題目:
Con?dence-Aware Learning for Deep Neural Networks
簡介:
盡管深度神經網絡可以執行多種任務,但過分一致的預測問題限制了它們在許多安全關鍵型應用中的實際應用。已經提出了許多新的工作來減輕這個問題,但是大多數工作需要在訓練和/或推理階段增加計算成本,或者需要定制的體系結構來分別輸出置信估計。在本文中,我們提出了一種使用新的損失函數訓練深度神經網絡的方法,稱為正確排名損失,該方法將類別概率顯式規范化,以便根據依據的有序等級更好地進行置信估計。所提出的方法易于實現,并且無需進行任何修改即可應用于現有體系結構。而且,它的訓練計算成本幾乎與傳統的深度分類器相同,并且通過一次推斷就可以輸出可靠的預測。在分類基準數據集上的大量實驗結果表明,所提出的方法有助于網絡產生排列良好的置信度估計。我們還證明,它對于與置信估計,分布外檢測和主動學習密切相關的任務十分有效。
Graph Neural Networks (GNN) has demonstrated the superior performance in many challenging applications, including the few-shot learning tasks. Despite its powerful capacity to learn and generalize from few samples, GNN usually suffers from severe over-fitting and over-smoothing as the model becomes deep, which limit the model scalability. In this work, we propose a novel Attentive GNN to tackle these challenges, by incorporating a triple-attention mechanism, \ie node self-attention, neighborhood attention, and layer memory attention. We explain why the proposed attentive modules can improve GNN for few-shot learning with theoretical analysis and illustrations. Extensive experiments show that the proposed Attentive GNN outperforms the state-of-the-art GNN-based methods for few-shot learning over the mini-ImageNet and Tiered-ImageNet datasets, with both inductive and transductive settings.
摘要
一個綜合的人工智能系統不僅需要用不同的感官(如視覺和聽覺)感知環境,還需要推斷世界的條件(甚至因果)關系和相應的不確定性。在過去的十年里,我們看到了許多感知任務的重大進展,比如視覺對象識別和使用深度學習模型的語音識別。然而,對于更高層次的推理,具有貝葉斯特性的概率圖模型仍然更加強大和靈活。近年來,貝葉斯深度學習作為一種將深度學習與貝葉斯模型緊密結合的統一的概率框架出現了。在這個總體框架中,利用深度學習對文本或圖像的感知可以提高更高層次推理的性能,推理過程的反饋也可以增強文本或圖像的感知。本文對貝葉斯深度學習進行了全面的介紹,并對其在推薦系統、主題模型、控制等方面的最新應用進行了綜述。此外,我們還討論了貝葉斯深度學習與其他相關課題如神經網絡的貝葉斯處理之間的關系和區別。
介紹
在過去的十年中,深度學習在許多流行的感知任務中取得了顯著的成功,包括視覺對象識別、文本理解和語音識別。這些任務對應于人工智能(AI)系統的看、讀、聽能力,它們無疑是人工智能有效感知環境所必不可少的。然而,要建立一個實用的、全面的人工智能系統,僅僅有感知能力是遠遠不夠的。首先,它應該具備思維能力。
一個典型的例子是醫學診斷,它遠遠超出了簡單的感知:除了看到可見的癥狀(或CT上的醫學圖像)和聽到患者的描述,醫生還必須尋找所有癥狀之間的關系,最好推斷出它們的病因。只有在那之后,醫生才能給病人提供醫療建議。在這個例子中,雖然視覺和聽覺的能力讓醫生能夠從病人那里獲得信息,但醫生的思維能力才是關鍵。具體來說,這里的思維能力包括識別條件依賴、因果推理、邏輯演繹、處理不確定性等,顯然超出了傳統深度學習方法的能力。幸運的是,另一種機器學習范式,概率圖形模型(PGM),在概率或因果推理和處理不確定性方面表現出色。問題在于,PGM在感知任務上不如深度學習模型好,而感知任務通常涉及大規模和高維信號(如圖像和視頻)。為了解決這個問題,將深度學習和PGM統一到一個有原則的概率框架中是一個自然的選擇,在本文中我們稱之為貝葉斯深度學習(BDL)。 在上面的例子中,感知任務包括感知病人的癥狀(例如,通過看到醫學圖像),而推理任務包括處理條件依賴性、因果推理、邏輯推理和不確定性。通過貝葉斯深度學習中有原則的整合,將感知任務和推理任務視為一個整體,可以相互借鑒。具體來說,能夠看到醫學圖像有助于醫生的診斷和推斷。另一方面,診斷和推斷反過來有助于理解醫學圖像。假設醫生可能不確定醫學圖像中的黑點是什么,但如果她能夠推斷出癥狀和疾病的病因,就可以幫助她更好地判斷黑點是不是腫瘤。 再以推薦系統為例。一個高精度的推薦系統需要(1)深入了解條目內容(如文檔和電影中的內容),(2)仔細分析用戶檔案/偏好,(3)正確評價用戶之間的相似度。深度學習的能力有效地處理密集的高維數據,如電影內容擅長第一子任務,而PGM專攻建模條件用戶之間的依賴關系,項目和評分(參見圖7為例,u, v,和R是用戶潛在的向量,項目潛在的向量,和評級,分別)擅長其他兩個。因此,將兩者統一在一個統一的概率原則框架中,可以使我們在兩個世界中都得到最好的結果。這種集成還帶來了額外的好處,可以優雅地處理推薦過程中的不確定性。更重要的是,我們還可以推導出具體模型的貝葉斯處理方法,從而得到更具有魯棒性的預測。
作為第三個例子,考慮根據從攝像機接收到的實時視頻流來控制一個復雜的動態系統。該問題可以轉化為迭代執行兩項任務:對原始圖像的感知和基于動態模型的控制。處理原始圖像的感知任務可以通過深度學習來處理,而控制任務通常需要更復雜的模型,如隱馬爾科夫模型和卡爾曼濾波器。由控制模型選擇的動作可以依次影響接收的視頻流,從而完成反饋回路。為了在感知任務和控制任務之間實現有效的迭代過程,我們需要信息在它們之間來回流動。感知組件將是控制組件估計其狀態的基礎,而帶有動態模型的控制組件將能夠預測未來的軌跡(圖像)。因此,貝葉斯深度學習是解決這一問題的合適選擇。值得注意的是,與推薦系統的例子類似,來自原始圖像的噪聲和控制過程中的不確定性都可以在這樣的概率框架下自然地處理。 以上例子說明了BDL作為一種統一深度學習和PGM的原則方式的主要優勢:感知任務與推理任務之間的信息交換、對高維數據的條件依賴以及對不確定性的有效建模。關于不確定性,值得注意的是,當BDL應用于復雜任務時,需要考慮三種參數不確定性:
通過使用分布代替點估計來表示未知參數,BDL提供了一個很有前途的框架,以統一的方式處理這三種不確定性。值得注意的是,第三種不確定性只能在BDL這樣的統一框架下處理;分別訓練感知部分和任務特定部分相當于假設它們之間交換信息時沒有不確定性。注意,神經網絡通常是過參數化的,因此在有效處理如此大的參數空間中的不確定性時提出了額外的挑戰。另一方面,圖形模型往往更簡潔,參數空間更小,提供了更好的可解釋性。
除了上述優點之外,BDL內建的隱式正則化還帶來了另一個好處。通過在隱藏單元、定義神經網絡的參數或指定條件依賴性的模型參數上施加先驗,BDL可以在一定程度上避免過擬合,尤其是在數據不足的情況下。通常,BDL模型由兩個組件組成,一個是感知組件,它是某種類型神經網絡的貝葉斯公式,另一個是任務特定組件,使用PGM描述不同隱藏或觀察變量之間的關系。正則化對它們都很重要。神經網絡通常過度參數化,因此需要適當地正則化。正則化技術如權值衰減和丟失被證明是有效地改善神經網絡的性能,他們都有貝葉斯解釋。在任務特定組件方面,專家知識或先驗信息作為一種正規化,可以在數據缺乏時通過施加先驗來指導模型。 在將BDL應用于實際任務時,也存在一些挑戰。(1)首先,設計一個具有合理時間復雜度的高效的神經網絡貝葉斯公式并非易事。這一行是由[42,72,80]開創的,但是由于缺乏可伸縮性,它沒有被廣泛采用。幸運的是,這個方向的一些最新進展似乎為貝葉斯神經網絡的實際應用提供了一些啟示。(2)第二個挑戰是如何確保感知組件和任務特定組件之間有效的信息交換。理想情況下,一階和二階信息(例如,平均值和方差)應該能夠在兩個組件之間來回流動。一種自然的方法是將感知組件表示為PGM,并將其與特定任務的PGM無縫連接,如[24,118,121]中所做的那樣。 本綜述提供了對BDL的全面概述,以及各種應用程序的具體模型。綜述的其余部分組織如下:在第2節中,我們將回顧一些基本的深度學習模型。第3節介紹PGM的主要概念和技術。這兩部分作為BDL的基礎,下一節第4節將演示統一BDL框架的基本原理,并詳細說明實現其感知組件和特定于任務的組件的各種選擇。第5節回顧了應用于不同領域的BDL模型,如推薦系統、主題模型和控制,分別展示了BDL在監督學習、非監督學習和一般表示學習中的工作方式。第6部分討論了未來的研究問題,并對全文進行了總結。
結論和未來工作
BDL致力于將PGM和NN的優點有機地整合在一個原則概率框架中。在這項綜述中,我們確定了這種趨勢,并回顧了最近的工作。BDL模型由感知組件和任務特定組件組成;因此,我們分別描述了過去幾年開發的兩個組件的不同實例,并詳細討論了不同的變體。為了學習BDL中的參數,人們提出了從塊坐標下降、貝葉斯條件密度濾波、隨機梯度恒溫器到隨機梯度變分貝葉斯等多種類型的算法。 BDL從PGM的成功和最近在深度學習方面有前景的進展中獲得了靈感和人氣。由于許多現實世界的任務既涉及高維信號(如圖像和視頻)的有效感知,又涉及隨機變量的概率推理,因此BDL成為利用神經網絡的感知能力和PGM的(條件和因果)推理能力的自然選擇。在過去的幾年中,BDL在推薦系統、主題模型、隨機最優控制、計算機視覺、自然語言處理、醫療保健等各個領域都有成功的應用。在未來,我們不僅可以對現有的應用進行更深入的研究,還可以對更復雜的任務進行探索。此外,最近在高效BNN (BDL的感知組件)方面的進展也為進一步提高BDL的可擴展性奠定了基礎。
題目: Deep Isometric Learning for Visual Recognition
簡介: 初始化,正則化和skip連接被認為是訓練非常深的卷積神經網絡并獲得最新性能的三種必不可少的技術。 本文表明,無需規范化或skip連接的深層卷積網絡也可以訓練出在標準圖像識別基準上獲得令人驚訝的良好性能。 這是通過在初始化和訓練過程中強制卷積內核接近等距來實現的,還可以通過使用ReLU的變體來實現等距變遷。 進一步的實驗表明,如果與skip連接結合使用,則即使完全不進行正則化,此類近等距網絡也可以達到ResNet在ImageNet與COCO數據集上相同的性能。
題目: Laplacian Regularized Few-Shot Learning
簡介:
我們為小樣本學習提出了一個拉普拉斯正則化推斷。給定從基類中學習到的任何特征嵌入,我們將包含兩個項的二次二進制賦值函數最小化:(1)將查詢樣本分配給最近的類原型的一元項,以及(2)鼓勵附近查詢樣本成對使用的成對拉普拉斯項具有一致的標簽。我們的推論不會重新訓練基本模型,并且可以將其視為查詢集的圖形聚類,但要受到支持集的監督約束。我們導出了函數松弛的計算有效邊界優化器,該函數在保證收斂的同時為每個查詢樣本計算獨立(并行)更新。在基礎類上進行簡單的交叉熵訓練,并且沒有復雜的元學習策略后,我們對五個基準進行了全面的實驗。我們的LaplacianShot在不同模型,設置和數據集上具有顯著優勢,始終優于最新方法。此外,我們的歸納推理非常快,其計算時間接近于歸納推理,可用于大規模的一次性任務。
本文綜述了元學習在圖像分類、自然語言處理和機器人技術等領域的應用。與深度學習不同,元學習使用較少的樣本數據集,并考慮進一步改進模型泛化以獲得更高的預測精度。我們將元學習模型歸納為三類: 黑箱適應模型、基于相似度的方法模型和元學習過程模型。最近的應用集中在將元學習與貝葉斯深度學習和強化學習相結合,以提供可行的集成問題解決方案。介紹了元學習方法的性能比較,并討論了今后的研究方向。
元學習已被提出作為一個框架來解決具有挑戰性的小樣本學習設置。關鍵的思想是利用大量相似的小樣本任務,以學習如何使基學習者適應只有少數標記的樣本可用的新任務。由于深度神經網絡(DNNs)傾向于只使用少數樣本進行過度擬合,元學習通常使用淺層神經網絡(SNNs),因此限制了其有效性。本文提出了一種新的學習方法——元轉移學習(MTL)。具體來說,“meta”是指訓練多個任務,“transfer”是通過學習每個任務的DNN權值的縮放和變換函數來實現的。此外,我們還介紹了作為一種有效的MTL學習課程的困難任務元批處理方案。我們使用(5類,1次)和(5類,5次)識別任務,在兩個具有挑戰性的小樣本學習基準上進行實驗:miniImageNet和Fewshot-CIFAR100。通過與相關文獻的大量比較,驗證了本文提出的HT元批處理方案訓練的元轉移學習方法具有良好的學習效果。消融研究還表明,這兩種成分有助于快速收斂和高精度。
地址:
代碼:
【導讀】近年來,隨著網絡數據量的不斷增加,挖掘圖形數據已成為計算機科學領域的熱門研究課題,在學術界和工業界都得到了廣泛的研究。 但是,大量的網絡數據為有效分析帶來了巨大的挑戰。 因此激發了圖表示的出現,該圖表示將圖映射到低維向量空間中,同時保持原始圖結構并支持圖推理。 圖的有效表示的研究具有深遠的理論意義和重要的現實意義,本教程將介紹圖表示/網絡嵌入的一些基本思想以及一些代表性模型。
關于圖或網絡的文獻有兩個名稱:圖表示和網絡嵌入。我們注意到圖和網絡都指的是同一種結構,盡管它們每個都有自己的術語,例如,圖和網絡的頂點和邊。挖掘圖/網絡的核心依賴于正確表示的圖/網絡,這使得圖/網絡上的表示學習成為學術界和工業界的基本研究問題。傳統表示法直接基于拓撲圖來表示圖,通常會導致許多問題,包括稀疏性,高計算復雜性等,從而激發了基于機器學習的方法的出現,這種方法探索了除矢量空間中的拓撲結構外還能夠捕獲額外信息的潛在表示。因此,對于圖來說,“良好”的潛在表示可以更加精確的表示圖形。但是,學習網絡表示面臨以下挑戰:高度非線性,結構保持,屬性保持,稀疏性。
深度學習在處理非線性方面的成功為我們提供了研究新方向,我們可以利用深度學習來提高圖形表示學習的性能,作者在教程中討論了將深度學習技術與圖表示學習相結合的一些最新進展,主要分為兩類方法:面向結構的深層方法和面向屬性的深層方法。
對于面向結構的方法:
對于面向屬性的方法:
本教程的第二部分就以上5種方法,通過對各個方法的模型介紹、算法介紹、對比分析等不同方面進行詳細介紹。
1、Structural Deep Network Embedding
network embedding,是為網絡中的節點學習出一個低維表示的方法。目的在于在低維中保持高度非線性的網絡結構特征,但現有方法多采用淺層網絡不足以挖掘高度非線性,或同時保留局部和全局結構特征。本文提出一種結構化深度網絡嵌入方法,叫SDNE該方法用半監督的深度模型來捕捉高度非線性結構,通過結合一階相似性(監督)和二階相似性(非監督)來保留局部和全局特征。
2、 Deep recursive network embedding with regular equivalence
網絡嵌入旨在保留嵌入空間中的頂點相似性。現有方法通常通過節點之間的連接或公共鄰域來定義相似性,即結構等效性。但是,位于網絡不同部分的頂點可能具有相似的角色或位置,即規則的等價關系,在網絡嵌入的文獻中基本上忽略了這一點。以遞歸的方式定義規則對等,即兩個規則對等的頂點具有也規則對等的網絡鄰居。因此,文章中提出了一種名為深度遞歸網絡嵌入(DRNE)的新方法來學習具有規則等價關系的網絡嵌入。更具體地說,我們提出了一種層歸一化LSTM,以遞歸的方式通過聚合鄰居的表示方法來表示每個節點。
3、Structural Deep Embedding for Hyper-Networks
是在hyperedge(超邊是不可分解的)的基礎上保留object的一階和二階相似性,學習異質網絡表示。于與HEBE的區別在于,本文考慮了網絡high-oeder網絡結構和高度稀疏性。 傳統的基于clique expansion 和star expansion的方法,顯式或者隱式地分解網絡。也就說,分解后hyper edge節點地子集,依然可以構成一個新的超邊。對于同質網絡這個假設是合理地,因為同質網絡地超邊,大多數情況下都是根據潛在地相似性(共同地標簽等)構建的。
4、 Deep variational network embedding in wasserstein space
大多數現有的嵌入方法將節點作為點向量嵌入到低維連續空間中。這樣,邊緣的形成是確定性的,并且僅由節點的位置確定。但是,現實世界網絡的形成和發展充滿不確定性,這使得這些方法不是最優的。為了解決該問題,在本文中提出了一種新穎的在Wasserstein空間中嵌入深度變分網絡(DVNE)。所提出的方法學習在Wasserstein空間中的高斯分布作為每個節點的潛在表示,它可以同時保留網絡結構并為節點的不確定性建模。具體來說,我們使用2-Wasserstein距離作為分布之間的相似性度量,它可以用線性計算成本很好地保留網絡中的傳遞性。此外,我們的方法通過深度變分模型隱含了均值和方差的數學相關性,可以通過均值矢量很好地捕獲節點的位置,而由方差可以很好地捕獲節點的不確定性。此外,本文方法通過保留網絡中的一階和二階鄰近性來捕獲局部和全局網絡結構。
5、 Learning embeddings of out-of-sample nodes in dynamic networks
迄今為止的網絡嵌入算法主要是為靜態網絡設計的,在學習之前,所有節點都是已知的。如何為樣本外節點(即學習后到達的節點)推斷嵌入仍然是一個懸而未決的問題。該問題對現有方法提出了很大的挑戰,因為推斷的嵌入應保留復雜的網絡屬性,例如高階鄰近度,與樣本內節點嵌入具有相似的特征(即具有同質空間),并且計算成本較低。為了克服這些挑戰,本文提出了一種深度轉換的高階拉普??拉斯高斯過程(DepthLGP)方法來推斷樣本外節點的嵌入。 DepthLGP結合了非參數概率建模和深度學習的優勢。特別是,本文設計了一個高階Laplacian高斯過程(hLGP)來對網絡屬性進行編碼,從而可以進行快速和可擴展的推理。為了進一步確保同質性,使用深度神經網絡來學習從hLGP的潛在狀態到節點嵌入的非線性轉換。 DepthLGP是通用的,因為它適用于任何網絡嵌入算法學習到的嵌入。
題目: Towards Explainable Deep Neural Networks (xDNN)
簡介: 在本文中,我們提出了一種解決方案,該解決方案直接解決了傳統深度學習方法的瓶頸,并提供了一種清晰可解釋的內部架構,該架構可以勝過現有方法,只需要很少的計算資源(不需要GPU)并且訓練時間短(以秒為單位)。提出的方法xDNN原型,原型是實際的訓練數據樣本(圖像),是經驗數據分布的局部峰值(稱為典型性)以及數據密度。這種生成模型以封閉形式識別,但可以自動且完全從訓練數據中得出,而無需用戶或問題特定的閾值,參數或干預。xDNN提供了一種新的深度學習架構,該架構將推理和學習結合在一起。它是非迭代且非參數的,這從時間和計算資源上解釋了其效率。從用戶的角度來看,用戶顯然可以理解所提出的方法。我們在一些著名的基準數據集(例如iRoads和Caltech-256)上對其進行了測試。 xDNN在準確性,訓練時間方面優于其他方法,包括深度學習,并提供了一個清晰可解釋的分類器。