主題: TOPOLOGY OF DEEP NEURAL NETWORKS
摘要: 我們研究數據集M=Ma∪Mb?Rd的拓撲結構如何表示二進制分類問題中的兩個類別a和b,如何通過經過良好訓練的神經網絡的層而發生變化,即在訓練集和接近零的泛化誤差(≈0.01%)。目的是揭示深層神經網絡的兩個奧秘:(i)像ReLU這樣的非平滑激活函數要優于像雙曲正切這樣的平滑函數; (ii)成功的神經網絡架構依賴于多層結構,即使淺層網絡可以很好地近似任意函數。我們對大量點云數據集的持久同源性進行了廣泛的實驗,無論是真實的還是模擬的。結果一致地證明了以下幾點:(1)神經網絡通過更改拓撲結構來運行,將拓撲復雜的數據集在穿過各層時轉換為拓撲簡單的數據集。無論M的拓撲多么復雜,當通過訓練有素的神經網絡f:Rd→Rp時,Ma和Mb的貝蒂數都會大大減少;實際上,它們幾乎總是減小到可能的最低值:對于k≥1和β0(f(Mi))= 1,i = a,b,βk(f(Mi))= 0。此外,(2)ReLU激活的Betti數減少比雙曲線切線激活快得多,因為前者定義了改變拓撲的非同胚映射,而后者定義了保留拓撲的同胚映射。最后,(3)淺層和深層網絡以不同的方式轉換數據集-淺層網絡主要通過更改幾何結構并僅在其最終層中更改拓撲來運行,而深層網絡則將拓撲變化更均勻地分布在所有層中。
題目:
Con?dence-Aware Learning for Deep Neural Networks
簡介:
盡管深度神經網絡可以執行多種任務,但過分一致的預測問題限制了它們在許多安全關鍵型應用中的實際應用。已經提出了許多新的工作來減輕這個問題,但是大多數工作需要在訓練和/或推理階段增加計算成本,或者需要定制的體系結構來分別輸出置信估計。在本文中,我們提出了一種使用新的損失函數訓練深度神經網絡的方法,稱為正確排名損失,該方法將類別概率顯式規范化,以便根據依據的有序等級更好地進行置信估計。所提出的方法易于實現,并且無需進行任何修改即可應用于現有體系結構。而且,它的訓練計算成本幾乎與傳統的深度分類器相同,并且通過一次推斷就可以輸出可靠的預測。在分類基準數據集上的大量實驗結果表明,所提出的方法有助于網絡產生排列良好的置信度估計。我們還證明,它對于與置信估計,分布外檢測和主動學習密切相關的任務十分有效。
題目: Continuous Graph Neural Networks
摘要:
本文建立了圖神經網絡與傳統動力系統之間的聯系。我們提出了持續圖神經網絡(CGNN),它將現有的圖神經網絡與離散動力學進行了一般化,因為它們可以被視為一種特定的離散化方案。關鍵思想是如何表征節點表示的連續動力學,即關于時間的節點表示的導數。受現有的基于擴散的圖方法(如社交網絡上的PageRank和流行模型)的啟發,我們將導數定義為當前節點表示、鄰節點表示和節點初始值的組合。我們提出并分析了兩種可能的動態圖,包括節點表示的每個維度(又名特征通道)各自改變或相互作用的理論證明。所提出的連續圖神經網絡在過度平滑方面具有很強的魯棒性,因此允許我們構建更深層次的網絡,進而能夠捕獲節點之間的長期依賴關系。在節點分類任務上的實驗結果證明了我們提出的方法在和基線對比的有效性。
介紹
圖神經網絡(GNNs)由于其在節點分類等多種應用中的簡單性和有效性而受到越來越多的關注;、鏈接預測、化學性質預測、自然語言理解。GNN的基本思想是設計多個圖傳播層,通過聚合鄰近節點的節點表示和節點本身的表示,迭代地更新每個節點表示。在實踐中,對于大多數任務,幾層(兩層或三層)通常就足夠了,更多的層可能導致較差的性能。
改進GNNs的一個關鍵途徑是能夠建立更深層次的網絡,以了解數據和輸出標簽之間更復雜的關系。GCN傳播層平滑了節點表示,即圖中相鄰的節點變得更加相似。當我們堆疊越來越多的層時,這會導致過度平滑,這意味著節點表示收斂到相同的值,從而導致性能下降。因此,重要的是緩解節點過平滑效應,即節點表示收斂到相同的值。
此外,對于提高我們對GNN的理論理解,使我們能夠從圖結構中描述我們可以學到的信號,這是至關重要的。最近關于理解GCN的工作(Oono和Suzuki, 2020)認為GCN是由離散層定義的離散動力系統。此外,Chen等人(2018)證明了使用離散層并不是構建神經網絡的唯一視角。他們指出,帶有剩余連接的離散層可以看作是連續ODE的離散化。他們表明,這種方法具有更高的記憶效率,并且能夠更平滑地建模隱藏層的動態。
我們利用基于擴散方法的連續視角提出了一種新的傳播方案,我們使用來自常微分方程(即連續動力系統)的工具進行分析。事實上,我們能夠解釋我們的模型學習了什么表示,以及為什么它不會遭受在GNNs中常見的過度平滑問題。允許我們建立更深層次的網絡,也就是說我們的模型在時間價值上運行良好。恢復過平滑的關鍵因素是在連續設置中使用了最初在PageRank中提出的原始分布。直觀上,重新開始分布有助于不忘記鄰接矩陣的低冪次信息,從而使模型收斂到有意義的平穩分布。
本文的主要貢獻是:
題目: Graph Random Neural Networks
摘要:
圖神經網絡(GNNs)將深度學習方法推廣到圖結構數據中,在圖形挖掘任務中表現良好。然而,現有的GNN常常遇到具有標記節點的復雜圖結構,并受到非魯棒性、過度平滑和過擬合的限制。為了解決這些問題,本文提出了一個簡單而有效的GNN框架——圖隨機神經網絡(Grand)。與現有GNNs中的確定性傳播不同,Grand采用隨機傳播策略來增強模型的魯棒性。這種策略也很自然地使Grand能夠將傳播從特征轉換中分離出來,減少了過度平滑和過度擬合的風險。此外,隨機傳播是圖數據擴充的一種有效方法。在此基礎上,利用無標記節點在多個擴展中的分布一致性,提高模型的泛化能力,提出了Grand的一致性正則化方法。在圖形基準數據集上的大量實驗表明,Grand在半監督的圖形學習任務上顯著優于最先進的GNN基線。最后,證明了它可以顯著減輕過度平滑和過度擬合的問題,并且它的性能與魯棒性相結合。
主題: Graph Neural Networks with Composite Kernels
摘要: 近年來,對圖結構化數據的學習引起了越來越多人的興趣。諸如圖卷積網絡(GCN)之類的框架已經證明了它們在各種任務中捕獲結構信息并獲得良好性能的能力。在這些框架中,節點聚合方案通常用于捕獲結構信息:節點的特征向量是通過聚集其相鄰節點的特征來遞歸計算的。但是,大多數聚合方案都將圖中的所有連接均等化,而忽略了節點特征的相似性。本文從內核權重的角度重新解釋了節點聚合,并提出了一個框架來考慮特征相似性。我們表明歸一化的鄰接矩陣等效于Kerin空間中基于鄰居的內核矩陣。然后,我們提出功能聚集作為基于原始鄰居的內核和可學習的內核的組成,以在特征空間中編碼特征相似性。我們進一步展示了如何將所提出的方法擴展到圖注意力網絡(GAT)。實驗結果表明,在一些實際應用中,我們提出的框架具有更好的性能。
題目
二值神經網絡綜述,Binary Neural Networks: A Survey
關鍵詞
二進制神經網絡,深度學習,模型壓縮,網絡量化,模型加速
簡介
二進制神經網絡在很大程度上節省了存儲和計算成本,是一種在資源有限的設備上部署深度模型的有前途的技術。 然而,二值化不可避免地導致嚴重的信息丟失,甚至更糟的是,其不連續性給深度網絡的優化帶來了困難。 為了解決這些問題,近年來提出了多種算法,并取得了令人滿意的進展。 在本文中,我們對這些算法進行了全面的概述,主要分為直接進行二值化的本機解決方案,以及使用使量化誤差最小化,改善網絡損耗函數和減小梯度誤差等技術進行優化的解決方案。 我們還將研究二進制神經網絡的其他實用方面,例如硬件友好的設計和訓練技巧。 然后,我們對不同的任務進行了評估和討論,包括圖像分類,對象檢測和語義分割。 最后,展望了未來研究可能面臨的挑戰。
作者
Haotong Qina , Ruihao Gonga , Xianglong Liu?a,b, Xiao Baie , Jingkuan Songc , Nicu Sebe
題目: Training Binary Neural Networks with Real-to-Binary Convolutions
摘要:
本文展示了如何將二進制網絡訓練到與完全精確網絡相當的幾個百分點(~3?5%)之內。我們首先展示如何建立一個強大的基線,該基線通過結合最近提出的進展和仔細調整優化過程已經達到了最先進的精度。其次,我們證明了通過最小化二進制信號的輸出和相應的實值卷積之間的差異,可以獲得額外顯著的精度增益。我們以兩種互補的方式實現了這個想法:
最后,我們證明,當我們把所有的改進放在一起,當使用ResNet-18架構時,該模型在ImageNet上的top-1精度超過當前水平的5%,并將其與CIFAR-100和ImageNet上的real-value精度的差距分別降低到不足3%和5%。
題目: Bayesian Neural Networks With Maximum Mean Discrepancy Regularization
摘要: 貝葉斯神經網絡(BNNs)訓練來優化整個分布的權重,而不是一個單一的集合,在可解釋性、多任務學習和校準等方面具有顯著的優勢。由于所得到的優化問題的難解性,大多數BNNs要么通過蒙特卡羅方法采樣,要么通過在變分近似上最小化一個合適的樣本下界(ELBO)來訓練。在這篇論文中,我們提出了后者的一個變體,其中我們用最大平均偏差(MMD)估計器代替了ELBO項中的Kullback-Leibler散度,這是受到了最近的變分推理工作的啟發。在根據MMD術語的性質提出我們的建議之后,我們接著展示了公式相對于最先進的公式的一些經驗優勢。特別地,我們的BNNs在多個基準上實現了更高的準確性,包括多個圖像分類任務。此外,它們對權重上的先驗選擇更有魯棒性,而且它們的校準效果更好。作為第二項貢獻,我們提供了一個新的公式來估計給定預測的不確定性,表明與更經典的標準(如微分熵)相比,它在對抗攻擊和輸入噪聲的情況下表現得更穩定。
Memory-based neural networks model temporal data by leveraging an ability to remember information for long periods. It is unclear, however, whether they also have an ability to perform complex relational reasoning with the information they remember. Here, we first confirm our intuitions that standard memory architectures may struggle at tasks that heavily involve an understanding of the ways in which entities are connected -- i.e., tasks involving relational reasoning. We then improve upon these deficits by using a new memory module -- a \textit{Relational Memory Core} (RMC) -- which employs multi-head dot product attention to allow memories to interact. Finally, we test the RMC on a suite of tasks that may profit from more capable relational reasoning across sequential information, and show large gains in RL domains (e.g. Mini PacMan), program evaluation, and language modeling, achieving state-of-the-art results on the WikiText-103, Project Gutenberg, and GigaWord datasets.