亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

小樣本學習旨在通過少量樣本學習到解決問題的模型.近年來在大數據訓練模型的趨勢下,機器學習和深度學習在許多領域中取得了成功.但是在現實世界中的很多應用場景中,樣本量很少或者標注樣本很少,而對大量無標簽樣本進行標注工作將會耗費很大的人力.所以,如何用少量樣本進行學習就成為了目前人們需要關注的問題.本文系統梳理了當前小樣本學習的相關工作,具體介紹了基于模型微調、基于數據增強和基于遷移學習三大類小樣本學習模型與算法的研究進展;本文將基于數據增強的方法細分為基于無標簽數據、基于數據合成和基于特征增強三類,將基于遷移學習的方法細分為基于度量學習、基于元學習和基于圖神經網絡三類.本文還總結了目前常用的小樣本數據集,以及代表性的小樣本學習模型在這些數據集上的實驗結果,隨后對小樣本學習的現狀和挑戰進行了概述,最后展望了小樣本學習的未來發展方向.

//www.jos.org.cn/jos/ch/reader/create_pdf.aspx?file_no=6138&journal_id=jos

隨著大數據時代的到來,深度學習模型已經在圖像分類、文本分類等任務中取得了先進成果.但深度學習模型的成功很大程度 上依賴于大量訓練數據,而在現實世界的真實場景中某些類別只有少量數據或少量標注數據,而對無標簽數據進行標注將會消耗 大量的時間和人力.與此相反,人類只需要通過少量數據就能做到快速學習.例如一個五六歲的小孩子從未見過企鵝,但如果給他看 過一張企鵝的圖像,當他進入動物園看到真正的企鵝時,就會馬上認出這是自己曾經在圖像上見過的“企鵝”,這就是機器學習和人類學習之間存在的差距.受到人類學習觀點的啟發[1],小樣本學習[2] [3](few-shot learning)的概念被提出,使得機器學習更加靠近人類思維.

早在 20 世紀八九十年代,就有一些研究人員注意到了單樣本學習(one-shot learning)的問題,直到 2003 年 Li 等[4]才正式提出了 單樣本學習的概念.他們認為當新的類別只有一個或幾個帶標簽的樣本時,已經學習到的舊類別可以幫助預測新類別[5].小樣本學 習也叫作少樣本學習(low-shot learning) [7],其目標是從少量樣本中學習到解決問題的方法.與小樣本學習相關的概念還有零樣本學 習(zero-shot learning)等.零樣本學習是指在沒有訓練數據的情況下,利用類別的屬性等信息訓練模型,從而識別新類別.

小樣本學習的概念最早從計算機視覺(Computer Vision) [8]領域興起,近幾年受到廣泛關注,在圖像分類任務中已有很多性能優 異的算法模型[34][37][45].但是在自然語言處理領域(Natural Language Processing) [9]的發展較為緩慢,原因在于圖像和語言特性不同.圖 像相比文本更為客觀,所以當樣本數量較少時,圖像的特征提取比文本更加容易[87].不過近年來小樣本學習在自然語言處理領域也 有了一些研究和發展[10][46][48].根據所采用方法的不同,本文將小樣本學習分為基于模型微調、基于數據增強和基于遷移學習三種. 基于模型微調的方法首先在含有大量數據的源數據集上訓練一個分類模型,然后在含有少量數據的目標數據集上對模型進行微 調.但這種做法可能導致模型過擬合,因為少量數據并不能很好地反映大量數據的真實分布情況.為解決上述過擬合的問題,基于數 據增強和基于遷移學習的小樣本學習方法被提出.基于數據增強的方法是利用輔助數據集或者輔助信息增強目標數據集中樣本的 特征或擴充對目標數據集,使模型能更好地提取特征.本文根據學習方法不同,將基于數據增強的小樣本學習方法進一步細分為基 于無標簽數據、基于數據合成和基于特征增強三類方法.基于遷移學習的方法是目前比較前沿的方法,是指將已經學會的知識遷移 到一個新的領域中.本文根據學習框架將基于遷移學習的方法細分為基于度量學習、基于元學習和基于圖神經網絡(Graph Neural Networks)的方法.在度量學習的框架下目前已有許多性能較好的小樣本學習模型,例如比較著名的原型網絡(Prototypical Networks) [34]和匹配網絡(Matching Networks) [31]等.基于元學習的方法不僅在目標任務上訓練模型,而是從許多不同的任務中學習 元知識,當一個新的任務到來時,利用元知識調整模型參數,使模型能夠快速收斂.近年來隨著圖神經網絡的興起,研究者將圖神經網 絡也應用到小樣本學習中,取得了先進的結果.

除了圖像分類和文本分類這兩個主要任務,許多其他任務也面臨著小樣本問題.在計算機視覺應用中,利用小樣本學習進行人臉識別[8][60][82]、食品識別[61]、表情識別[66]、手寫字體識別[70][79]以及其他的圖像識別[65]. 在自然語言處理應用中,使用小樣本方法 實現對話系統[67]、口語理解[62],或者完成 NLP 的基本任務,例如 word embedding[63].在多媒體領域應用中,可以使用小樣本方法實現 影像提取[73]和聲紋識別[80]等.在生物與醫學領域,可以應用于疾病診斷[71][72]、臨床實驗[84]、護士能力評價[75]、農作物病害識別[69][81]、 水量分析[76]等.在經濟領域,可應用于產品銷量預測[77]等.在工業與軍事領域,可應用于齒輪泵壽命預測[78]、軍事目標識別[74]和目標 威脅評估[83]等.

本文首先從基于模型微調、基于數據增強和基于遷移學習三種方法介紹小樣本學習的研究進展,總結小樣本學習的幾個著名數據集以及已有模型在這些數據集上的實驗結果;接下來,本文對小樣本學習的研究現狀和主要挑戰進行總結;最后展望了未來的 發展趨勢.

付費5元查看完整內容

相關內容

深度學習在大量領域取得優異成果,但仍然存在著魯棒性和泛化性較差、難以學習和適應未觀測任務、極其依賴大規模數據等問題.近兩年元學習在深度學習上的發展,為解決上述問題提供了新的視野.元學習是一種模仿生物利用先前已有的知識,從而快速學習新的未見事物能力的一種學習定式.元學習的目標是利用已學習的信息,快速適應未學習的新任務.這與實現通用人工智能的目標相契合,對元學習問題的研究也是提高模型的魯棒性和泛化性的關鍵.近年來隨著深度學習的發展,元學習再度成為熱點,目前元學習的研究百家爭鳴、百花齊放. 本文從元學習的起源出發,系統地介紹元學習的發展歷史,包括元學習的由來和原始定義,然后給出當前元學習的通用定義,同時總結當前元學習一些不同方向的研究成果,包括基于度量的元學習方法、基于強泛化新的初始化參數的元學習方法、基于梯度優化器的元學習方法、基于外部記憶單元的元學方法、基于數據增強的元學方法等. 總結其共有的思想和存在的問題,對元學習的研究思想進行分類,并敘述不同方法和其相應的算法.最后論述了元學習研究中常用數據集和評判標準,并從元學習的自適應性、進化性、可解釋性、連續性、可擴展性展望其未來發展趨勢.

引言

隨著計算設備并行計算性能的大幅度 進步,以及近些年深度神經網絡在各個領域 不斷取得重大突破,由深度神經網絡模型衍 生而來的多個機器學習新領域也逐漸成型, 如強化學習、深度強化學習[1] [2] 、深度監督 學習等。在大量訓練數據的加持下,深度神 經網絡技術已經在機器翻譯、機器人控制、 大數據分析、智能推送、模式識別等方面取 得巨大成果[3] [4] [5] 。

實際上在機器學習與其他行業結合的 過程中,并不是所有領域都擁有足夠可以讓 深度神經網絡微調參數至收斂的海量數據, 相當多領域要求快速反應、快速學習,如新 興領域之一的仿人機器人領域,其面臨的現 實環境往往極為復雜且難以預測,若按照傳 統機器學習方法進行訓練則需要模擬所有 可能遇到的環境,工作量極大同時訓練成本 極高,嚴重制約了機器學習在其他領域的擴 展,因此在深度學習取得大量成果后,具有 自我學習能力與強泛化性能的元學習便成 為通用人工智能的關鍵。

元學習(Meta-learning)提出的目的是 針對傳統神經網絡模型泛化性能不足、對新 種類任務適應性較差的特點。在元學習介紹 中往往將元學習的訓練和測試過程類比為 人類在掌握一些基礎技能后可以快速學習并適應新任務,如兒童階段的人類也可以快 速通過一張某動物照片學會認出該動物,即 機 器 學 習 中 的 小 樣 本 學 習 ( Few-shot Learning)[6] [7] ,甚至不需要圖像,僅憑描 述就可學會認識新種類,對應機器學習領域 中的(Zero-shot Learning)[8] ,而不需要大 量該動物的不同照片。人類在幼兒階段掌握 的對世界的大量基礎知識和對行為模式的 認知基礎便對應元學習中的“元”概念,即一 個泛化性能強的初始網絡加上對新任務的 快速適應學習能力,元學習的遠期目標為通 過類似人類的學習能力實現強人工智能,當 前階段體現在對新數據集的快速適應帶來 較好的準確度,因此目前元學習主要表現為 提高泛化性能、獲取好的初始參數、通過少 量計算和新訓練數據即可在模型上實現和 海量訓練數據一樣的識別準確度,近些年基 于元學習,在小樣本學習領域做出了大量研 究[9] [10] [11] [12] [13] [14] [15] [16] [17] ,同時為模擬 人類認知,在 Zero-shot Learning 方向也進行 了大量探索[18] [19] [20] [21] [22] 。

在機器學習盛行之前,就已產生了元學習的相關概念。當時的元學習還停留在認知 教育科學相關領域,用于探討更加合理的教 學方法。Gene V. Glass 在 1976 年首次提出 了“元分析”這一概念[23] ,對大量的分析結 果進行統計分析,這是一種二次分析辦法。G Powell 使用“元分析”的方法對詞匯記憶 進行了研究[24] ,指出“強制”和“誘導”意象有 助于詞匯記憶。Donald B.Maudsley 在 1979 年首次提出了“元學習”這一概念,將其描述 為“學習者意識到并越來越多地控制他們已 經內化的感知、探究、學習和成長習慣的過 程”,Maudsley 將元學習做為在假設、結構、 變化、過程和發展這 5 個方面下的綜合,并 闡述了相關基本原則[25] 。BIGGS J.B 將元學 習描述為“意識到并控制自己的學習的狀 態” [26] ,即學習者對學習環境的感知。P Adey 將元學習的策略用在物理教學上[27] , Vanlehn K 探討了輔導教學中的元學習方法 [28] 。從元分析到元學習,研究人員主要關 注人是如何意識和控制自己學習的。一個具 有高度元學習觀念的學生,能夠從自己采用 的學習方法所產生的結果中獲得反饋信息,進一步評價自己的學習方法,更好地達到學 習目標[29] 。隨后元學習這一概念慢慢滲透 到機器學習領域。P.Chan 提出的元學習是一 種整合多種學習過程的技術,利用元學習的 策略組合多個不同算法設計的分類器,其整 體的準確度優于任何個別的學習算法[30] [31] [32] 。HilanBensusan 提出了基于元學習的決 策樹框架[33] 。Vilalta R 則認為元學習是通 過積累元知識動態地通過經驗來改善偏倚 的一種學習算法[34] 。

Meta-Learning 目前還沒有確切的定義, 一般認為一個元學習系統需結合三個要求:系統必須包含一個學習子系統;利用以前學 習中提取的元知識來獲得經驗,這些元知識 來自單個數據集或不同領域;動態選擇學習偏差。

元學習的目的就是為了設計一種機器學習模型,這種模型有類似上面提到的人的 學習特性,即使用少量樣本數據,快速學習 新的概念或技能。經過不同任務的訓練后, 元學習模型能很好的適應和泛化到一個新任務,也就學會了“Learning to learn”。

付費5元查看完整內容

零樣本學習旨在通過運用已學到的已知類知識去認知未知類.近年來,“數據+知識驅動”已經成為當下的新潮流,而在計算機視覺領域內的零樣本任務中,“知識”本身卻缺乏統一明確的定義.本文針對這種情況,嘗試從知識的角度出發,梳理了本領域內“知識”這一概念所覆蓋的范疇,共劃分為初級知識、抽象知識以及外部知識.基于前面對知識的定義和劃分梳理了當前的零樣本學習(主要是圖像分類任務的模型)工作,分為基于初級知識的零樣本模型、基于抽象知識的零樣本模型以及引入外部知識的零樣本模型.本文還對領域內存在的域偏移和樞紐點問題進行了闡述,并基于問題對現有工作進行了總結歸納.最后總結了目前常用的圖像分類任務的數據集和知識庫,圖像分類實驗評估標準以及代表性的模型實驗結果;并對未來工作進行了展望.

//www.jos.org.cn/jos/ch/reader/view_abstract.aspx?file_no=6146&flag=1

付費5元查看完整內容

我們生活在一個由大量不同模態內容構建而成的多媒體世界中,不同模態信息之間具有高度的相關性和互補性,多模態表征學習的主要目的就是挖掘出不同模態之間的共性和特性,產生出可以表示多模態信息的隱含向量.該文章主要介紹了目前應用較廣的視覺語言表征的相應研究工作,包括傳統的基于相似性模型的研究方法和目前主流的基于語言模型的預訓練的方法.目前比較好的思路和解決方案是將視覺特征語義化然后與文本特征通過一個強大的特征抽取器產生出表征,其中Transformer[1]作為主要的特征抽取器被應用表征學習的各類任務中.文章分別從研究背景、不同研究方法的劃分、測評方法、未來發展趨勢等幾個不同角度進行闡述.

//www.jos.org.cn/jos/ch/reader/view_abstract.aspx?file_no=6125&flag=1

付費5元查看完整內容

摘要:隨著計算機行業和互聯網時代的不斷發展與進步,圖神經網絡已經成為人工智能和大數據重要研究領域。圖神經網絡是對相鄰節點間信息的傳播和聚合的重要技術,可以有效地將深度學習的理念應用于非歐幾里德空間的數據上。簡述圖計算、圖數據庫、知識圖譜、圖神經網絡等圖技術領域的相關研究歷史,分類介紹不同類型的圖結構。分析對比不同的圖神經網絡技術,重點從頻域和空間與的信息聚合方式上分類比較不同的圖卷積網絡算法。闡述圖生成和圖對抗網絡、圖強化學習、圖遷移學習、神經任務圖和圖零樣本學習等不同的圖網絡與深度學習方法相結合的技術方法,并列舉不同的圖神經網絡技術在文本、圖像、知識圖譜、視頻任務等領域的具體應用。最后,對圖神經網絡未來的發展與研究方向加以展望。

//kns.cnki.net/kcms/detail/detail.aspx?dbcode=CAPJ&dbname=CAPJDAY&filename=JSJC20201123000&v=fpDLQvPDFGeYvQeSgmnh5h1YpkO6G1W6SQqt4w%25mmd2B%25mmd2BnZtjD3h80wKsQ5NhpJeXgtGI

概述

近年來隨著計算機行業的快速發展和數據量的井噴式增長,深度學習方法被提出并得到了廣泛的 應用。深度學習通過神經網絡端到端的解決方案, 在圖像處理、語音識別、語義理解[1]等領域取得了 巨大的成功,深度學習的應用往往都是在高維特征 空間上特征規則分布的歐幾里德數據。作為一種關 系型數據結構,圖(Graph)在深度學習中的應用研究近年來受到越來越多的關注,本文將圖的演進歷程分為數學起源、計算應用、神經網絡延伸三個階段。

圖的概念起源于 18 世紀著名的柯尼斯堡七橋問 題,到了 20 世紀中期,擬陣理論、超圖理論、極圖 理論等研究蓬勃發展,使得圖論(Graph Theory)[2] 在電子計算誕生前,就已經成為了重要的數學研究領域。

隨著計算機的出現和機器計算時代的到來和發 展,圖作為一種能夠有效且抽象地表達信息和數據 中的實體以及實體之間關系的重要數據結構被廣泛應用,圖數據庫有效解決了傳統的關系型數據結構 面對大量復雜的數據所暴露出的建模缺陷多、計算速度慢等問題,圖數據庫也成為了非常熱門的研究 領域。圖結構(Graph-structured Data)[3]可以將結構化數據點通過邊的形式,依照數據間的關系將不同類型和結構的數據節點連接起來,因而被廣泛地應用在數據的存儲、檢索以及計算應用中。基于圖結構數據,知識圖譜[4-7]可以通過點和邊的語義關系, 來實現精確地描述現實世界中實體之間的關聯關系, 作為人工智能非常重要的研究領域,知識圖譜的研究方向包括知識抽取、知識推理、知識圖譜可視化等。圖計算(Graph Computing)具有數據規模量大、 局部性低、計算性能高等特性,圖計算算法[8-9]主要 可以分為路徑搜索算法、中心性算法、社群發現算法等三類,實現了在關系復雜型的大規模數據上高 時效性和準確度的表現,在社交網絡、團體反欺詐 和用戶推薦等領域有著重要的應用。

與已經非常成熟圖計算不同,圖神經網絡 (Graph Neural Network)的研究主要是集中在相鄰節點信息的傳播與聚合上,從圖神經網絡的概念提 出,到受深度學習中卷積神經網絡的啟發,2013 年 提出的基于圖論的圖卷積神經網絡 [10-11]研究方向吸 引了大量學者關注。2018 年 DeepMind 提出圖網絡 (Graph Network)[12]的概念,希望能夠將深度學習 端到端的學習方式與圖結構關系歸納推理的理論結 合解決深度學習無法處理關系推理的問題。針對圖 神經網絡存在的問題,不同的學者們也給出了不同 的方案,隨著對圖神經網絡這一新興領域更加深入 的研究與探索,人工智能領域的版圖將得到更大擴展。

文獻[12]在關系歸納偏置和深度學習的研究基礎 上,提出了面向關系推理的圖網絡概念并進行了綜 述,但未對不同圖網絡技術進行分類和對比。文獻 [13]從半監督、無監督方法的角度對圖結構上的深度 學習進行了綜述,但缺少相近的分類和應用的討論。文獻[14]主要從傳播規則、網絡結構等角度分析了圖神經網絡的不同模型以及應用。文獻[15]則是詳細對 比了時域和空間的不同圖卷神經網絡方法結構,但沒有對圖神經網絡之于深度學習領域的探討,如圖強化學習、圖遷移學習等。本文針對圖神經網絡, 分析對比了六種圖神經網絡方法的優劣,首次對處 理異構圖數據的圖神經網絡技術進行了討論和研究, 綜述了五類圖神經網絡的研究領域,并對未來的發展方向進行了展望。

付費5元查看完整內容

摘要:圖像分類的應用場景非常廣泛,很多場景下難以收集到足夠多的數據來訓練模型,利用小樣本學習進行圖像分類可解決訓練數據量小的問題.本文對近年來的小樣本圖像分類算法進行了詳細綜述,根據不同的建模方式,將現有算法分為卷積神經網絡模型和圖神經網絡模型兩大類,其中基于卷積神經網絡模型的算法包括四種學習范式:遷移學習、元學習、對偶學習和貝葉斯學習;基于圖神經網絡模型的算法原本適用于非歐幾里得結構數據,但有部分學者將其應用于解決小樣本下歐幾里得數據的圖像分類任務,有關的研究成果目前相對較少.此外,本文匯總了現有文獻中出現的數據集并通過實驗結果對現有算法的性能進行了比較.最后,討論了小樣本圖像分類技術的難點及未來研究趨勢.

付費5元查看完整內容

模態是指事物發生或存在的方式,如文字、語言、聲音、圖形等。多模態學習是指學習多個模態中各個模態的信息,并且實現各個模態的信息的交流和轉換。多模態深度學習是指建立可以完成多模態學習任務的神經網絡模型。多模態學習的普遍性和深度學習的熱度賦予了多模態深度學習鮮活的生命力和發展潛力。旨在多模態深度學習的發展前期,總結當前的多模態深度學習,發現在不同的多模態組合和學習目標下,多模態深度學習實現過程中的共有問題,并對共有問題進行分類,敘述解決各類問題的方法。具體來說,從涉及自然語言、視覺、聽覺的多模態學習中考慮了語言翻譯、事件探測、信息描述、情緒識別、聲音識別和合成,以及多媒體檢索等方面研究,將多模態深度學習實現過程中的共有問題分為模態表示、模態傳譯、模態融合和模態對齊四類,并對各問題進行子分類和論述,同時列舉了為解決各問題產生的神經網絡模型。最后論述了實際多模態系統,多模態深度學習研究中常用的數據集和評判標準,并展望了多模態深度學習的發展趨勢。

付費5元查看完整內容

基于神經網絡的深度學習方法往往需要大量標注樣本,而在很多領域往往是缺乏充足樣本數據的,比如在醫療領域,高質量的醫療影像大數據樣本很難獲取,且人工標注成本較高。因此,亟待研究基于小樣本數據集或弱標簽標注的機器學習方法。最近,齊國君和羅杰波兩位知名學者在ArXiv發布了關于小樣本數據集的無監督與半監督學習綜述論文,12頁103篇參考文獻,詳細闡述了最新進展。

付費5元查看完整內容
北京阿比特科技有限公司