亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

美國陸軍工程研究與發展中心(ERDC)的研究實驗室目前正在開發仿真工具,以協助開發可選擇的載人、遠程操作和完全自主的車輛,重點是地形與車輛的交互,特別是在冬季地形條件下。其他ERDC實驗室與地面車輛系統司令部(GVSC)一起,重點研究保證位置、時間和導航,該司令部正在進行開發可選擇的載人和自主平臺的研究,主要集中在車輛內部的硬件和軟件,很少強調外部安裝的地形傳感器或冬季操作環境。美國陸軍寒冷地區研究和工程實驗室(CRREL)在冬季和極端環境下進行車輛機動性研究,這在模擬和開發可選的載人和自主車輛方面是需要的。這項工作的范圍是調查人工智能和機器學習對冬季條件下運行的軍用車輛的適用性。本文描述了實現這一目標的初步努力。

自主車輛在民用方面的應用正在成為現實。在智能駕駛輔助方面,第三級車輛自主性(智能巡航控制、行人識別、自動剎車、盲區傳感器、罕見的交叉交通警報、避免碰撞等)已在商業和私人車輛上使用多年。第四和第五級自主性(有監督的自主性和完全無監督的自主性)目前正在試驗中。盡管在民用領域取得了重大進展,但軍用車輛的自主性仍然是一項相當具有挑戰性的任務。軍用自主車輛的主要區別是:非公路運行、未知地形的運行,以及在開放空間完全重新規劃路線的可能性。這種環境要求智能自主控制算法和環境感知與工業界的民用應用不同。具體來說,需要解決先進的和當前的地形感知、檢測無法通行的路線、確定可通行的替代路線和車輛在空地上的改道,以及針對特定地形條件和車輛的最佳車輛控制等任務。提交的工作描述了在解決其中一些挑戰方面的最新進展。結果表明,其中一些挑戰可以通過機器學習和人工智能算法成功解決,從而為軍用車輛的人工駕駛提供實質性幫助。

研究方法

絕大多數關于自主車輛的文獻都是在城市條件下的駕駛。非公路車輛沒有道路指引其軌跡,也沒有一致的駕駛地面,還必須考慮不平坦的三維地形、三維方向。這主張使用更復雜的人工智能方法,如PilotNet卷積神經網絡,最近通過攝像機記錄72小時在不同城市條件下的成功駕駛,并使用這些數據作為訓練集,來教車輛自我轉向(Bojarski等人,2017)。另一方面,在不使用神經網絡的情況下,收集了大量關于傳統自動車輛控制的知識。例如,DARPA 2005年挑戰團隊的獲勝者沒有使用神經網絡,而是依靠更傳統的自動控制算法來自動控制他們的機器人斯坦利(Thrun等人,2006)。為了利用這些知識,同時又與越野作業的挑戰性要求相關,我們建議實施一種混合方法,將人工智能和經典控制方法結合起來。

具體來說,我們建議使用神經網絡來持續確定和更新車輛行駛的地形類型,以及車輛的 "臨界值",即車輛沿途必須遵守的行動限制,如允許的最大速度、最大的加速和減速率,以及車輛的范圍和最大的轉向率。將使用兩種人工智能算法。一個用于自動地形分類,另一個用于預測由第一個算法確定的地形類型的關鍵控制值。通過使用神經網絡來預測臨界值,車載自主控制系統不需要專門考慮所有的地形類型和方向,而是適當地定制,以便根據當前的駕駛條件實時調整。圖3概述了模型的結構。當前的地形估計、地形類型和條件、期望的軌跡和車輛狀態將被用來預測速度、最大加速/減速率和轉向的關鍵約束。這些值將作為傳統的剎車/油門的比例積分衍生(PID)控制器和轉向的模型預測控制(MPC)控制器的目標值。然后,實際的車輛狀態將被評估,地形、臨界值和路線將被相應地更新,直到車輛到達預期的目的地。

圖3. 擬議的混合自主控制方法的結構:使用神經網絡預測給定地形類型、車輛方向、地形和表面條件的臨界值,并設置為自適應MPC或PID控制器的目標。

付費5元查看完整內容

相關內容

人工智能在軍事中可用于多項任務,例如目標識別、大數據處理、作戰系統、網絡安全、后勤運輸、戰爭醫療、威脅和安全監測以及戰斗模擬和訓練。

1. 簡介

機器學習(ML),從廣義上講,是一類自動優化參數以處理給定輸入并產生所需輸出的計算機算法。ML的一個經典例子是線性回歸,據此找到一條最適合(通過)一組點的線。最近的一個例子是分類任務,如用 "貓 "這樣的單字來標記一張百萬像素的圖像。

對于許多應用,ML完成了人類可以做得同樣好的任務。然而,ML在兩種情況下大放異彩:1)任務的數量巨大,例如數百萬;2)問題的維度超出了人類思維的理解。一個簡單的例子是同時實時監控成千上萬的安全攝像頭,尋找可疑的行為。也許一個ML方法可以發現異常事件,并只與人類觀察者分享這些視頻片段。更好的是,異常圖像可以被暫時貼上諸如 "1號入口處的蒙面入侵者 "之類的標簽,以幫助保安人員只關注相關的信息。

除了減少人類的負擔外,ML還可以將人類可能無法識別的復雜的相互聯系拼湊起來。例如,一個ML算法可以發現,在一百萬個銀行賬戶中,有五個賬戶的交易似乎是同步的,盡管它們沒有相互發送或接收資金,也沒有向共同的第三方發送或接收資金。

鑒于手持和固定設備的計算資源不斷增加,我們有必要想象一下,ML可以在哪些方面改變戰爭的打法。當然,ML已經對美國陸軍的科學研究產生了影響,但我們也可以很容易地想象到自主車輛和改進的監視等作戰應用。

本文件的主要目標是激勵美國陸軍和美國防部的人員思考ML可能帶來的結果,以及為實現這些結果,哪些研究投資可能是有成效的

5. 使用機器學習的ARL研究

在ARL的許多研究項目中,機器學習目前正在被使用,或者可以被使用。我們列出了一些使用ML或可能從ML中受益的研究項目。我們列出的與ML相關的ARL研究工作絕非完整。

6. 軍隊作戰應用

雖然從技術上講,機器學習自19世紀初高斯發明線性回歸以來就一直存在,但我們相信,ML的最新進展將以我們目前無法想象的方式影響軍隊。在本節中,我們概述了我們認為將得到加強的軍隊行動的許多領域,以及可能采用的ML方法的種類。

6.1 軍事情報

軍事情報包括信息收集和分析,因為它涉及到指揮官做出最佳決策所需的信息。由于收集的數據量越來越大,處理必須自動化。需要考慮的主要問題是數據的數量、速度、真實性和多樣性。大量的數據(又稱大數據)需要在許多計算節點上對數據進行智能分配。速度要求快速計算和網絡連接到數據流。真實性是對信息來源和異常檢測的信任問題。多樣性相當于使用許多不同的ML算法的不同訓練模型的應用。我們在本小節中概述了不同類型的數據和分析要求。

6.1.1 自然語言處理

讓計算機從從各種媒體來源收集到的大型文本數據庫中提煉出重要的概念和文本部分,有很大的好處。最近報道的另一個ML突破是不同語言之間的精確文本翻譯。 軍隊的一個獨特挑戰是翻譯不常見的語言,因此專業翻譯人員較少。在人工通用智能(AGI)領域,一些團體聲稱,自然語言處理將是類似人類認知的基礎。

6.1.2 數據挖掘

鑒于人類、傳感器和代理產生的數據的激增,一個很大的問題是,除了證明其收集的直接用途之外,這些數據還包含什么剩余價值。數據挖掘可以是統計學和機器學習的努力,以發現數據中的模式,否則人類操作者就會錯過。

6.1.3 異常檢測

傳統上,異常檢測是通過首先識別已知數據的群組和描述數據的分布來進行的。然后,當新的輸入被處理時,它們被識別為屬于或不屬于原始分布。如果它們在已知分布之外,就被認為是異常的。以下許多類型的異常檢測系統可能對軍隊有用。

  • 網絡入侵檢測:超出常規的網絡流量。McPAD和PAYL是目前使用的軟件中的2個這樣的例子,它們使用了異常檢測。

  • 生活模式異常:人們的視覺和生物統計學上的行為方式與常人不同,表明他們可能正在進行一些對抗性行動。

  • 基于條件的維護:在當前生命周期中,材料/系統在其年齡段不典型的信號。

  • 士兵異常:有理由相信士兵的生物識別技術不正常。

  • 異物檢測:在已知物資數據庫中無法識別的物體的視覺效果。

6.2 自主性

6.2.1 自動目標識別

自動目標識別(ATR)是一個非常成熟的領域,已經使用機器學習幾十年了。

1)目前深度學習的進展將在多大程度上增強ATR?

2)更復雜的算法是否需要更復雜/更耗電的機載計算?

  1. ML是否能對目標的各種欺騙性的混淆行為具有魯棒性?

  2. 強化學習在多大程度上可以用來進行實時軌跡調整?

6.2.2 機器人學

機器學習在機器人學中的應用也是一個巨大的領域。ML應用領域包括傳感、導航、運動和決策。目前,傳感將從計算機視覺的所有進展中受益。導航,除了使用標準的GPS之外,還可以從自我運動中受益,也就是基于自身感知的運動估計。運動可以被學習,而不是規劃,這不僅會導致更快的開發時間,而且還能在新的環境或受損的模式下重新適應(例如,失去四條腿中的一條)。最后,隨著機器人的數量超過人類操作員的數量,機器人將有必要自行決定如何執行其規定的任務。它將不得不做出這樣的決定:"由于電池電量不足,我是否要回到大本營?"或者 "我是否繼續前進一點,然后自我毀滅?"

6.2.3 自愈性

除了機器人技術,人們最終希望任何系統在損壞或不能滿負荷工作時能夠自我糾正。這需要在某種程度上的智能,以自主診斷缺陷和問題,并利用其可用的資源糾正這些問題。

6.2.4 倫理

在通過機器學習來學習自主權的情況下,問題將是:"自主系統將如何應對X情況?" 這里的問題是,對于一個擁有潛在致命武力的系統,我們怎么能確定它只會正確合法地使用武力?我們推測,在機器學習的算法擁有使用致命武力的實際能力之前,必須對其進行廣泛的測試,即使它與人類的環形決策相聯系。

6.3 通過玩游戲來訓練智能代理

近年來,大量的研究都在研究使用機器學習來自主地玩各種視頻游戲。在某些情況下,報告的算法現在已經超過了人類玩游戲的水平。在其他情況下,仍然存在著處理長期記憶的挑戰。對于美國空軍來說,智能代理已經成功地在以戰斗為中心的飛行模擬器上進行了訓練,這些模擬器密切模仿現實生活。陸軍的問題包括以下內容。

  • 智能代理能否附加到機器人平臺上?

  • 智能在多大程度上可以通用于處理現實生活與視頻游戲中遇到的各種情況?

  • 當我們可能不理解一個訓練有素的代理的邏輯時,我們能相信它的行動嗎?

  • 代理在多大程度上能夠與人類合作?

6.4 網絡安全

在過去的十年里,機器學習在網絡安全方面發揮了不可或缺的作用。具體來說,ML可以用于異常檢測,檢測已知威脅的特定模式,并辨別網絡行為是否可能由惡意代理產生。隨著該領域的不斷加強,問題是ML是否能使安全比對手領先一步,因為對手可能利用ML來混淆檢測。

6.5 預測和結構健康監測

一個長期的設想是,軍隊使用的每一個機械系統都有一些關于系統當前和預測健康的內部感應。相關問題如下。

  • 我們能從有限的傳感器中辨別出一個系統或系統組件的當前健康狀況嗎?

  • 機載ML能否預測一個系統或系統部件在暴露于特定環境或彈道侮辱之后的健康狀況?

6.6 健康/生物信息學

6.6.1 序列挖掘

隨著基因組序列的數量繼續呈指數級增長,比較在現場獲得的序列所需的計算工作可能變得無法管理。機器學習可以通過對序列進行不同層次的分類來減少必要的比較。

6.6.2 醫學診斷

93 近年來,機器學習已經在檢測各種組織中的惡性腫瘤方面取得了長足的進步。94 它同樣可以被用來描述創傷或創傷后應激障礙(PTSD)95,并制定治療計劃。

6.7 分析

陸軍的一個重要組成部分集中在對行動、系統、研究和測試的分析上。傳統上,分析人員使用大量的工具,包括機器學習,以多維回歸、聚類和降維的形式。隨著深度學習的出現,一套新的工具應該是可能的,可以更有效地處理需要更復雜模型的大型數據集。例如,應該有可能從測試期間拍攝的視頻流中提取特征和物理屬性,這可能超過目前的標準做法。

6.8 機器學習的其他用途

  • 自適應用戶界面(AUI)和情感計算。ML可以用來確定用戶的心理和/或情緒狀態,并提供適合這種狀態的界面。此外,可變的AUI可以服務于用戶的變化。例如,一些用戶可能喜歡音頻反饋而不是視覺反饋。

  • 推薦系統。最流行的推薦系統之一是根據以前看過的電影的評分來選擇用戶想看的下一部電影(例如,所謂的 "Netflix問題")。對于軍隊來說,可以根據以前的使用情況和庫存核算的反饋來推薦后勤補給的情況。

  • 搜索引擎/信息檢索。傳統上,搜索引擎返回文件的 "點擊率"。新的范式是以簡明的形式回答用戶的問題,而不是簡單的模式匹配。

  • 情感分析。社交媒體上的流量和對環境進行訓練的各種傳感器不僅可以檢測關鍵的關鍵詞或特定物體的存在,還可以推斷出可能的攻擊的可能性。

  • 有針對性的宣傳。傳統上,宣傳是通過散發傳單來完成的,如今,宣傳可以通過社交媒體來傳播。ML的角度是如何以最有說服力的信息向正確的人口群體進行宣傳。此外,重要的是快速檢測和顛覆來自對手針對我們自己的人員/人民的宣傳。

7. 機器學習的研究差距

本研究的目標之一是確定當前研究中的差距,這些差距可能會限制ML在軍隊研究和行動中的全部潛力。本節借用了ARL運動科學家Brian Henz博士和Tien Pham博士(未發表)的戰略規劃工作。

7.1 如何將軍隊的數據/問題納入當前的方法中

傳統上,在一個特定領域采用ML的一半戰斗是弄清楚如何適應現有的工具和算法。對于陸軍所面臨的許多問題來說,這一點更為突出,與其他學術、商業或政府用途相比,這些問題可能是獨一無二的。任何數據分析員面臨的第一個問題是使數據適應他們想要使用的統計或ML模型。并非所有的數據都使用連續變量或者是一個時間序列。離散/標簽數據的管理可能非常棘手,因為標簽可能不容易被轉換成數學上的東西。在自然語言處理中的一個例子是,單詞經常被轉換為高維的單熱向量。另一個例子可能是如何將大量的維修報告轉換為對某一特定車輛在一段時間內的表現的預測。

此外,陸軍的要求超出了典型的商業部門的使用范圍,不僅需要檢測物體和人,還需要檢測他們的意圖和姿態。這將需要開發新的模型。另一個大的要求是可解釋性,正如DARPA最近的一個項目所概述的那樣:是什么因素導致ML算法做出一個特定的決定?在一個真實的事件中,如果一個ML算法在沒有人類驗證的情況下宣布一個重要目標的存在,我們能相信這一決定嗎?

7.2 高性能計算

隨著對計算要求高的ML任務的設想,開發人員正在使用多線程、并行和異構架構(GPU、多核)來加快計算速度。ML的分布式實現遠不如GPU版本常見,因為分布式計算中的節點間通信存在固有的網絡瓶頸,而且在單精度浮點性能方面,GPU相對于CPU有很大優勢。除了目前對GPU的強烈依賴,生物啟發式神經計算旨在尋找非馮-諾伊曼架構來更有效地執行ML,并可能更快。這方面的一個例子是IBM的神經形態芯片。97 未來的研究應該關注如何分配ML處理,使節點之間的網絡通信最小化。另外,像聚類這樣的無監督學習算法在多大程度上可以被映射到神經網絡中?

其他需要考慮的事情。

  • 目前的ML軟件(特定的神經網絡)在一個小型的GPU集群中表現最好。

  • 大多數基于非神經網絡的ML算法的并行性不高,或者根本就沒有并行。

  • 另一個軍隊的具體挑戰是分析基本上沒有標記的數據集(例如,用無監督學習)。手動標注集群將是一種半監督學習的形式。

7.3 獨特的尺寸、重量、功率、時間和網絡限制因素

隨著進入偏遠地區或任何遠離基地的地區,軍隊必須限制系統的尺寸、重量和功率。此外,在 "激烈的戰斗 "中,時間是關鍵。例如,人們不能在遭到槍擊時等待作戰模擬的完成。最后,在其他商業發射器占主導地位的地區,或者在限制無線電通信以提高隱蔽性的情況下,網絡帶寬可能會受到很大限制。

在這種倍受限制的環境中,機器學習將需要有效地進行,而且往往是以一種孤立的方式進行。截然相反的條件是使用大型數據庫訓練大型神經網絡,這往往是最先進的機器學習功力的情況。商業部門正在開發自動駕駛汽車,據推測將使用低功耗的計算設備(如現場可編程門陣列、移動GPU)進行自主駕駛、道路/障礙物檢測和導航。然而,陸軍將有更多的要求,包括自主傳感器和執行器、態勢感知/理解、與人類的通信/合作,以及廣泛的戰場設備。這將需要多幾個因素的計算能力和特定算法的硬件,以實現最佳的小型化和低功耗。

7.4 用雜亂的或欺騙性的數據訓練/評估模型

在混亂的環境中,操作環境預計會有比通常密度更高的靜態和動態物體。此外,人們完全期待主動欺騙以避免被發現。我們也希望能夠開發出足夠強大的算法,至少能夠意識到欺騙,并相應地調低其確定性估計。

7.5 用小的和稀疏的數據訓練一個模型

基于CNN的目標分類的突破可以部分歸功于每個物體類別的成千上萬個例子的可用性。在軍隊場景中,某些人和物體的數據可能是有限的。人們最終將需要one-hot99或multishot分類器,其中幾個有代表性的數據條目就足以學習一個新的類別。到目前為止,最好的選擇是 "知識轉移",通過調整以前訓練的模型的所有參數的子集來學習新的類別。我們的想法是,由于需要優化的參數較少,修改這些參數所需的數據也較少。

7.6 專門針對軍隊相關目標的訓練模型

即使對于我們可以產生大量圖像的目標類別(例如,友好物體),我們也需要訓練自己的模型,以便從每個類別的潛在的數千張圖像中識別軍隊相關類別。軍隊還使用商業車輛中通常不存在的其他傳感模式(例如,熱能和雷達)。因此,需要為這些非典型的傳感設備訓練模型。從根本上說,非典型傳感設備可能需要新的神經網絡拓撲結構以達到最佳的準確性和緊湊性。

7.7 將物理學納入推理中

一個值得研究的有趣領域是將模型和模擬與機器學習相結合。有很多方法可以做到這一點。例如,ML可以用來推導出模擬的起始參數。此外,ML還可以用來處理模擬的輸出。一個耐人尋味的新領域是開發基于物理學或類似物理學的模擬,使用類似ML的模型/方程。一個這樣的應用是預測 "如果?"的情景。例如,"如果我跑過這棵樹呢?接下來會發生什么?"

7.8 軟人工智能

機器學習在傳統上被認為是人工智能的硬性(即數學)表現形式。有可能最終,所有的人工智能任務都會被簡化為數學。然而,就目前而言,一些智能任務似乎更多的是基于推理或情感。對于之前描述的方法中的任務,ML并不能充分解決以下軟性人工智能的特點。

7.8.1 類似人類的推理

人類并不總是完全按邏輯推理,但他們也有能力將不完整的信息拼湊起來,做出 "最佳猜測 "的決定。幾十年來,對這種行為進行編碼一直是一個挑戰。

7.8.2 情感

情緒似乎是驅動人類達到某些目的的動機/目標功能。例如,快樂可能會導致不活動或追求生產性的創造力。另一方面,恐懼則可能會導致忍氣吞聲。計算機是否需要情感來更有效地運作,還是說它們最好擁有100%的客觀性?這既是一個哲學問題,也是一個未來的研究方向。不過現在,毫無疑問的是,在人與代理人的團隊合作中,計算機需要準確地解釋人類的情感,以實現最佳的團體結果。

7.8.3 社會交流

與人類的互動性是陸軍研究未來的首要關注點。一個類似的問題是,不同的計算機系統之間如何進行交流,而這些系統不一定是由同一個實驗室設計的。研究的一個領域是用計算機來教那些在這方面有困難的人進行社會交流。 再一次,對于人與代理的合作,代理將需要能夠參與社會互動,并在人類的陪伴下遵守社會規范。

7.8.4 創造性

創造力通常被認為是隨機合并的想法,與新的元素相結合,由一個鑒別功能決定新創造的項目的功能和/或美學。在某些方面,創造力已經被某些計算機實驗室所證明。例如,為了設計的目的,計算機可以被賦予某些方面的創造力。

7.8.5 通用智能

人工智能的最終目標是將許多狹義的智能算法合并成一個統一的智能,就像人類的頭腦一樣。75鑒于許多狹義的人工智能任務已經比人類的某些任務要好,即使是早期的所謂人工通用智能(AGI)也可能具有一些超人的能力。AGI的一個主要目標是將目前由人類執行的某些任務自動化。

7.8.6 人工超級智能

如果不提及許多哲學家的猜測,機器學習將最終能夠改進自己的編程,導致能力的指數級提高,也許會遠遠超過人類智能,那么機器學習的研究就不完整了。這些設想既是烏托邦式的104,也是烏托邦式的105。希望超級智能能夠解決世界上的許多問題。

8.結論

在這項工作中,我們回顧了機器學習的不同類別,并描述了一些更常用的方法。然后,我們指出了一小部分關于ML在ARL中的應用的例子。最后,我們預測了ML在未來可以應用于軍隊的各個領域,并概述了為實現這一結果需要解決的一些挑戰。我們希望這份文件能夠激勵未來的研究人員和決策者繼續投資于研究和開發,以充分利用ML來幫助推動美國陸軍的發展。

付費5元查看完整內容

這是一個顛覆性技術快速變革的時代,特別是在人工智能(AI)領域。雖然這項技術是由商業部門為商業開發的,但人工智能在軍事應用方面的明顯潛力,現在正促使世界各地的武裝部隊對人工智能防御雛形系統進行試驗,以確定這些系統如何能夠最好地用于作戰與和平時期的任務。

澳大利亞也不例外,在2020年國防戰略更新中分配了資金,開始將人工智能能力引入國防。這將涉及開發解決戰術級和戰略級軍事問題的人工智能應用程序,建立一個熟練的人工智能勞動力,并與澳大利亞合作伙伴和盟友合作,將倫理學納入人工智能應用程序,并進行人工智能實驗。今年在澳大利亞首都地區費爾伯恩設立的國防技術加速實驗室是這一計劃的具體行動體現。

彼得-雷頓(Peter Layton)的論文考慮了人工智能在未來海、陸、空作戰行動中的戰術和作戰層面上可能發揮的作用,為這一廣泛的活動做出了貢獻。這是一個很少被研究的領域,因為到目前為止,大部分的討論都集中在關鍵的技術問題上。這些審議表明,人工智能可能是未來戰爭中的一項重要技術,但仍有許多不確定因素。本文提供了一個起點,在此基礎上開始辯論,這將有助于解決其中一些不確定性。

本文認為,人工智能將滲透到大多數軍事機器中;然而,它的通用性意味著它很可能是在現有作戰層面結構中被使用。鑒于此,人工智能在中短期內的主要作戰用途是“尋找(find)和欺騙(fool)”。人工智能/機器學習尋找隱藏在高度混亂背景中的目標非常出色;在這個應用上,它比人類更好,而且速度更快。然而,人工智能可以通過各種手段被欺騙;其強大的尋找能力缺乏穩健性。這兩個關鍵特征在應用于當前海、陸、空作戰層面的思考時,可能會產生巨大的影響。

本文初步設計的作戰概念與沒有人工智能技術的作戰概念明顯不同。

所討論的概念旨在激發人們對人工智能戰場上人機協作作戰的思考。這樣的戰場在目前看來可能有些猜測,幾乎是科幻小說。即便如此,許多國家已經在規劃、研究和開發方面取得了很大進展。鑒于將軍事力量調整到新方向所需的漫長準備時間,這一旅程需要從現在開始。

人工智能(AI)技術突然變得對軍事力量很重要。美國國防部(US DoD)已將人工智能的投資從2016-17年約6億美元增加到2021-22年25億美元,橫跨600多個項目。中國已經通過了一項“下一代人工智能發展計劃”,旨在到2030年使中國成為人工智能領域的杰出國家,并使人民解放軍從“信息化戰爭”轉向“智能化戰爭”。更引人注目的是,俄羅斯總統普京宣布,“人工智能是未來......誰成為這個領域的領導者,誰就會成為世界的統治者”。這些高級別的倡議和聲明正在產生結果。

在美國,美國海軍(USN)的“海上獵人”號(USV)在沒有船員的情況下從加利福尼亞航行到夏威夷再返回,利用船上的傳感器、雷達和攝像機數據,通過人工智能進行導航。同時,在美國國防部高級研究計劃局(DARPA)的支持下,一架由人工智能驅動的F-16模擬戰斗機最近在多次模擬的近距離空戰中全面擊敗了由非常有經驗的人類飛行員控制的類似模擬。在一項研究陸戰的類似評估中,美國陸軍(US Army)已經確定,一支由人工智能驅動的部隊比一支非人工智能驅動的部隊擁有大約10倍的戰斗力。

中國目前正在應用人工智能,通過指揮和控制系統的自動化來提高其戰場決策的速度和準確性,制定預測性作戰計劃并解決情報、監視和偵察數據融合的挑戰。中國還開始試用人工智能USV,以備在南海使用,并開始試驗無人駕駛坦克,而一家中國私營公司公開展示了人工智能武裝的蜂群無人機。

俄羅斯落后于美國和中國,但現在正在實施一項國家人工智能戰略以迎頭趕上。在軍事領域,俄羅斯有幾項工作正在進行。一條主線是將人工智能應用于信息戰,在戰術上用于發動心理戰,在戰略上用于破壞對手國家的社會凝聚力。另一條線是通過開發無人駕駛地面車輛(UGVs)、遠程傳感器、戰術指揮和控制系統以及無人駕駛航空器(UAVs),使用人工智能來提高陸地作戰行動的有效性。另一個努力方向是國家防空網絡的指揮和控制系統的自動化。

初步跡象表明,人工智能可能是未來戰爭中一項非常重要的技術,但仍然存在不確定性。雖然人工智能在民用領域,特別是在消費類產品中,被廣泛使用,但在軍事環境中才剛剛接近實際部署。此外,它仍然沒有在真正的戰斗行動的惡劣試驗場上得到驗證。即便如此,人工智能已經成為軍事力量考慮其未來時不可忽視的技術。

重要的是,在可預見的未來,可用的人工智能技術是狹義的,而不是通用的。狹義人工智能等于或超過了人類在特定領域內特定任務的智能;其表現取決于應用環境。相比之下,通用人工智能等于人類在任何領域任何任務中的全部表現。何時能實現通用人工智能仍然值得商榷,但似乎還有幾十年的時間。近中期的全球軍事興趣在于如何在現代戰場上使用狹義的人工智能技術。

不足為奇的是,人工智能的定義往往與人類智能相提并論。例如,2018年美國國防部人工智能戰略將人工智能定義為“機器執行通常需要人類智能的任務......”。這種理解將技術擬人化,并無意中將對人工智能應用的思考限制在那些可以由人類執行的任務上。

在某些應用中,人工智能可能比人類做得更多或更少。人工智能和人類能力的維恩圖在某些領域可能會重疊,但認為它們重合是有點虛偽的。在提供解決問題的見解上,人工智能可能是智能的,但它是人工的,因此,它的思維方式是人類所沒有的。

因此,本文在考慮人工智能時,更多的是考慮這種技術能夠執行的廣泛功能,而不是考慮它與人類能力的關系。2019年澳大利亞國防創新委員會采取了這種方法,將人工智能定義為“用于執行以目標為導向的任務的各種信息處理技術,以及追求該任務的推理手段”。

初一看,這個定義似乎并不精確,沒有包括人工智能可能為軍事或民用目的實際執行任務。但這種模糊性是當代人工智能應用的一個關鍵屬性。人工智能可以以多種方式應用,可以被認為是一種普遍存在于社會中的通用技術。通用技術的一個早期例子是電力,現在它被廣泛使用,以至于它的持續存在和使用,就所有的意圖和目的而言,都是簡單的假設。電能使惰性機器活躍起來,人工智能也將以自己的方式,通過推理為它們提供完成任務的能力。人工智能似乎將注入許多軍事機器,因此未來的戰場將不可避免地以某種方式由人工智能支持。

為了取得對對手的作戰優勢,軍隊不斷尋求更大的戰斗力。傳統上,技術是以一種綜合的方式在戰場上使用的,它能最好地利用人類和機器的長處,同時盡量減少兩者弱點的影響。人工智能似乎也可能是類似的。可以預計,人工智能在與人類謹慎地合作時,而不是在某種獨立的模式下,會變得最有效。

這種考慮強調了新技術本身并不會突然間帶來戰場優勢,而是在于人類如何運用它。對早期技術創新的歷史分析指出,擁有指導如何使用這些新技術的合理概念是軍隊成功將其投入使用的關鍵。歷史學家威廉姆森-默里和艾倫-米萊指出:

  • 證據表明,首先,制定未來愿景的重要性。軍事機構不僅需要進行最初的智能投資,以發展對未來戰爭的設想,而且必須繼續對這種設想進行深入思考,以確定這些戰爭可能與以前的沖突有什么不同......在這方面任何對未來戰爭的設想幾乎肯定是模糊和不完整的,不是詳細和精確的,更不是任何科學意義上的預測。然而,愿景并不足以產生成功的創新。一個人對未來沖突的看法也必須是平衡的,并與行動的實際情況有很好的聯系。

在戰術層面,與戰爭現實的聯系是最緊密的。戰略規定了目標、總體方針和使用的力量,但在與聰明和適應性強的對手戰斗中處理這些力量的卻是戰術層面。雖然戰斗的成功可能不會導致戰略的成功,正如美國在越南的戰爭所說明的那樣,反之亦然。一個好的戰略在面對持續的戰術失敗時不可能成功。克勞塞維茨寫道:一切都取決于戰術結果......這就是為什么我們認為強調所有的戰略規劃都只依賴于戰術上的成功是有用的......這在任何情況下都是決策的實際基本依據。戰術通常被認為涉及友軍相互之間以及與敵人之間的分布和機動,以及在戰場上使用這些部隊。

本文旨在為在未來的人工智能戰場上使用人機團隊制定作戰概念。這樣的戰場,特別是當擴大到陸戰以外的空戰和海戰時,有一個混合的線性和深層的方面,具有消耗和機動的概念。設計這些作戰概念將為潛在的狹義人工智能系統如何在戰爭的戰術和作戰層面上使用提供一個廣闊的視野。

首先,本文討論了組成人工智能技術包的各種技術要素。這些要素包括先進的計算機處理和大數據,以及與云計算和物聯網(IoT)有關的具體方面。

第二章研究了利用人工智能發動戰爭的問題,并為防御和進攻制定了通用的作戰概念。這些概念位于作戰和戰術層面之間的模糊界面,涉及友軍相對于對手的分布和機動,以及友軍在戰場上的運用。

第三章、第四章和第五章分別將人工智能防御和進攻的兩個通用概念應用于海洋、陸地和空中領域。每個領域的戰斗在分配和操縱友軍以及與敵人交戰方面都有很大的不同,因此有必要提出單獨的人工智能作戰概念。沒有一個單一的概念能夠充分涵蓋所有三個領域,除非在很高的抽象水平上,但理解其含義可能會變得困難。提出這種具有前瞻性的概念似乎接近于投機性的小說。為了避免這種情況,每個概念都特意以當代作戰思維為基礎,并討論了當前和新興的人工智能支持的海、陸、空平臺和系統,以說明所提出的想法。

設計這些作戰概念的目的是激發思考,并啟動關于未來和如何備戰的辯論。本文提出的作戰概念旨在成為辯論其他人工智能戰場概念的實用性、可能性和有用性的基礎。只有通過對建議進行批判性分析,并不斷重構它們以進一步分析和演化,才能朝著最佳作戰概念取得進展。

本文所討論的概念在性質和范圍上都是有意限制的。就性質而言,海、陸、空的概念是:為了保持每個概念的重點,它們不是聯合或合并的。重要的是,這種狹隘性意味著一些領域并沒有包括在內,如俄羅斯在影響力戰爭中使用人工智能或中國在社會管理和內部防御中使用人工智能。出于類似的原因,每個概念都有一個狹窄的范圍,專注于戰爭,只有限地關注后勤,并避免關鍵領域,如教育、培訓、行政和指揮與控制。值得注意的是,除了與傳統的陸、海、空領域的戰術交戰的關系外,沒有討論網絡和空間這些新領域。

本文將人工智能這種新技術與戰爭的作戰方式和戰術使用選擇聯系起來。有了這樣一個重點,本文就與許多武裝部隊制定的眾多人工智能戰略和計劃不同。一般來說,這些戰略和計劃都是向內看的,目的是闡述人工智能作為一種技術將如何被研究、獲得并引入到他們的具體服務中。本文旨在補充這些人工智能技術戰略和計劃,將它們與更廣泛的作戰業務聯系起來,發揮作用。

付費5元查看完整內容

引言

空戰既涉及技術,又受技術影響。所使用的技術限制了空軍可能采取的行動,既授權又限制了部隊的使用選擇。鑒于此,新興主要技術總是會吸引人們的極大興趣,而今天的焦點是人工智能(AI)。

在可預見的未來,這里指的是狹義的人工智能技術,不是通用的。狹義的人工智能在特定領域內的特定任務上等于或超過人類智能。相比之下,通用 AI 等于任何領域中任何任務的全部人類表現。通用 AI 預計將出現在幾十年后(Gruetzemacher,2019)。

近中期的人工智能全球軍事利益在于如何在現代戰場上使用狹義的人工智能技術。這種人工智能可以以多種方式應用,并且可以被視為一種通用技術,在更廣泛的社會中,它將變得普遍并融入大多數軍事機器(Trajtenberg,2018)。

本文只討論AI在決策中的作用,特別是在空戰中的作用。本文首先討論了這項技術,然后指出了作戰結構,最后考慮了人工智能和機器學習輔助空戰決策的三種替代方法。

技術層面

現代人工智能已經發展到滿足商業領域,尤其是消費者的需求。一個關鍵的進步是低成本圖形處理單元 (GPU) 變得容易獲取,主要是為了滿足視頻游戲的需求。憑借其大規模的并行處理,GPU 可以輕松運行機器學習軟件。機器學習是一個較老的概念,但它需要結合GPU和對 "大數據 "庫的訪問,以使其在大規模的情況下變得實用和可負擔。

在機器學習中,計算機算法,而不是外部人類計算機程序員,創建了人工智能用來解決問題的指令序列和規則。一般來說,用于訓練算法的數據越多,設計的規則和指令就越好。鑒于此,具有機器學習功能的 AI 可能會在“工作中”自學,隨著它不斷獲得更多經驗,在某項任務中逐漸變得更好。

在許多情況下,這些數據來自一個由互連設備組成的大規模網絡,這些設備從現場收集信息,然后通過無線“云”將其傳輸到遠程人工智能計算機進行處理。在軍事領域,戰場物聯網 (IoBT) 以固定和移動設備為特色,包括能夠成群協作的無人機。這種 IoBT 網絡允許遙感和控制,但會產生大量數據。解決此問題的一種方法是將網絡連接到可以實時評估數據的邊緣設備,將最重要的信息轉發到云中并刪除其余信息,從而節省存儲和帶寬。

現在大多數邊緣計算都是使用人工智能芯片完成的。它們體積小、相對便宜、耗電少、熱量少,因此可以很容易地集成到智能手機等手持設備和工業機器人等非消費設備中。即便如此,在許多應用程序中,人工智能以混合方式使用:一部分在設備上,一部分在遠程融合中心,通過云訪問。

作戰結構

一些與未來空戰相關的重要作戰概念正在出現。作戰正在從聯合轉變為現在的多域,即跨越陸地、海洋、空中、網絡和空間。一個名為“融合”的概念的意圖是,友軍應該能夠在任何領域內攻擊敵方單位(Wesley 2020, 4-5)。例如,陸軍現在將能夠在海上與艦船交戰,空軍將能夠在有爭議的環境中同時攻擊空間資產和無處不在的網絡。

這種作戰概念摒棄了傳統的單域線性殺傷鏈,轉而采用利用替代或多路徑的多域殺傷鏈。新興的“馬賽克”結構設想跨大型 IoBT 領域的數據流創建一個殺傷鏈網絡,其中實現任務的最佳路徑被確定并近乎實時地使用。然后,IoBT 領域的使用是流動的并且不斷變化,而不是像舊的殺傷鏈模型所暗示的那樣是固定的數據流。結果是,馬賽克概念提供了冗余節點和多個殺傷路徑的高度彈性網絡(Clark 2020, 27-32)。這種跨領域思維現在正在進一步演變為“擴展機動”的概念(Vergun,2021)。

在重大沖突期間,實現這些聯鎖作戰概念以對抗同級對手的復雜性是顯而易見的。為了使涉及收斂、鑲嵌和擴展機動作戰的多領域作戰切實可行,需要使用帶有機器學習的人工智能自動化系統。

在中短期內,人工智能對涉及此類復雜結構的決策的主要吸引力在于其能夠快速識別模式并檢測隱藏在 IoBT 收集的大型數據庫中的任務。這樣做的主要結果是,人工智能將更容易檢測、定位和識別整個戰場上的物體。隱藏將變得越來越困難,瞄準變得更加容易。另一方面,人工智能并不完美。眾所周知,它存在容易被愚弄、脆弱、無法將在一項任務中獲得的知識轉移到另一項任務以及依賴數據的問題 (Layton 2021, pp. 13-15) 。

AI 作戰主要效用就變成了“發現和愚弄”。具有機器學習功能的 AI 在查找隱藏在高度雜亂背景中的物品方面非常出色,但是由于能夠被愚弄,因此缺乏魯棒性。

“發現”的出發點是將許多低成本的 IoBT 傳感器放置在敵對勢力可能經過的最佳陸地、海洋、空中、太空和網絡位置。未來的戰場空間可能包含數百甚至數千個中小型固定和移動人工智能監視和偵察系統,在所有領域運行。同時,可能有同等數量的支持人工智能的干擾和欺騙系統協同作用,試圖在對手的腦海中制造一種虛假的、故意誤導的戰場印象。

替代決策選項

人工智能和機器學習決策選項將受到技術和所需作戰概念的需求影響。這里討論的替代方案是使用技術能夠更快地對對手的行動做出反應,通過技術驅動先發制人搶在對手前面,或者顯著減慢對手的決策速度。

選項 1:超級戰爭(Hyperwar)

AI 以機器速度提供戰爭愿景。 John Allen 和 Amir Husain 認為 AI 可以實現超級戰爭,其中:“戰爭范圍戰術端的戰斗速度將大大加快,將決策-行動周期縮短到幾分之一秒,導致具有更多自主決策-行動并發性的一方獲得決定性的優勢。” (Allen,2017)

在空戰決策的情況下,著名的觀察-定向-決策-行動(OODA)模型提供了一個有用的框架來理解這個想法。該模型的設計師約翰博伊德主張更快地做出決策,以便進入對手的決策周期。這會擾亂敵方指揮官的思維,造成危險的局面,并阻礙他們適應現在瞬息萬變的環境(Fadok 1997, p.364-368)。在“觀察”功能中,人工智能將用于大多數 IoBT 設備的邊緣計算,然后再次用于中央指揮中心,將傳入的 IoBT 數據融合成一張綜合圖景。對于“定向”而言,人工智能將在戰斗管理系統中發揮重要作用(Westwood 2020, 22)。人工智能不僅可以生成全面的近實時空中畫面,還可以預測敵方空中機動路線。

下一個 AI 層處理“決策”以了解友方防空部隊的可用性,將傳遞給人類指揮官以批準要交戰的接近敵方空中目標的優先列表、采用的多域攻擊的最佳類型、所涉及的時間以及任何消除沖突的考慮。人類將在必要時保持在環或在環控制,不僅是出于武裝沖突法的原因,而且因為人工智能可能會犯錯誤,需要在做出任何不可逆轉的決定之前進行檢查。經人工批準后,“行動”人工智能層將自動向每個目標分配首選武器,并自動傳遞必要的目標數據,確保與友軍解除沖突,確認目標何時被交戰并可能下令重新補給武器。

選項 2:超越OODA

OODA 人工智能技術正在迅速擴散,這使得友方和敵方部隊都可能同樣具備超級戰爭的能力。 OODA 決策模型可能需要改變。據此,在事件發生之前不能進行觀察;該模型天生就會在時間上向后看。人工智能可以帶來微妙的轉變。將合適的環境數字模型和敵對力量與來自 IoBT 的高質量“發現”數據相結合,人工智能可以預測對手可能采取的未來行動范圍,并據此預測友軍可能采取最好的行動來應對這些。

人工智能和機器學習輔助決策模型可能是“感知-預測-同意-行動”:人工智能感知環境以尋找敵方和友軍;人工智能預測敵軍在不久的將來可能會做什么,并就最佳友軍反應提出建議;人機團隊中的人類部分同意;人工智能通過向部署在戰場上的各種支持人工智能的系統發送機器對機器的指令來發揮作用。在這種決策選項下,友軍的目標是搶占主動權并在敵軍之前采取行動。

它是一種高度計算的持續戰術級別的先發制人形式。人工智能將更容易檢測、定位和識別整個戰場上的物體。隱藏將變得越來越困難,瞄準變得更加容易

選項 3:阻止其他人的決策

試圖更快地做出友軍決策的另一種方法是嘗試減慢對手的決策速度。在空戰中,攻擊者需要大量關于目標及其防御的信息才能成功發動空襲。

為了防止這種情況,支持人工智能的“傻瓜”系統可以分散在戰場上,無論是物理空間還是網絡空間。廣泛分散的小型移動邊緣計算系統可以通過傳輸一系列不同保真度的信號來創建復雜的電子誘餌模式。這些系統可能安裝在無人機上以獲得最大的機動性,盡管使用道路網絡的無人駕駛地面車輛也可能對特定功能有用,例如偽裝成移動 SAM 系統。其目的是通過建立一個誤導性的或至少是混亂的戰場畫面來擊敗對手的“發現”系統。

人工智能“傻瓜”系統也可以與復雜的欺騙行動結合使用。例如,幾架無人機都在主動發送友軍戰斗機電子簽名的噪聲傳真,這樣它們就可以起飛了。當大量戰斗機突然空降時,敵手就會不確定哪些是真的,哪些不是。

結論

這三個選項在決策方面提供了真正的選擇。也許與最初的看法不一致,超級戰爭的概念最有可能涉及一系列多域共同或曲折攻擊,而不是連續流線式行動。物理限制意味著需要時間來重新武裝、補充燃料和重新定位自己的部隊機器以進行后續攻擊。

另一方面,OODA 之外的選項可能更像是一個持續的行動,因為它有效地遵循了詳細的計劃,盡管由 IoBT 戰場空間感知提供信息。這樣的決策結構可能適合主動防御,它吸收了第一次攻擊,從中學習,然后以預定的方式進行攻擊。鑒于 AI 的處理速度,響應將在啟動前立即確定,從而從 AI 的“在職”機器學習中獲得最大價值。

最后,阻止他人的決策選項為防御者提供了很大的希望,但需要在使用的監視和偵察系統以及所涉及的人類認知方面對對手有很好的了解。它似乎最適合凍結沖突的情況,在這種情況下,“傻瓜”系統可以被最佳地放置,環境非常容易理解,并且面對的是單一的對手。這一選擇可能不太適合那些迅速部署到遙遠戰區且對局勢了解有限的部隊。

首選的選項將取決于具體情況,但強調并非所有在沖突中使用人工智能的人都可能以相同的方式使用相同的技術,即使在狹窄的決策領域也是如此。毫無疑問,更重要的是人工智能將在短期內顯著改變空戰決策。如今,每個空軍的選擇都是選擇對自己最有利的方式。現在是開始深入思考這個問題的時候了。

作者介紹

Peter Layton 博士是格里菲斯大學格里菲斯亞洲研究所的客座研究員、RUSI 副研究員和澳大利亞皇家空軍航空航天動力中心的客座研究員。他擁有豐富的航空和國防經驗,包括駕駛快速噴氣式飛機和海上巡邏機、部隊發展、重大裝備項目以及擔任國防武官。由于他在五角大樓部隊結構方面的工作,他被授予美國國防部長杰出公共服務獎章。他的研究興趣包括大戰略、特別是與中等大國相關的國家安全政策、國防力量結構概念和新興技術的影響。他擁有新南威爾士大學的大戰略博士學位。

付費5元查看完整內容

人工智能是有望改變未來幾年戰爭面貌的眾多熱門技術之一。描述其可能性并警告那些在人工智能競賽中落后的人的文章比比皆是。美國防部已經創建了聯合人工智能中心,希望能在人工智能的戰斗中獲勝。人工智能的愿景是使自主系統能夠執行任務、實現傳感器融合、自動化任務以及做出比人類更好、更快的決策。人工智能正在迅速改進,在未來的某一天,這些目標可能會被實現。在此期間,人工智能的影響將體現在我們軍隊在無爭議的環境中執行的更平凡、枯燥和單調的任務上。

人工智能是一種快速發展的能力。學術界和工業界的廣泛研究正在縮短系統訓練時間并獲得越來越好的結果。人工智能在某些任務上很有效,例如圖像識別、推薦系統和語言翻譯。許多為這些任務設計的系統今天已經投入使用,并產生了非常好的結果。在其他領域,人工智能非常缺乏人類水平的成就。其中一些領域包括處理人工智能以前從未見過的場景;理解文本的上下文(理解諷刺,例如)和對象;和多任務處理(即能夠解決多種類型的問題)。今天的大多數人工智能系統都被訓練來完成一項任務,并且只在非常特定的情況下這樣做。與人類不同,它們不能很好地適應新環境和新任務。

人工智能模型每天都在改進,并在許多應用中顯示出它們的價值。這些系統的性能可以使它們在信息戰中展示出非凡的能力,諸如在衛星圖像中識別 T-90 主戰坦克、使用面部識別識別人群中的高價值目標、為開源情報翻譯文本以及文本生成等任務。人工智能最成功的應用領域是那些有大量標記數據的領域,如 Imagenet、谷歌翻譯和文本生成。 AI 在推薦系統、異常檢測、預測系統和競技游戲等領域也非常有能力。這些領域的人工智能系統可以幫助軍方在其承包服務中進行欺詐檢測,預測武器系統何時因維護問題而失效,或在沖突模擬中制定制勝策略。所有這些應用程序以及更多應用程序都可以成為日常操作和下一次沖突中的力量倍增器。

人工智能在軍事應用方面的不足

當軍方希望將人工智能在這些任務中的成功經驗納入其系統時,必須承認一些挑戰。首先是開發人員需要獲得數據。許多人工智能系統是使用由一些專家系統(例如,對包括防空炮臺的場景進行標注),通常是人類標注的數據進行訓練。大型數據集通常由采用人工方法的公司進行標注。獲得這種數據并分享它是一個挑戰,特別是對于一個喜歡對數據進行分類并限制其訪問的組織來說。一個軍事數據集的例子可能是由熱成像系統產生的圖像,并由專家進行標注,以描述圖像中發現的武器系統(如果有的話)。如果不與預處理器和開發人員共享,就無法創建有效使用該數據集的人工智能。人工智能系統也很容易變得非常大(因此很慢),并因此容易受到 "維度問題 "的影響。例如,訓練一個系統來識別現有的每一個可能的武器系統的圖像將涉及成千上萬的類別。這樣的系統將需要大量的計算能力和在這些資源上的大量專用時間。而且由于我們正在訓練一個模型,最好的模型需要無限量的這些圖像才能完全準確。這是我們無法實現的。此外,當我們訓練這些人工智能系統時,我們經常試圖強迫它們遵循 "人類 "的規則,如語法規則。然而,人類經常忽視這些規則,這使得開發成功的人工智能系統在情感分析和語音識別等方面具有挑戰性。最后,人工智能系統在沒有爭議的、受控的領域可以很好地工作。然而,研究表明,在對抗性條件下,人工智能系統很容易被愚弄,導致錯誤。當然,許多國防部的人工智能應用將在有爭議的空間運作,如網絡領域,因此,我們應該對其結果保持警惕。

忽略敵人在人工智能系統方面的努力,其靠此擊敗我們,因為這些看似超人類的模型也有局限性。人工智能的圖像處理能力在給定不同于其訓練集的圖像時并不十分強大--例如,照明條件差、角度不對或部分被遮擋的圖像。除非這些類型的圖像在訓練集中,否則模型可能難以(或無法)準確識別內容。幫助我們信息戰任務的聊天機器人僅限于數百個字,因此不能完全取代一次可以寫幾頁的人類。預測系統,如IBM的Watson天氣預測工具,由于它們試圖模擬的系統復雜性,在維度問題和輸入數據的可用性方面很困難。研究可能會解決其中的一些問題,但很少有問題會像預測或期望的那樣迅速得到解決。

人工智能系統的另一個弱點是他們沒有能力進行多任務處理。人類有能力識別敵方車輛,決定對其采用何種武器系統,預測其路徑,然后與目標交戰。這套相當簡單的任務目前對人工智能系統來說是不可能完成的。充其量,可以構建一個人工智能的組合,將個別任務交給不同的模型。這種類型的解決方案,即使是可行的,也會帶來巨大的傳感和計算能力的成本,更不用說系統的訓練和測試了。許多人工智能系統甚至沒有能力在同一領域內轉移他們的學習。例如,一個被訓練來識別T-90坦克的系統很可能無法識別中國的99式坦克,盡管它們都是坦克,而且都是圖像識別任務。許多研究人員正在努力使系統能夠轉移他們的學習,但這樣的系統離實際應用還有長久的時間。

人工智能系統在理解輸入和輸入中的背景方面也非常差。人工智能識別系統并不理解圖像是什么,它們只是學習圖像像素的紋理和梯度。給予具有這些相同梯度的場景,人工智能很容易錯誤地識別圖片的一部分。這種缺乏理解的情況可能會導致作出錯誤分類,例如將湖面上的一艘船識別為BMP,但人類缺不會。

這導致了這些系統的另一個弱點--無法解釋它們是如何做出決定的。人工智能系統內部發生的大部分事情都是一個黑盒,人類幾乎無法理解系統是如何做出決定的。這對于高風險的系統來說是一個關鍵問題,比如那些做出參與決定的系統,或者其輸出可能被用于關鍵決策過程的系統。對一個系統進行審計并了解其犯錯原因的能力在法律上和道德上都很重要。此外,在涉及人工智能的情況下,我們如何評估責任的問題是一個公開研究點。最近,新聞中出現了許多例子,人工智能系統在貸款審批和假釋決定等領域基于隱藏的偏見做出了糟糕的決定。不幸的是,關于可解釋的人工智能的工作多年來一直沒有取得成果。

人工智能系統也很難區分相關性和因果關系。經常用來說明兩者區別的臭名昭著的例子是溺水死亡和冰激凌銷售之間的相關性。一個人工智能系統得到了關于這兩個項目的統計數據,卻不知道這兩個模式之所以相關,只是因為兩者都是天氣變暖的結果,并可能得出結論,為了防止溺水死亡,我們應該限制冰淇淋的銷售。這類問題可能表現在一個軍事欺詐預防系統中,該系統被告知按月采購的數據。這樣一個系統可能會錯誤地得出結論,認為9月份的欺詐行為會隨著支出的增加而增加,而實際上這只是年終消費習慣的一個結果。

即使沒有這些人工智能的弱點,軍方目前應該關注的主要領域是對抗性攻擊。我們必須假設,潛在的對手將試圖愚弄或破解我們使用的任何可獲得的人工智能系統。將試圖愚弄圖像識別引擎和傳感器;網絡攻擊將試圖躲避入侵檢測系統;后勤系統將被輸入篡改的數據,用虛假的需求堵塞供應線。

對抗性攻擊可分為四類:規避、推理、中毒和提取。事實證明,這些類型的攻擊很容易完成,通常不需要計算技能。逃避攻擊試圖愚弄人工智能引擎,往往是希望避免被發現--例如,隱藏網絡攻擊,或說服傳感器相信一輛坦克是一輛校車。未來的主要生存技能可能是躲避人工智能傳感器的能力。因此,軍方可能需要開發一種新型的人工智能偽裝,以擊敗人工智能系統,因為事實證明,簡單的混淆技術,如戰略性的膠帶放置,可以愚弄人工智能。逃避攻擊通常是通過推理攻擊進行的,推理攻擊可以獲得關于人工智能系統的信息,這些信息可以用來實現逃避攻擊。中毒攻擊的目標是訓練期間的人工智能系統,以實現其惡意的意圖。這里的威脅將是敵人獲得用于訓練我們工具的數據集。可能會插入誤標的車輛圖像以愚弄目標系統,或篡改維護數據,旨在將即將發生的系統故障歸類為正常操作。考慮到我們的供應鏈的脆弱性,這將不是不可想象的,而且很難發現。提取攻擊利用對人工智能界面的訪問來了解人工智能的運行情況,從而創建一個系統的平行模型。如果我們的人工智能不被未經授權的用戶所保護,那么這些用戶可以預測我們的系統所做的決定,并利用這些預測為自己服務。人們可以設想對手預測人工智能控制的無人系統將如何應對某些視覺和電磁刺激,從而影響其路線和行為。

軍事人工智能應用的發展之路

人工智能在未來的軍事應用中肯定會有作用。它有許多應用領域,它將提高工作效率,減少用戶的工作量,并比人類更迅速地運作。正在進行的研究將繼續提高其能力、可解釋性和復原力。軍隊不能忽視這項技術。即使我們不擁有它,但我們的對手肯定會發展AI,我們必須有能力攻擊和擊敗他們的AI。然而,我們必須抵制這種重新崛起的技術誘惑。將脆弱的人工智能系統放置在有爭議的領域,并讓它們負責關鍵的決策,這將為災難性的結果打開了機會。在這個時候,人類必須繼續負責關鍵決策。

鑒于我們暴露的人工智能系統被攻擊的概率很高,以及目前人工智能技術缺乏彈性,投資軍事人工智能的最佳領域是那些在沒有爭議的領域運作的人工智能。由人類專家密切監督或具有安全輸入和輸出的人工智能工具可以為軍隊提供價值,同時減輕對漏洞的擔憂。這類系統的例子有醫學成像診斷工具、維修故障預測應用和欺詐檢測程序。所有這些都可以為軍隊提供價值,同時限制來自對抗性攻擊、有偏見的數據、背景誤解等等的風險。這些并不是由世界上的人工智能推銷員贊助的超級工具,但卻是最有可能在短期內獲得成功的工具。

作者信息

保羅-麥克斯韋中校(退役)是美國軍事學院陸軍網絡研究所的計算機工程網絡研究員。他在服役的24年中曾是網絡和裝甲部隊的軍官。他擁有科羅拉多州立大學的電子工程博士學位。

所表達的觀點僅代表作者本人,不反映美國軍事學院、陸軍部或國防部的官方立場。

付費5元查看完整內容

機器學習是現代戰爭系統的關鍵組成部分。本文探討了人工智能的 7 個關鍵軍事應用。

機器學習已成為現代戰爭的重要組成部分,也是我(Nicholas Abell)作為陸軍退伍軍人和數據科學家的主要興趣點。與傳統系統相比,配備人工智能/機器學習的軍事系統能夠更有效地處理大量數據。此外,人工智能由于其固有的計算和決策能力,提高了作戰系統的自我控制、自我調節和自我驅動能力。

人工智能/機器學習幾乎被部署在所有軍事應用中,軍事研究機構增加研發資金有望進一步推動人工智能驅動系統在軍事領域的應用。

例如,美國國防部 (DoD) 的國防高級研究計劃局 (DARPA) 正在資助一種機器人潛艇系統的開發,該系統預計將用于從探測水下水雷到參與反潛行動的各種應用。此外,美國國防部在 2017 財年在人工智能、大數據和云計算方面的總體支出為 74 億美元。預計到 2025 年,軍事 ML 解決方案的市場規模將達到 190 億美元。

以下是機器學習將在未來幾年證明其重要性的七種主要軍事應用。

1. 作戰平臺

來自全球不同國家的國防軍隊正在將人工智能嵌入陸地、海軍、空中和太空平臺上使用的武器和其他系統中。

在基于這些平臺的系統中使用人工智能,可以開發出更少依賴人工輸入的高效作戰系統。它還增加了協同作用,提高了作戰系統的性能,同時需要更少的維護。人工智能還有望使自主和高速武器能夠進行協作攻擊。

2. 網絡安全

軍事系統通常容易受到網絡攻擊,這可能導致機密軍事信息丟失和軍事系統損壞。然而,配備人工智能的系統可以自主保護網絡、計算機、程序和數據免受任何未經授權的訪問。

此外,支持人工智能的網絡安全系統可以記錄網絡攻擊的模式,并開發反擊工具來應對它們。

3. 物流運輸

人工智能有望在軍事后勤和運輸中發揮關鍵作用。貨物、彈藥、武器和部隊的有效運輸是成功軍事行動的重要組成部分。

將人工智能與軍事運輸相結合可以降低運輸成本并減少人力工作負荷。它還使軍用艦隊能夠輕松檢測異常并快速預測組件故障。最近,美國陸軍與 IBM 合作,使用其 Watson 人工智能平臺來幫助預先識別 Stryker 戰車的維護問題。

4. 目標識別

正在開發人工智能技術以提高復雜戰斗環境中目標識別的準確性。這些技術使國防軍隊能夠通過分析報告、文檔、新聞提要和其他形式的非結構化信息來深入了解潛在的作戰領域。此外,目標識別系統中的人工智能提高了這些系統識別目標位置的能力。

支持人工智能的目標識別系統能力包括基于概率的敵人行為預測、天氣和環境條件匯總、潛在供應線瓶頸或漏洞的預測和標記、任務方法評估以及建議的緩解策略。機器學習還用于從獲得的數據中學習、跟蹤和發現目標。

例如,DARPA 的競爭環境中的目標識別和適應 (TRACE) 計劃使用機器學習技術在合成孔徑雷達 (SAR) 圖像的幫助下自動定位和識別目標。

5. 戰場醫療

在戰區,人工智能可以與機器人手術系統 (RSS) 和機器人地面平臺 (RGP) 集成,以提供遠程手術支持和疏散活動。美國尤其參與了 RSS、RGP 和其他各種用于戰場醫療保健的系統開發。在困難條件下,配備人工智能的系統可以挖掘士兵的病歷并協助進行復雜的診斷。

例如,IBM 的 Watson 研究團隊與美國退伍軍人管理局合作開發了一種稱為電子病歷分析器 (EMRA) 的臨床推理原型。這項初步技術旨在使用機器學習技術來處理患者的電子病歷,并自動識別和排列他們最嚴重的健康問題。

6. 戰斗模擬與訓練

模擬與訓練是一個多學科領域,它將系統工程、軟件工程和計算機科學結合起來構建計算機模型,使士兵熟悉在軍事行動中部署的各種作戰系統。美國正在越來越多地投資于模擬和訓練應用。

美國海軍和陸軍都在進行戰爭分析,啟動了幾個傳感器模擬程序項目。美國海軍已經招募了 Leidos、SAIC、AECOM 和 Orbital ATK 等公司來支持他們的計劃,而美國陸軍的計劃得到了包括 SAIC、CACI、Torch Technologies 和 Millennium Engineering 在內的公司的支持。

7. 威脅監控和態勢感知

威脅監控和態勢感知在很大程度上依賴于情報、監視和偵察 (ISR) 工作。ISR 行動用于獲取和處理信息以支持一系列軍事活動。

用于執行 ISR 任務的無人系統既可以遠程操作,也可以按照預先定義的路線發送。為這些系統配備人工智能有助于防御人員進行威脅監控,從而提高他們的態勢感知能力。

具有集成 AI 的無人駕駛飛行器 (UAV) - 也稱為無人機 - 可以巡邏邊境地區,識別潛在威脅,并將有關這些威脅的信息傳輸給響應團隊。因此,使用無人機可以加強軍事基地的安全,并提高軍事人員在戰斗中或偏遠地區的安全性和效率。

結論

人工智能在軍事技術硬件和軟件的大規模采用,向我們展示了現代戰爭中令人難以置信和可怕的范式轉變。毫不奇怪,世界上最大的軍隊比其他任何事情都更加關注這項技術,而這場技術競賽的獲勝者可能會比美國在研制原子彈后擁有更多的全球影響力。 (作者:Nicholas Abell,美國陸軍退伍軍人)

付費5元查看完整內容

摘要

現代多領域沖突日益復雜,使得對其戰術和戰略的理解以及確定適當行動方案具有挑戰性。作為概念開發和實驗 (CD&E) 的一部分的建模和仿真提供了新的見解,以更快的速度和更低的成本比物理機動更易實現。其中,通過計算機游戲進行的人機協作提供了一種在各種抽象級別模擬防御場景的強大方法。然而,傳統的人機交互非常耗時,并且僅限于預先設計的場景,例如,在預先編程的條件計算機動作。如果游戲的某一方面可以由人工智能來處理,這將增加探索行動過程的多樣性,從而導致更強大和更全面的分析。如果AI同時扮演兩個角色,這將允許采用數據農場方法,從而創建和分析大量已玩游戲的數據庫。為此,我們采用了強化學習和搜索算法相結合的方法,這些算法在各種復雜的規劃問題中都表現出了超人的表現。這種人工智能系統通過在大量現實場景中通過自我優化來學習戰術和策略,從而避免對人類經驗和預測的依賴。在這篇文章中,我們介紹了將基于神經網絡的蒙特卡羅樹搜索算法應用于防空場景和虛擬戰爭游戲中的戰略規劃和訓練的好處和挑戰,這些系統目前或未來可能用于瑞士武裝部隊。

付費5元查看完整內容

美國的空中優勢是美國威懾力的基石,正受到競爭對手的挑戰。機器學習 (ML) 的普及只會加劇這種威脅。應對這一挑戰的一種潛在方法是更有效地使用自動化來實現任務規劃的新方法。

本報告展示了概念驗證人工智能 (AI) 系統的原型,以幫助開發和評估空中領域的新作戰概念。該原型平臺集成了開源深度學習框架、當代算法以及用于模擬、集成和建模的高級框架——美國國防部標準的戰斗模擬工具。目標是利用人工智能系統通過大規模回放學習、從經驗中概括和改進重復的能力,以加速和豐富作戰概念的發展。

在本報告中,作者討論了人工智能智能體在高度簡化的壓制敵方防空任務版本中精心策劃的協作行為。初步研究結果突出了強化學習 (RL) 解決復雜、協作的空中任務規劃問題的潛力,以及這種方法面臨的一些重大挑戰。

研究問題

  • 當代 ML 智能體能否被訓練以有效地展示智能任務規劃行為,而不需要數十億可能情況組合的訓練數據?
  • 機器智能體能否學習使用攻擊機、干擾機和誘餌飛機的組合來對抗地對空導彈 (SAM) 的策略?干擾機需要離地空導彈足夠近才能影響它們,但又要保持足夠遠,以免它們被擊落。誘餌需要在正確的時間分散 SAM 對前鋒的注意力。
  • 是否可以建立足夠泛化的表示來捕捉規劃問題的豐富性?吸取的經驗教訓能否概括威脅位置、類型和數量的變化?

主要發現

RL 可以解決復雜的規劃問題,但仍有局限性,而且這種方法仍然存在挑戰

  • 純 RL 算法效率低下,容易出現學習崩潰。
  • 近端策略優化是最近朝著解決學習崩潰問題的正確方向邁出的一步:它具有內置約束,可防止網絡參數在每次迭代中發生太大變化。
  • 機器學習智能體能夠學習合作策略。在模擬中,攻擊機與 SAM 上的干擾或誘餌效應協同作用。
  • 經過訓練的算法應該能夠相當容易地處理任務參數(資產的數量和位置)的變化。
  • 很少有關于成功和不成功任務的真實數據。與用于訓練當代 ML 系統的大量數據相比,很少有真正的任務是針對防空飛行的,而且幾乎所有任務都取得了成功。
  • 對于涉及使用大型模擬代替大型數據集的分析,所需的計算負擔將繼續是一個重大挑戰。針對現實威脅(數十個 SAM)訓練現實能力集(數十個平臺)所需的計算能力和時間的擴展仍不清楚。
  • 建立對人工智能算法的信任將需要更詳盡的測試以及算法可驗證性、安全性和邊界保證方面的根本性進步。

建議

  • 未來關于自動化任務規劃的工作應該集中在開發強大的多智能體算法上。RL 問題中的獎勵函數可以以意想不到的方式徹底改變 AI 行為。在設計此類功能時必須小心謹慎,以準確捕捉風險和意圖。
  • 盡管模擬環境在數據稀缺問題中至關重要,但應調整模擬以平衡速度(較低的計算要求)與準確性(現實世界的可轉移性)。
付費5元查看完整內容

當前的海軍作戰要求水手們根據動態作戰環境中的不確定態勢信息做出時間緊迫和高風險的決策。最近的悲慘事件導致了不必要的傷亡,海軍行動中涉及決策復雜性,并特別突出了 OODA 循環(觀察、定向、決策和評估)中的挑戰。涉及使用武器系統的殺傷鏈決策是 OODA 循環中一個特別緊張的類別——具有難以確定的意外威脅、縮短的決策反應時間和致命的后果。有效的殺傷鏈需要正確設置和使用船上傳感器;未知接觸者的識別和分類;基于運動學和智能的接觸意圖分析;環境意識;以及決策分析和資源選擇。

該項目探索了使用自動化和人工智能 (AI) 來改進海軍殺傷鏈決策。該團隊研究了海軍殺傷鏈功能,并為每個功能制定了特定的評估標準,以確定特定 AI 方法的功效。該團隊確定并研究了 AI 方法,并應用評估標準將特定的 AI 方法映射到特定的殺傷鏈功能

圖:利用人工智能改進海軍殺傷鏈的作戰概念

總結

當前的海軍行動通常是快節奏的、關鍵的,并且需要做出高風險的決策,這些決策有時基于非常動態的戰區中的不確定信息。許多例子強調了提高決策效率的必要性以及減輕觀察團隊負擔的必要性。缺乏上述情況的例子包括 2017 年的菲茨杰拉德號航空母艦 (DDG 62) 和 MV ACX Crystal相撞,以及 2009 年皇家港口號航空母艦 (CG 73) 的擱淺。一些根本原因是相關人員缺乏經驗、疲勞和壓力.

上述事故展示了軍事行動的難度,并展示了 OODA(觀察、定向、決策和評估)循環中的挑戰(Jones 等人,2020 年)。人為錯誤、人的認知限制和海軍作戰固有的決策復雜性導致了 OODA 循環中的挑戰,更具體地說,是殺傷鏈過程中的挑戰。

現代戰斗空間由來自常規陸地、空中和海洋等多個領域以及來自太空和網絡空間的大量數據組成。決策者需要考慮許多因素,包括交戰規則 (ROE)、要使用的武器、傳感器和意圖評估。發現、修復、跟蹤、瞄準、參與、評估 (F2T2EA) 殺傷鏈模型緩解了該過程的一些困難(參謀長聯席會議,2013 年)。人工智能 (AI) 和機器學習 (ML) 可以通過分析備選方案和使用評估標準將 AI 方法映射到殺傷鏈功能,從而幫助海軍在戰術領域做出殺傷鏈決策。這是在本報告的五個章節中分三個階段完成的。

本報告利用了數百個資源,主要利用了美海軍研究生院 AI-OODA 團隊在其 Capstone 報告(2020 年)中進行的先前研究,“利用人工智能 (AI) 進行空中和導彈防御 (AMD):以結果為導向的決策援助。”他們將他們的工作與 John Boyd 的觀察、定向、決定和行動決策框架相結合。作為他們分析的初步步驟,AI-OODA 團隊將特定的 OODA 功能明確且緊密地耦合到特定的 F2T2EA 功能。然而,本報告斷言 OODA 循環是一個決策循環,它嵌套在殺傷鏈的每個功能中,而不是在高壓力或低壓力情況下專門映射到一個或多個殺傷鏈功能。團隊基于 F2T2EA 模型開發了一組 28 個殺傷鏈功能。

在制定將 AI 方法映射到殺傷鏈的評估標準時,很難確定一個好的決策,這對于決策評估至關重要。在評估決策時,必須考慮選擇行動時的知識意識狀態以及解釋能力。使用了幾種對決策進行評分的方法,從定義和優先考慮感興趣的“武器-目標”到制定評分標準和報告評估結果,以供其他人審查。

目前,人工智能的狀態非常廣泛,必須對其進行解釋,以了解人工智能對殺傷鏈中功能的適用性。本報告討論了所選 AI 方法的高級概述,并突出顯示了部分最流行的方法。首先,沒有普遍接受的定義,這很難定義人工智能。其次,人工智能與機器學習 (ML) 存在差異。 ML 允許在準確性和可預測性方面取得增量收益; AI 接收數據并通過算法提供輸出。人工智能的歷史從 1940 年代艾倫·圖靈 (Alan Turing) 的加密機器到 1980 年代美國政府在戰略計算計劃中的使用,再到今天在聯合人工智能中心 (JAIC) 中的人工智能戰略五個支柱,從領先的人工智能人力到安全和倫理。美國國防高級研究計劃局 (DARPA) 在 3-wave 框架中描述了 AI 的發展方向,分為手工知識 (Wave 1)、統計學習 (Wave 2) 和上下文推理 (Wave 3) 在 1-4 個維度內情報參數的屬性(Launchbury 2017)。這些屬性包括感知、推理、抽象和學習。

人工智能涉及可以根據輸入值預測結果的監督學習。有幾種使用監督學習進行學習的技術。包括線性回歸和分類。此外,許多數值方法可以分析發生的學習有效性,例如 F-score 和 Accuracy score。人工智能還可以使用無監督學習,它使用算法來發現未標記數據集中的數據模式或分組。在分析未知(y)響應以揭示標記(x)數據中的模式時,無監督學習是有益的。數據分析界的一個著名例子是鳶尾花(Iris flower)數據集。僅使用標記的數據,可以看到響應聚集在一起,并且可以確定響應中存在模式(花的種類)。無監督學習的方法包括聚類和 K-means,但還有其他方法。強化學習有一個代理能夠接收來自環境的反饋并理解基本目標。此外,正如 Sutton 和 Barto 在(2018 年)中解釋的那樣,探索和開發之間存在權衡。最后,生成對抗網絡 (GAN) 利用無監督學習和強化學習,通常用于神經網絡 (NN)。神經網絡是機器學習算法的極好來源,它有大量的輸入,而這些輸入又會產生大量的計算。 NN 非常適合用于模擬、自然語言處理、博弈論和計算機視覺。 NN 只是一種將輸入映射到輸出的簡單方法,可以在此過程中進行學習。然而,NN 可以被描述為一種“黑盒”學習技術,因為很難解釋正在發生的事情,并且通常需要一種可解釋的 AI (XAI) 技術。 XAI 的三個主要組成部分是可解釋模型、解釋界面和解釋心理學(Gunning 2019)。數據安全必須與“大數據”一起考慮,“大數據”是指非結構化、復雜和大型數據集,具有五個 v 特征:數量、速度(數據量隨時間變化的增加)、多樣性、真實性和價值。其他理論包括決策理論、模糊邏輯和效用函數

使用上述文獻綜述,該團隊開發了一個框架,用于將 AI/ML 映射到 AMD(空中導彈防御)殺傷鏈。采取了四個步驟:1) 建立模型框架,2) 確定決策點,3) 應用 AI/ML 方法,以及 4) 分析結果。該團隊確定了以下用于殺傷鏈映射分析的 AI/ML 方法:線性回歸、邏輯回歸、聚類、關聯、隨機森林、神經網絡、GAN 和樸素貝葉斯。評估標準被稱為“決策點”并提出四個問題:(1)所需輸出的類型是什么,(2)所需的學習類型是什么,(3)可解釋性(XAI)是什么水平需要,以及 (4) 需要多少個預測變量?該團隊通過基于一組決策點和評分過程評估每個殺傷鏈功能的每種方法來執行映射。對于被認為非常適合某項任務的方法,得分為+1,如果該方法適合但次優,則為0,如果該方法不適合該任務,則為–1。

該團隊進行了映射分析,根據與殺傷鏈的 28 個功能中的每一個功能相關的評估標準(決策點)分析 AI 方法。該團隊使用評分方法來確定每個殺傷鏈功能的最佳整體 AI/ML 分數。團隊的映射顯示為 0。

該團隊的 AI/ML 映射到殺傷鏈功能為國防部和海軍提供了兩個關鍵好處。首先,映射本身是設計和開發支持殺傷鏈決策的人工智能戰術決策輔助工具的重要起點和基礎。其次,該團隊將 AI 方法映射到殺傷鏈的分析過程可用于了解 AI 在許多其他軍事和非軍事領域的應用。識別適當的人工智能方法、制定評估標準和評分過程以及制定過程功能以進行分析映射的過程對于支持許多不同人工智能系統的工程具有深遠的潛力。

表1:AI/ML方法到殺傷鏈的映射

付費5元查看完整內容

無人機行業現在正處于黃金時期,它的增長有望呈指數級增長盡管人道主義救援人員已經使用這種技術10年了,但市場的擴大和技術的發展正在推動越來越多的組織裝備這種設備。無人駕駛飛機(Unmanned Aerial Vehicles,簡稱UAVs),也被稱為遠程駕駛飛機或“無人機”,是一種通過遠程控制或自主飛行的小型飛機。

這份報告關注的是非武裝民用無人機和無人機的使用情況。未來的報告可以探討無人水下航行器和地面無人機的影響和發展。2014年,人道主義協調廳在其人道主義應對政策文件中強調了無人機在人道主義行動中的不同用途,這表明無人機技術的使用越來越多。從理論上講,瑞士地雷行動基金會(Swiss Foundation for Mine action)在其報告《人道主義行動無人機(2016)4:測繪》中對無人機在人道主義行動中的應用進行了6類總結;向偏遠或難以到達的地點運送基本產品;搜索和救援(SAR);支持損害評估;提高態勢感知;監測變化(如城市和營地的增長、農業使用或道路或基礎設施的建設)。這份報告將揭示人工智能驅動的無人機是如何改進和修改這些用途的。

無人機的迅速采用可以通過現代無人機帶來的機遇和它們可以利用的日益增長的人工智能(AI)相關能力來解釋。一方面,它們的使用通過自治得到簡化和授權。另一方面,視覺分析性能的改進使得依賴于無人機圖像成為可能。這份報告旨在強調人工智能提高無人機能力的程度。

由于深度學習方法的普遍化,無人機可以進一步捕捉它們運行的環境,從而允許越來越復雜的任務。這項技術還可以顯著改善無人機的視覺識別和圖像分析。由于人工智能算法的使用需要較高的計算能力,因此它的應用往往發生在飛行后。這一表現將通過三個案例研究加以強調:

  • 用于北加州野火應急響應的無人機(2018年11月)

  • 聯合國兒童基金會在馬拉維使用無人機應對颶風“伊代”(2019年3月)

  • 報告還探討了無人機未來的潛在功能。

付費5元查看完整內容
北京阿比特科技有限公司