戰隊,并提供訓練環境,以產生能夠產生決定性效果的互操作單位"[4]。
信息技術的進步產生了一個以網絡為中心的應用框架[5],可以幫助縮小能力差距,使美國海軍陸戰隊保持對對手的網絡優勢。
在為滿足指揮官的指導并使美國海軍陸戰隊為網絡戰場做好準備而采取的舉措中,海軍陸戰隊已經建立了多域作戰指揮、控制、計算機、通信、作戰系統和情報(MDOC5i)。MDOC5i是一個基于陸軍網絡信息管理環境(ANIME)的系統,提供了一個以網絡為中心的因果動態數字孿生環境。利用基于實體的模擬,MDOC5i提供以網絡為中心的互操作性和決策模型,可以增強多域作戰(MDO)[6]。MDOC5i計劃 "提供基層開發的技術,使操作人員能夠'推斷和適應'不斷變化的戰斗空間的需求" [7]。MDOC5i確定了需要改進的三個問題領域:互操作性、信息處理和利用,以及文化轉變[7]。
隨著戰場的不斷發展,聯合解決方案將是獲得優勢的關鍵。這些互操作性的解決方案將依賴于網絡和通信能力。互操作性是指與整個服務的各種通信系統相關的所有設備之間的通信能力。因此,目前在互操作性方面的差距需要被彌補,以進行聯合行動。系統之間的互操作性還沒有通過一個標準化的通用方法來實現[7]。MDOC5i認為這個問題的根源在于,當前系統所使用的所有網絡都被認為是彼此獨立的領域,而不是一個統一的作戰指揮和控制(C2)系統[7]。
MDOC5i解決的下一個問題是信息處理和利用。這個問題指的是目前整個海軍陸戰隊沒有能力處理大量的信息。數據通常很豐富,而且隨著傳感器能力的增長,數據會越來越豐富,但很難分析所有的數據并從噪音中分出有用的數據。鋪天蓋地的數據如果不進行適當的分析,對決策過程是無用的,甚至是有害的。這個問題被具體描述為:"當前行動和數據收集的速度超過了我們處理、識別和獲取可操作情報的能力,以快速評估、調整和修改計劃和實時COA,從而優化部隊投射、殺傷力,并實現持久的超額配給"[7]。
為了提高處理越來越多的數據和跟上快速發展的戰場的能力,作戰人員需要關注人機互動。這種關系對于能夠在可操作的時間范圍內將大量的數據轉化為有用的信息,從而做出更好的決定至關重要。更好的人機交互可以幫助確保 "數據處理和決策的速度與行動的速度相稱" [7]。
解決的最后一個問題,即文化轉變,涉及美國防部需要調整其在數據整合和聯合行動方面的重點。雖然國防部致力于為作戰人員提供可操作的情報,但其方法是無效的和低效的[7]。此外,各個軍種制定了自己的就業方法和情報方式,這往往會導致聯合行動的無效性。為了在目前存在的動態戰場上作戰,各軍種必須共同努力,"使能力與任務、標準操作程序、訓練戰術和協議、采購和部署政策以及作戰部隊的整體文化相一致" [7]。
5月9日至5月13日,MDOC5i在海軍陸戰隊空地作戰中心(MCAGCC)二十九棕櫚島與第七海軍陸戰隊進行了演示。這次初步測試的目的是展示MDOC5i所帶來的增強的火力能力,并確定MDOC5i通過提供共同情報圖像(CIP)--共同作戰圖像(COP)和決策支持來增強整個海軍陸戰隊空地特遣部隊(MAGTF)的MDO的可行性。
在MCAGCC Twenty-Nine Palms進行的MDOC5i演習成功地描述了該系統的防火能力。MDOC5i系統使用最先進的掃描機制和瞄準系統,將標準裝備的區域射擊武器轉變為精確射擊武器平臺,能夠在幾乎沒有歸零的情況下有效地攻擊目標。雖然這本身就大大增加了海軍陸戰隊的殺傷力,但增強的火力能力僅僅是MDOC5i概念所提供的效用的開始。底層系統使用全球信息網絡架構(GINA),一個矢量關系數據建模(VRDM)平臺,以使所有通過網絡連接的單位都能獲得準確的COP和CIP。這在戰場上提供了一個優勢,因為所有單位都獲得了意識,并將能夠為共享系統提供輸入,從而產生最準確的CIP-COP。
這些投入可以用來幫助決策和影響有利于沖突空間競爭的活動。
這一過程的關鍵使能部分之一是GINA內的決策模型,它能使人采取行動。在二十九棵樹的演示中,海軍陸戰隊員被展示了使用標準武器系統對選定目標進行第一輪射擊的能力。選定的目標出現在通過網絡連接的所有信息顯示器上。為了實現目標定位,GINA模型接受目標的輸入并將信息傳遞給所有用戶。系統首先決定該目標是一個有效的目標還是一個重復的目標。它通過一個專門設計的決策模型來實現這一目標,該模型將確定的目標與其他繪圖的目標進行比較。如果新的目標在指定的距離內,程序會認為它是重復的。這可以防止信息過載,使指揮官對現有的威脅有最準確的描述,以便更好地決定如何使用武器系統來對付敵人的目標。因此,在這個特定的例子中,輸入的是確定的目標位置,決定的是該目標是合法的還是重復的,決定的標準是確定與其他已經繪制的目標的距離,結果是對威脅的準確描述,使海軍陸戰隊能夠最好地與敵人作戰。
在演示中,決策與識別目標有關,而影響的行動與射擊有關。然而,如前所述,增強射擊能力只是MDOC5i通過基于VRDM的GINA平臺所能提供的好處的開始。創建和采用為指揮官提供最新的CIP-COP并幫助決策的模型將對海軍陸戰隊和國防部(DOD)的所有方面都有用。按照目前的情況,每次實施新的模型時,都需要從頭開始創建新的決策模型。
海軍研究生院(NPS)論文的目的是在GINA平臺上使用VRDM建立一個不可知的決策模型。重點是該模型的普遍性,以便它可以很容易地被塑造為未來的情景。該決策模型擴展了無處不在的數據表概念,以包含關于數據的信息屬性,并允許通過基于屬性的真值表關系實現來自數據屬性和信息屬性(邏輯類型)的知識屬性。因此,模型將數據轉化為信息,然后從已知的真值(既定協議)中獲取狀態和規定過程的知識,然后模型執行相應的過程。這表明了該方法的普遍性,并使任何數據任務的數據轉化為行動。本論文驗證了使用基于模型的配置方法,該方法由數據、真值表和狀態的概念對象組成,可用于人在/在環的自動數據決定-行動,并可在知識管理圖框架內為任何任務進行管理。
建議的模型在通過分析可擴展消息和存在協議(XMPP)消息來確定網絡健康狀況的情況下進行測試。該模型的輸入是可擴展標記語言(XML)消息,旨在復制大規模戰術網絡的數據包捕獲(PCAP)中捕獲的XMPP消息。雖然網絡診斷分類本身很重要,并證明了功能,但主要的效用將在于決策模型的普遍性。因為該模型是不可知的,它可以很容易地被修改以適應一系列所需的場景。務實地說,它可以作為所有其他GINA實施的基礎模型,使海軍陸戰隊實現信息超配。
本論文的假設是,GINA將被證明是一個高效的平臺,在這個平臺上實現一個可以輕松配置的泛在決策模型,以應對多種情況。在這個假設的核心,主要目標是利用GINA架構成功地設計和實現一個無所不在的決策模型。這項任務已經完成,證明了主要假說的正確性。
本論文的問題包括。
1.無處不在的決策模型能否在GINA的界面中實現?
2.GINA是否為機器學習(ML)提供了一個可行的、可操作的替代方案,該模型是否達到了與傳統機器學習技術相同的效果?
3.該模型是否有切實的方面證明比傳統機器學習技術優越?
4.該模型和GINA平臺能否用于大規模網絡流量分析?
與假設一致,第一個問題是最重要的,并且被證明是正確的。所實施的決策模型應該能夠促進并推動未來的工作。其余的問題涉及模型的可擴展性和與傳統技術相比的性能。雖然這兩個概念都沒有直接解決,但該模型提供了肯定的機會來測試這些概念。
為了成功地理解決策模型的實施和它可以應用的規模,有必要了解所涉及的工具。其中一些應用在本論文中直接使用。其他的是在MDOC5i中使用的,對于理解這個模型如何推導到多種情況下是很有用的。這些工具也提供了很好的背景,對未來的工作有好處。
GINA 是一個基于云的、提供可執行建模環境的 VRDM 平臺,該平臺產生的模型能夠進行推理和適應[7], [8]。該架構通過其反思性的、可執行的、基于組件的、與平臺無關的和模型驅動的構造,提供先進的數據、信息和知識的互操作性[9]. 該平臺使用一種語義結構,使應用領域的用戶能夠理解組成的模型組件,并形成具有半知覺行為的系統,這對動態任務需求的適應性和可配置的靈活性至關重要。該創新平臺是松散耦合的,這意味著它可以通過配置創建模型,使用來自遺留系統、現有系統或未來系統的各種輸入[8],而不會破壞或重新編譯。由于概念性的信息對象構造可以臨時引入,并可能存在于任何領域,GINA提供了誘人的可能性,美國防部正在探索這種可能性[2]。
GINA技術由方法論、開發工具和可執行模型的部署平臺組成,可作為軟件程序使用。這些模型不需要被編譯,而是在元數據中定義并實時編譯。該平臺使用通過配置實現的行為、環境和因果的建模概念,以提供定義、操作和互操作性[10]。GINA可以通過其名稱的組成部分進一步理解。"全球 "指的是該平臺通過多層抽象包含了所有的數字表示。"信息 "指的是可以被建模和管理的靜態和動態數據以及互動關系。"網絡 "指的是可以通過模型和圖表顯示、參考和管理的所有互聯關系的數字表示。"架構 "意味著GINA是被使用的系統,專門用于制作行為、背景和因果關系的可執行模型[10]。
第二章將深入討論GINA的優點和特點。
Dark Stax是一個由ANIME開發和使用的工具,能夠以接近實時的速度創建復雜系統的數字孿生體。這些數字孿生體可以用來操作克隆的系統進行數據操作和決策分析。這種聯合有助于數據驅動的決策過程。這個工具能夠創建戰術網絡的克隆,并過濾PCAP數據,為網絡診斷模型創建輸入[10]。Dark Stax工具由Ad Hoc維護和運行。他們對該工具的掌握為首要的人工智能(AI)技術和VRDM技術的結合提供了巨大的效用。
StarUML是一個開源的軟件建模平臺,支持統一建模語言(UML)[11]。它被設計為支持簡明和敏捷的建模,并提供系統疊加的可視化描述[12]。本文使用UML圖來描述實現的VRDM模型的靜態和動態方面。UML并沒有捕捉到VRDM模型中包含的所有細節,但它確實捕捉到了最重要的信息,并提供了模型中連接的清晰疊加。
在這個項目中,它只被用于GINA模型的可視化和文檔化。然而,我們的意圖是使GINA能夠接受UML設計作為輸入。因此,一個系統可以用UML建模并輸入到GINA中,以放棄配置。
Cursor On Target(COT)"是一個互聯網協議和一個基于XML的機器對機器模式,可以被任何系統讀取和理解,使專有和開放源碼系統能夠相互通信"[13]。模擬器在GINA模型中被用來模擬XMPP流量。XMPP消息的樣本在一個文本文件中生成。然后,Cursor On Target Simulator(COTS)模擬器將文本文檔的內容作為XML輸入到GINA。這個XML是決策模型的輸入。
美海軍陸戰隊長期以來一直使用戰術決策游戲(TDG)來訓練和評估領導和決策能力。使用紙筆或干擦板的陳舊過程需要一個主題專家在場,以評估和評價每個海軍陸戰隊員的演習計劃,并對他們的演習計劃提供即時反饋。這個過程很耗時,而且不允許海軍陸戰隊員進行必要的演練和集訓,以建立他們在各種情況下的直覺決策并獲得經驗。無論任務如何,海軍陸戰隊要求領導者在戰斗中取得成功,要做好準備,即使是在第一次遇到這種情況時也要采取行動。
基于計算機的TDG被設計為允許海軍陸戰隊員在時間有限的環境下,在未知的地形和不同的敵人情況下,通過連續的重復練習來獲得排級演習的經驗。這個系統使海軍陸戰隊員能夠獲得他們需要的重復訓練,以建立他們的決策技能,并補充教官指導的訓練。使用重復測量設計,數據表明,使用基于計算機的TDG縮短了海軍陸戰隊員的決策周期,并顯示出通過快速重復選擇正確機動路徑的準確性有所提高。
研究問題1:通過計算機模擬訓練排級決策,能在多大程度上縮短從數據收集到決策的周期?
HA1: 有效的訓練將體現在參與者在規定的時間內為每個場景選擇可接受的決定(70%的分數),μ>0.70。
HA2:參與者在整個培訓迭代過程中,完成TDG的平均時間減少,?μtime < 0。
研究問題2:基于計算機的戰術決策游戲(TDG)在多大程度上是一種可用的戰術決策培訓設備?