本資料是基于國防部根據FA8702-15-D-0002號合同與卡內基梅隆大學合作的軟件工程研究所的運作而資助和支持的工作,這是一個聯邦資助的研究和開發中心。
本材料基于美國國防部根據與卡內基梅隆大學簽訂的合同編號 FA8702-15-D-0002 資助和支持的工作,以運營聯邦資助的研發中心軟件工程研究所。
本材料基于美國防部與卡內基梅隆大學簽訂的合同資助和支持工作。
目標:我們的目標是量子優勢(QA);我們希望比其他任何替代方案(如經典的SOTA)更快、更高質量地解決美國防部的實際問題。
行動:確定哪些應用程序最有可能開發 QA 以及何時“準備好”。
合作:我們正在 CMU 開發 QuantumHub,在那里我們可以使用量子軟件和模擬工具,并為研究人員提供工作空間
美國陸軍工程研究與發展中心(ERDC)的研究實驗室目前正在開發仿真工具,以協助開發可選擇的載人、遠程操作和完全自主的車輛,重點是地形與車輛的交互,特別是在冬季地形條件下。其他ERDC實驗室與地面車輛系統司令部(GVSC)一起,重點研究保證位置、時間和導航,該司令部正在進行開發可選擇的載人和自主平臺的研究,主要集中在車輛內部的硬件和軟件,很少強調外部安裝的地形傳感器或冬季操作環境。美國陸軍寒冷地區研究和工程實驗室(CRREL)在冬季和極端環境下進行車輛機動性研究,這在模擬和開發可選的載人和自主車輛方面是需要的。這項工作的范圍是調查人工智能和機器學習對冬季條件下運行的軍用車輛的適用性。本文描述了實現這一目標的初步努力。
自主車輛在民用方面的應用正在成為現實。在智能駕駛輔助方面,第三級車輛自主性(智能巡航控制、行人識別、自動剎車、盲區傳感器、罕見的交叉交通警報、避免碰撞等)已在商業和私人車輛上使用多年。第四和第五級自主性(有監督的自主性和完全無監督的自主性)目前正在試驗中。盡管在民用領域取得了重大進展,但軍用車輛的自主性仍然是一項相當具有挑戰性的任務。軍用自主車輛的主要區別是:非公路運行、未知地形的運行,以及在開放空間完全重新規劃路線的可能性。這種環境要求智能自主控制算法和環境感知與工業界的民用應用不同。具體來說,需要解決先進的和當前的地形感知、檢測無法通行的路線、確定可通行的替代路線和車輛在空地上的改道,以及針對特定地形條件和車輛的最佳車輛控制等任務。提交的工作描述了在解決其中一些挑戰方面的最新進展。結果表明,其中一些挑戰可以通過機器學習和人工智能算法成功解決,從而為軍用車輛的人工駕駛提供實質性幫助。
絕大多數關于自主車輛的文獻都是在城市條件下的駕駛。非公路車輛沒有道路指引其軌跡,也沒有一致的駕駛地面,還必須考慮不平坦的三維地形、三維方向。這主張使用更復雜的人工智能方法,如PilotNet卷積神經網絡,最近通過攝像機記錄72小時在不同城市條件下的成功駕駛,并使用這些數據作為訓練集,來教車輛自我轉向(Bojarski等人,2017)。另一方面,在不使用神經網絡的情況下,收集了大量關于傳統自動車輛控制的知識。例如,DARPA 2005年挑戰團隊的獲勝者沒有使用神經網絡,而是依靠更傳統的自動控制算法來自動控制他們的機器人斯坦利(Thrun等人,2006)。為了利用這些知識,同時又與越野作業的挑戰性要求相關,我們建議實施一種混合方法,將人工智能和經典控制方法結合起來。
具體來說,我們建議使用神經網絡來持續確定和更新車輛行駛的地形類型,以及車輛的 "臨界值",即車輛沿途必須遵守的行動限制,如允許的最大速度、最大的加速和減速率,以及車輛的范圍和最大的轉向率。將使用兩種人工智能算法。一個用于自動地形分類,另一個用于預測由第一個算法確定的地形類型的關鍵控制值。通過使用神經網絡來預測臨界值,車載自主控制系統不需要專門考慮所有的地形類型和方向,而是適當地定制,以便根據當前的駕駛條件實時調整。圖3概述了模型的結構。當前的地形估計、地形類型和條件、期望的軌跡和車輛狀態將被用來預測速度、最大加速/減速率和轉向的關鍵約束。這些值將作為傳統的剎車/油門的比例積分衍生(PID)控制器和轉向的模型預測控制(MPC)控制器的目標值。然后,實際的車輛狀態將被評估,地形、臨界值和路線將被相應地更新,直到車輛到達預期的目的地。
圖3. 擬議的混合自主控制方法的結構:使用神經網絡預測給定地形類型、車輛方向、地形和表面條件的臨界值,并設置為自適應MPC或PID控制器的目標。
機器學習是現代戰爭系統的關鍵組成部分。本文探討了人工智能的 7 個關鍵軍事應用。
機器學習已成為現代戰爭的重要組成部分,也是我(Nicholas Abell)作為陸軍退伍軍人和數據科學家的主要興趣點。與傳統系統相比,配備人工智能/機器學習的軍事系統能夠更有效地處理大量數據。此外,人工智能由于其固有的計算和決策能力,提高了作戰系統的自我控制、自我調節和自我驅動能力。
人工智能/機器學習幾乎被部署在所有軍事應用中,軍事研究機構增加研發資金有望進一步推動人工智能驅動系統在軍事領域的應用。
例如,美國國防部 (DoD) 的國防高級研究計劃局 (DARPA) 正在資助一種機器人潛艇系統的開發,該系統預計將用于從探測水下水雷到參與反潛行動的各種應用。此外,美國國防部在 2017 財年在人工智能、大數據和云計算方面的總體支出為 74 億美元。預計到 2025 年,軍事 ML 解決方案的市場規模將達到 190 億美元。
以下是機器學習將在未來幾年證明其重要性的七種主要軍事應用。
來自全球不同國家的國防軍隊正在將人工智能嵌入陸地、海軍、空中和太空平臺上使用的武器和其他系統中。
在基于這些平臺的系統中使用人工智能,可以開發出更少依賴人工輸入的高效作戰系統。它還增加了協同作用,提高了作戰系統的性能,同時需要更少的維護。人工智能還有望使自主和高速武器能夠進行協作攻擊。
軍事系統通常容易受到網絡攻擊,這可能導致機密軍事信息丟失和軍事系統損壞。然而,配備人工智能的系統可以自主保護網絡、計算機、程序和數據免受任何未經授權的訪問。
此外,支持人工智能的網絡安全系統可以記錄網絡攻擊的模式,并開發反擊工具來應對它們。
人工智能有望在軍事后勤和運輸中發揮關鍵作用。貨物、彈藥、武器和部隊的有效運輸是成功軍事行動的重要組成部分。
將人工智能與軍事運輸相結合可以降低運輸成本并減少人力工作負荷。它還使軍用艦隊能夠輕松檢測異常并快速預測組件故障。最近,美國陸軍與 IBM 合作,使用其 Watson 人工智能平臺來幫助預先識別 Stryker 戰車的維護問題。
正在開發人工智能技術以提高復雜戰斗環境中目標識別的準確性。這些技術使國防軍隊能夠通過分析報告、文檔、新聞提要和其他形式的非結構化信息來深入了解潛在的作戰領域。此外,目標識別系統中的人工智能提高了這些系統識別目標位置的能力。
支持人工智能的目標識別系統能力包括基于概率的敵人行為預測、天氣和環境條件匯總、潛在供應線瓶頸或漏洞的預測和標記、任務方法評估以及建議的緩解策略。機器學習還用于從獲得的數據中學習、跟蹤和發現目標。
例如,DARPA 的競爭環境中的目標識別和適應 (TRACE) 計劃使用機器學習技術在合成孔徑雷達 (SAR) 圖像的幫助下自動定位和識別目標。
在戰區,人工智能可以與機器人手術系統 (RSS) 和機器人地面平臺 (RGP) 集成,以提供遠程手術支持和疏散活動。美國尤其參與了 RSS、RGP 和其他各種用于戰場醫療保健的系統開發。在困難條件下,配備人工智能的系統可以挖掘士兵的病歷并協助進行復雜的診斷。
例如,IBM 的 Watson 研究團隊與美國退伍軍人管理局合作開發了一種稱為電子病歷分析器 (EMRA) 的臨床推理原型。這項初步技術旨在使用機器學習技術來處理患者的電子病歷,并自動識別和排列他們最嚴重的健康問題。
模擬與訓練是一個多學科領域,它將系統工程、軟件工程和計算機科學結合起來構建計算機模型,使士兵熟悉在軍事行動中部署的各種作戰系統。美國正在越來越多地投資于模擬和訓練應用。
美國海軍和陸軍都在進行戰爭分析,啟動了幾個傳感器模擬程序項目。美國海軍已經招募了 Leidos、SAIC、AECOM 和 Orbital ATK 等公司來支持他們的計劃,而美國陸軍的計劃得到了包括 SAIC、CACI、Torch Technologies 和 Millennium Engineering 在內的公司的支持。
威脅監控和態勢感知在很大程度上依賴于情報、監視和偵察 (ISR) 工作。ISR 行動用于獲取和處理信息以支持一系列軍事活動。
用于執行 ISR 任務的無人系統既可以遠程操作,也可以按照預先定義的路線發送。為這些系統配備人工智能有助于防御人員進行威脅監控,從而提高他們的態勢感知能力。
具有集成 AI 的無人駕駛飛行器 (UAV) - 也稱為無人機 - 可以巡邏邊境地區,識別潛在威脅,并將有關這些威脅的信息傳輸給響應團隊。因此,使用無人機可以加強軍事基地的安全,并提高軍事人員在戰斗中或偏遠地區的安全性和效率。
人工智能在軍事技術硬件和軟件的大規模采用,向我們展示了現代戰爭中令人難以置信和可怕的范式轉變。毫不奇怪,世界上最大的軍隊比其他任何事情都更加關注這項技術,而這場技術競賽的獲勝者可能會比美國在研制原子彈后擁有更多的全球影響力。 (作者:Nicholas Abell,美國陸軍退伍軍人)
講座題目
工業中可解釋的人工智能:Fake News Research: Theories, Detection Strategies, and Open Problems
講座簡介
人工智能在決定我們的日常經驗方面越來越發揮著不可或缺的作用。此外,隨著基于人工智能的解決方案在招聘、借貸、刑事司法、醫療和教育等領域的普及,人工智能對個人和職業的影響是深遠的。人工智能模型在這些領域發揮的主導作用導致人們越來越關注這些模型中可能存在的偏見,以及對模型透明度和可解釋性的需求。此外,模型可解釋性是在需要可靠性和安全性的高風險領域(如醫療保健和自動化運輸)和具有重大經濟意義的關鍵工業應用(如預測性維護、自然資源勘探和氣候變化模型。 因此,人工智能研究者和實踐者把注意力集中在可解釋的人工智能上,以幫助他們更好地信任和理解大規模的模型。研究界面臨的挑戰包括(i)定義模型可解釋性,(ii)制定可解釋性任務以理解模型行為并為這些任務制定解決方案,最后(iii)設計評估模型在可解釋性任務中的性能的措施。 在本教程中,我們將概述人工智能中模型的可解釋性和可解釋性、關鍵法規/法律以及作為人工智能/建模語言系統一部分提供可解釋性的技術/工具。然后,我們將重點關注可解釋性技術在工業中的應用,其中我們提出了有效使用可解釋性技術的實際挑戰/指導方針,以及為多個web規模的機器學習和數據挖掘應用部署可解釋模型的經驗教訓。我們將介紹跨不同公司的案例研究,涉及招聘、銷售、貸款和欺詐檢測等應用領域。最后,根據我們在行業中的經驗,我們將確定數據挖掘/機器學習社區的開放性問題和研究方向。
講座嘉賓
Krishna Gade是Fiddler Labs的創始人兼首席執行官,Fiddler Labs是一家企業初創企業,它構建了一個可解釋的人工智能引擎,以解決人工智能中有關偏見、公平性和透明度的問題。克里希納是一位企業家和工程領袖,在創建可擴展平臺和令人愉悅的消費品方面有著豐富的技術經驗,他曾在Facebook、Pinterest、Twitter和微軟擔任高級工程領導職務。他曾多次應邀在著名的從業人員論壇上發表演講,包括在2019年的Strata Data Conference上就解決人工智能中的偏見、公平性和透明度問題發表演講.