人工智能(AI)以及機器學習和深度學習的相關技術正在進入我們的生活:人工智能驅動的智能對話系統和智能手機簡化了日常生活,基于人工智能信號處理和控制的自動駕駛汽車提高了自動化水平,人工智能被認為是第四次工業革命的基石之一。然而,在人工智能變得越來越強大和廣泛應用的同時,也必須考慮其對人類及其福祉的影響。因此,僅從技術上讓人工智能解決特定任務已不再足夠。人工智能的使用必須遵循人類價值觀和倫理原則。這不僅適用于人工智能的一般應用,而且與軍事應用尤為相關。在本白皮書中,將分析和討論如何在軍事場景中負責任地使用人工智能,同時遵守道德和法律準則。在第 2 節中,首先回顧了現有文獻,這些文獻廣泛討論了負責任的人工智能在民用和軍用領域的道德準則。在這些研究成果的基礎上,得出了一套綜合的倫理原則,反映了對在軍事應用中整合人工智能輔助功能的倫理合規性的看法。
相關工作,尤其是軍事領域的相關工作,目前主要集中在這一主題的理論考慮上[4, 23]。不過,在第 3、4 和 5 節中,我們描述了三個具體的使用案例,在這些案例中,人工智能輔助功能被用于軍事應用。在描述每個具體場景的同時,我們還從技術角度說明了基于人工智能的功能在當前最先進技術下的可行性。此外,我們還將得出的倫理原則映射到人工智能系統的具體觀察和建議以及與用戶的互動中,如人在環中原則和人在環上原則。在第 6 節中,我們得出結論:人工智能輔助系統的精心設計和開發,加上適當的可解釋人工智能(XAI)集成方法,可以為人類用戶提供實質性支持,并與倫理原則保持一致。特別是在軍事應用中,“回路中的人 ”仍應是最終和唯一的決策者。
美國防部強調的五項道德原則基于人工智能的責任性、公平性、可追溯性、可靠性和可治理性。下文將對這些原則作進一步定義。
負責任:負責任地使用人工智能系統要求人類在這些系統的開發、部署、使用和結果的整個過程中做出適當程度的判斷并承擔相應的責任。這意味著個人必須承擔責任,確保人工智能系統不傷害人、不破壞財產、不違反倫理、法律或道德原則。這不僅需要專業技術知識,還需要深刻理解人工智能對社會、文化和倫理的廣泛影響。
公平:在開發和部署人工智能系統時,必須確保這些系統不會對個人或群體造成意外傷害。這就要求在開發和部署作戰或非作戰人工智能系統時,采取審慎措施,避免意外的偏見和歧視。這意味著要確保這些系統是在不同的數據集上開發和訓練的,并且不會使現有的偏見或成見永久化。這還需要對這些系統進行持續監測和評估,以確保它們不會對人類造成傷害。
可追溯:人工智能工程學科必須足夠先進,以便技術專家對人工智能系統的技術、開發流程和操作方法有適當的了解。這包括透明和可審計的方法、數據來源以及設計程序和文檔。人工智能系統的可追溯性對于了解其運行方式、識別潛在風險和漏洞以及確保其符合道德和法律要求至關重要。
可靠: 人工智能系統必須在其定義的使用領域內的整個生命周期內都是可靠、安全、有保障和穩健的。這意味著這些系統必須經過設計和測試,以便在預期和意外條件下執行其預期功能。這需要進行嚴格的測試和評估,以確保這些系統的安全可靠,并識別和降低潛在的風險或漏洞。人工智能系統的可靠性對于確保其準確有效地執行預期功能,同時不對個人或財產造成傷害至關重要。
可治理: 人工智能系統的設計和工程設計必須能夠實現其預期功能,同時具備檢測和避免意外傷害或破壞的能力。這就要求系統能夠由人類和自動化系統進行有效管理。這包括以下能力:(1) 監控已部署的人工智能系統的行為;(2) 在這些系統出現意外升級或其他不受歡迎的行為時,使其失效或脫離。人工智能系統的可治理性對于確保其在道德和法律界限內運行,不對個人或群體造成傷害至關重要。
現代沖突涉及信息武器化和操縱人類行為。人工智能(AI)及其與個人日常生活的融合有望增強、加速這些趨勢,但也會使其復雜化。兩個重要的轉變將幫助我們了解這場新興戰爭的真實面目:對人類本身的攻擊。
人工智能使信息戰變得更強大、更易獲取。生成式人工智能與數據捕捉相結合,提供了將虛假信息的進攻性使用產業化的新技術。此外,生成式人工智能與其他強大技術的結合使信息戰的潛力更加復雜。問題的關鍵在于兩用知識本身的武器化。在人工智能、神經、納米和生物技術等復雜的技術領域,生成式人工智能已經在學習如何使軍事和民用專業知識擴散化。這種能力將使國家和非國家行為者都能獲得與有影響力的技術相關的知識和指導。這種力量的擴散將改變信息戰和物理戰的性質,加劇沖突中威脅行為體之間雙重用途知識的不對稱。迫切需要為利用技術融合的濫用情景做好準備。新的融合風險將帶來集體安全挑戰,而這些挑戰在全球范圍內并沒有得到很好的理解或預期。
世界已進入復雜而危險的十年。隨著新舊威脅的交織和對多邊秩序的挑戰,戰爭、技術和網絡空間的交匯點正在發生最震撼人心的變化。現代沖突--無論是宣戰的、有爭議的還是在灰色地帶進行的--都因本質上具有雙重用途的技術革命而加劇。這些沖突融合了物理和數字戰線,入侵城市和工廠、家庭和日常設備,并隨之產生新的目標和受害者。和平與戰爭、進攻與防御、民用技術與軍用技術、國家力量與網絡代理人之間的界限正在消失。
現代沖突越來越多地涉及信息武器化以及對人類行為和觀念的操縱。人工智能(AI)的快速發展及其與個人日常生活和社會內部結構的融合,不僅有望增強和加速這些趨勢,而且還會使其復雜化。本文旨在展示兩個重要的轉變,這將有助于我們認識和理解這場新興戰爭的真面目:對人類本身的攻擊。
首先,人工智能作為一種催化劑,正在使信息戰變得更強大、更易獲取。生成式人工智能的發展與多種形式的數據采集相結合,為大幅改進、定制、擴大甚至產業化虛假信息的進攻性使用提供了新技術。例如,個性化人工智能助手和聊天機器人現在有能力與用戶進行看似真實的對話,并根據用戶的心理特征和偏好巧妙地注入操縱性內容。通過有說服力的敘述,復雜的機器人網絡可以深刻影響個人和群體的信仰。這些由算法推動的影響力爭奪戰,是為了控制人們的情感和態度,也是破壞社會凝聚力和信任的主要手段。在沖突時期,這些工具影響到平民保護和平民生存決策的關鍵要素,對民眾造成直接和間接傷害(聯合國大會,2022 年)。對于邊緣化人群和弱勢群體,如婦女和青年,這些工具可能會越來越多地制約和限制自決的概念,并可能會繼續影響后代。
其次,人工智能(包括生成式人工智能)與其他強大技術的融合是一個根本性的轉變,因為這種融合擴大并復雜化了信息戰的潛力。問題的關鍵在于軍民兩用知識本身的武器化,可能包括人類文明發展的所有形式的軍民兩用專業知識。
在人工智能、神經、納米和生物技術等復雜的技術領域,生成式人工智能已經在學習如何使戰略性軍事和民用專業知識和隱性知識擴散化。這種能力將為各種國家和非國家行為者提供獲取與有影響力的技術相關的敏感知識和指導的機會。這種力量的擴散不僅會改變信息戰和物理戰的規模,也會改變其性質,從而加劇沖突威脅方之間的雙重用途知識不對稱。迫切需要為敵方使用或濫用技術的情況做好準備,因為這些情況可能會利用原本主要是民用和有益技術的融合。這種新的風險匯合將帶來集體安全挑戰,而這些挑戰在全球范圍內并沒有得到很好的理解或預期。
利害關系重大。隨著人工智能和生成式人工智能系統重塑知識、專長和信息在沖突中以及在戰爭與和平之間的灰色地帶的使用和潛在操縱方式,現在是時候進行前瞻性思考并評估風險、脆弱性和復原形式了。雖然這對軍事力量和戰略思維會有具體影響,但預防和恢復能力將取決于全社會的反應。
本文的戰略目標有兩個方面。首先,通過深入分析人工智能與其他技術的融合如何能被用于擴大信息戰,本文旨在讓軍事當局和戰略思想家、政策制定者和法律專家、民間社會和多邊機構了解有可能威脅和削弱社會同時又逃避責任的新興戰略。其次,通過分析國際法如何適用于新出現的信息戰形式,本文旨在找出法律空白和模糊之處,以及支持國家和多邊層面治理和政策進程的潛在切入點。
本文開篇的框架部分界定了所關注的主題,并迅速回顧了近期的信息戰概念是如何與數字化轉型和不斷演變的沖突格局相關趨勢相結合的(見方框 1)。技術部分闡明了上述兩大轉變,展示了人工智能不僅如何使信息戰擴散化,還如何使其復雜化并擴大其影響。因此,技術部分將涵蓋人工智能在信息戰中的具體用途,包括心理戰;對軍隊和平民的影響;最近在現實世界中的一些表現;以及人工智能的未來潛力和與其他技術的融合。接下來是一個詳細的場景,展示了在曠日持久的武裝沖突中,以人工智能為主導的信息戰如何利用生物技術中的雙重用途知識和尖端技術來削弱公共當局,并從心理上破壞平民的穩定。法律部分回顧了國際法律框架提供的保護措施,以及可能阻礙有效保護和問責的法律空白和模糊之處。最后一節強調了軍民協同的必要性和全社會應對的要素,以加強預防和復原力。
隨著人工智能(AI)領域的飛速發展,這些技術的變革潛力對國家和國際安全產生了深遠的影響。因此,全世界的政策制定者和監管者越來越認識到,迫切需要超越國界和個人利益的共同理解,尤其是在人工智能應用于安全和國防領域的情況下。
然而,國家和非國家行為者之間在人工智能、安全和防衛方面缺乏既定的全球合作框架,這構成了一項重大挑戰。這種共同治理的缺失導致技術進步不協調和各自為政,給國際和平與安全、穩定和繁榮帶來嚴重后果。然而,各國與非國家行為者合作的愿望日益強烈。各國認識到,這種參與至少可以為治理方法和解決方案提供信息,并確保其制定、采納和實施都有據可依。此外,它還可以確保行業、民間社會組織、研究、技術和科學界以及學術界的認識和支持。
聯合國秘書長在其《和平新議程》中強調,必須 “確保工業界、學術界、民間社會和其他部門的利益攸關方參與”,“通過多邊進程,圍繞人工智能軍事應用的設計、開發和使用制定規范、規則和原則”。因此,迫切需要建立、促進和支持一個獨立、中立和可信賴的平臺,該平臺將促成多方利益攸關方對話,并為軍事領域負責任地開發、獲取、部署、整合和使用人工智能技術孵化治理途徑和解決方案。
人工智能(AI)已經滲透到生活的許多領域,國防領域也不例外。從優化物流鏈到處理大量情報數據,人工智能在軍事領域都有應用。越來越多的人認為,人工智能將對未來戰爭產生重大影響,世界各地的部隊都在大力投資人工智能所帶來的能力。盡管取得了這些進步,但戰斗在很大程度上仍然是人類的活動。
通過使用人工智能支持的自主武器系統(AWS)將人工智能引入戰爭領域,可能會徹底改變國防技術,這也是當今最具爭議的人工智能用途之一。關于自主武器如何遵守出于人道主義目的而制定的武裝沖突規則和條例,一直存在著特別的爭論。
政府的目標是 "雄心勃勃、安全、負責任"。當然,我們原則上同意這一目標,但愿望與現實并不相符。因此,在本報告中提出建議,以確保政府以合乎道德和法律的方式在 AWS 中開發和使用人工智能,提供關鍵的戰略和戰場效益,同時實現公眾理解和認可。必須將 "雄心勃勃、安全負責 "轉化為實際執行。
政府必須尋求、建立并保持公眾對開發和使用人工智能的信心和民主認可,尤其是在 AWS 方面。從媒體對我們調查的報道中可以清楚地看出,人們對在預警系統中使用人工智能有著廣泛的興趣和關注。實現民主認可有幾個要素:
理解: 對自主武器的討論,以及在很大程度上對人工智能的討論,都受到追求議程和缺乏理解的困擾。我們的目標之一是為建設性辯論提供事實依據,政府的坦誠和透明將有助于這一進程。
議會的作用: 議會是開發和使用預警系統的決策中心。議會的監督能力取決于信息的可獲得性,取決于其預測問題而不是事后反應的能力,也取決于其追究部長責任的能力。政府必須在議會時間表中留出足夠的空間,并提供足夠的信息,以便議會(包括其專門委員會)有效地審查其人工智能政策。我們當然理解政策制定的內容可能高度敏感,但我們有既定的方法來處理此類信息。絕不能以保密為由逃避責任。
保持公眾信心: 對英國防部 "目前沒有開展監測或民意調查以了解公眾對使用自主武器系統的態度 "這一事實感到失望。政府必須確保在開發自動武器系統時適當征求公眾意見。它還必須確保道德規范處于其政策的中心位置,包括擴大英國防部人工智能道德咨詢委員會的作用。
實現以下目標對這一進程至關重要:
政府應以身作則,在國際上參與對 AWS 的監管。人工智能安全峰會是一個值得歡迎的舉措,但它并不包括國防。政府必須將人工智能納入 AWS,因為政府宣稱希望 "以包容的方式共同努力,確保以人為本、值得信賴和負責任的人工智能是安全的",并 "通過現有的國際論壇和其他相關倡議支持所有人的利益"。
幾年來,國際社會一直在辯論如何監管人工智能系統。這場辯論的結果可能是一項具有法律約束力的條約,也可能是澄清國際人道主義法應用的非約束性措施--每種方法都有其擁護者。盡管在形式上存在分歧,但關鍵目標是加快努力,達成一項有效的國際文書。
其中的一個關鍵因素將是禁止在核指揮、控制和通信中使用人工智能。一方面,人工智能的進步有可能提高核指揮、控制和通信的效率。例如,機器學習可以提高預警系統的探測能力,使人類分析人員更容易交叉分析情報、監視和偵察數據,并改善核指揮、控制和通信的防護,使其免受網絡攻擊。
然而,在核指揮、控制和通信中使用人工智能也有可能刺激軍備競賽,或增加各國在危機中有意或無意地升級使用核武器的可能性。使用人工智能時,決策時間被壓縮,可能會導致緊張局勢加劇、溝通不暢和誤解。此外,人工智能工具可能會被黑客攻擊,其訓練數據可能會中毒,其輸出結果可能會被解釋為事實,而實際上它們只是統計上的相關性,所有這些都可能導致災難性的結果。
政府應采用可操作的 AWS 定義。令人驚訝的是,政府目前還沒有這樣的定義。英國防部表示,它對采用這樣一個定義持謹慎態度,因為 "此類術語已具有超出其字面解釋的含義",并擔心 "在一個如此復雜和快速發展的領域,過于狹隘的定義可能很快過時,并可能無意中阻礙國際討論的進展"。然而,我們認為可以創建一個面向未來的定義。這樣做將有助于英國制定有意義的自主武器政策,并充分參與國際論壇的討論。
政府應確保在 AWS 生命周期的各個階段都有人類控制。人們對 AWS 的關注主要集中在由人工智能技術實現自主的系統上,由人工智能系統對從傳感器獲得的信息進行分析。但是,為了確保人類的道德代理權和法律合規性,對系統的部署進行人為控制是至關重要的。這必須以我們國家對國際人道法要求的絕對承諾為支撐。
政府應確保其采購程序是為人工智能世界而適當設計的。英國防部的采購工作缺乏問責制,過于官僚化。特別是,英國防部缺乏軟件和數據方面的能力,而這兩者都是人工智能發展的核心。這可能需要革命性的變革。如果需要,那就改變吧;但時間緊迫。
美國仍然是世界上最突出的軍事和技術力量。在過去十年中,美國認識到人工智能作為力量倍增器的潛力,越來越多地將人工智能(AI)的熟練程度視為美國重要利益和保證美國軍事和經濟實力的機制。特別是,在過去十年中,人工智能已成為美國國防的一項關鍵能力,特別是考慮到2022年美國國防戰略對印度-太平洋地區的關注。
因此,美國國防部(DoD)(以及美國政府和國防機構總體上)對人工智能和相關新興技術表現出越來越大的熱情。然而,雖然美國目前在學術界和私營部門的人工智能研究和開發方面取得了巨大進展,但國防部尚未在廣泛范圍內成功地將商業人工智能的發展轉化為真正的軍事能力。
美國政府在利用國防人工智能和人工智能支持的系統方面通常處于有利地位。然而,在過去的幾年里,各種官僚主義、組織和程序上的障礙減緩了國防部在國防人工智能采用和基于技術的創新方面的進展。最關鍵的是,國防部遭受了復雜的收購過程和廣泛的數據、STEM和AI人才和培訓的短缺。從事人工智能和人工智能相關技術和項目的組織往往是孤立的,而且還存在必要的數據和其他資源相互分離。在美國防部內部存在一種傾向于可靠方法和系統的文化,有時趨向于勒德主義。所有這些因素都導致了人工智能采用的速度出奇的緩慢。美國家安全委員會2021年提交給國會的最終報告總結說,"盡管有令人興奮的實驗和一些小型的人工智能項目,但美國政府離人工智能就緒還有很長的路要走"。
因此,盡管人工智能有可能增強美國的國家安全并成為一個優勢領域,而且鑒于美國在軍事、創新和技術領導方面的長期傳統,人工智能有可能成為一個薄弱點,擴大 "美國已經進入的脆弱窗口"。 如果美國不加快創新步伐,達到負責任的速度,并奠定必要的制度基礎,以支持一支精通人工智能的軍隊,人工智能將繼續成為一個不安全點。
去年,美國防部在這些挑戰中的一些方面取得了進展,調整了國防人工智能的方法。2022年6月,美國防部發布了《負責任人工智能戰略和實施途徑》,將更有數據依據的、負責任的、可操作的人工智能工作列為優先事項,此后開始執行。最重要的是,美國防部已經啟動了對其人工智能組織結構的重大改革,創建了一個新的首席數字和人工智能辦公室(CDAO),以整合其不同的人工智能項目和利益相關者,并使其與該部門的數據流更好地協調。值得注意的是,美國國防部目前正在對其國防人工智能的整體方法進行重大變革和振興。然而,這些新的人工智能努力是否足以讓美國彌補失去的時間,還有待觀察。
人工智能(AI)領域的不斷進步以及在關鍵部門整合AI系統的工作正在逐步改變社會的各個方面,包括國防部門。盡管人工智能的進步為增強人類能力和改善各種決策提供了前所未有的機會,但它們也帶來了重大的法律、安全、安保和倫理問題。因此,為了確保人工智能系統的開發和使用是合法的、道德的、安全的、有保障的和負責任的,政府和政府間組織正在制定一系列規范性文書。這種方法被廣泛稱為 "負責任的人工智能",或道德的或值得信賴的人工智能。目前,負責任的人工智能最引人注目的方法是開發和運作負責任或道德的人工智能原則。
聯合國裁研所的 "在國防中實現負責任的人工智能 "項目首先尋求對負責任的人工智能系統的研究、設計、開發、部署和使用的關鍵方面建立共同的理解。然后,它將審查負責任的人工智能在國防部門的運作情況,包括確定和促進良好做法的交流。該項目有三個主要目標。首先,它旨在鼓勵各國采用和實施能夠在開發和使用人工智能系統中實現負責任行為的工具。它還試圖幫助提高透明度,促進國家和其他關鍵人工智能行為者之間的信任。最后,該項目旨在建立對負責任的人工智能關鍵要素的共同理解,以及如何將其付諸實施,這可以為制定國際公認的治理框架提供參考。
本研究簡報概述了該項目的目標。它還概述了項目第一階段的研究方法和初步結果:制定共同的原則分類法和對各國采用的人工智能原則進行比較分析。
人工智能在軍事領域的前景之一是其廣泛的適用性,這似乎可以保證其被采用。在軍事方面,人工智能的潛力存在于所有作戰領域(即陸地、海洋、空中、太空和網絡空間)和所有戰爭級別(即政治、戰略、戰役和戰術)。然而,盡管有潛力,需求和人工智能技術進步之間的銜接仍然不是最佳狀態,特別是在軍事應用的監督機器學習方面。訓練監督機器學習模型需要大量的最新數據,而這些數據往往是一個組織無法提供或難以產生的。應對這一挑戰的絕佳方式是通過協作設計數據管道的聯邦學習。這種機制的基礎是為所有用戶實施一個單一的通用模型,使用分布式數據進行訓練。此外,這種聯邦模式確保了每個實體所管理的敏感信息的隱私和保護。然而,這個過程對通用聯邦模型的有效性和通用性提出了嚴重的反對意見。通常情況下,每個機器學習算法在管理現有數據和揭示復雜關系的特點方面表現出敏感性,所以預測有一些嚴重的偏差。本文提出了一種整體的聯邦學習方法來解決上述問題。它是一個聯邦自動集成學習(FAMEL)框架。FAMEL,對于聯邦的每個用戶來說,自動創建最合適的算法,其最優的超參數適用于其擁有的現有數據。每個聯邦用戶的最優模型被用來創建一個集成學習模型。因此,每個用戶都有一個最新的、高度準確的模型,而不會在聯邦中暴露個人數據。實驗證明,這種集成模型具有更好的可預測性和穩定性。它的整體行為平滑了噪音,同時減少了因抽樣不足而導致的錯誤選擇風險。
關鍵詞:聯邦學習;元學習;集成學習;軍事行動;網絡防御
隨著步伐的加快,人工智能(AI)正在成為現代戰爭的重要組成部分,因為它為大規模基礎設施的完全自動化和眾多防御或網絡防御系統的優化提供了新的機會[1]。人工智能在軍事領域[2]的前景之一,似乎保證了它的采用,即它的廣泛適用性。在軍事方面,人工智能的潛力存在于所有作戰領域(即陸地、海洋、空中、太空和網絡空間)和所有級別的戰爭(即政治、戰略、戰役和戰術)[3]。但與此同時,隨著參與連續互聯和不間斷信息交換服務的互聯系統數量的實時擴大,其復雜性仍在成倍增長[4]。從概括的角度來看,可以說人工智能將對以下任務產生重大影響:
1.太快的任務,反應時間為幾秒鐘或更少,在高復雜度(數據、背景、任務類型)下執行。
2.操作時間超過人類耐力的任務,或意味著長期的高操作(人員)成本。
3.涉及巨大的復雜性的任務,需要靈活地適應環境和目標的變化。
4.具有挑戰性的行動環境,意味著對作戰人員的嚴重風險。
支持上述任務的實時監測事件的應用程序正在接收一個持續的、無限的、相互聯系的觀察流。這些數據表現出高度的可變性,因為它們的特征隨著時間的推移而發生巨大的、意想不到的變化,改變了它們典型的、預期的行為。在典型情況下,最新的數據是最重要的,因為老化是基于它們的時間。
利用數據的軍事人工智能系統可以將軍事指揮官和操作員的知識和經驗轉化為最佳的有效和及時的決策[3,4]。然而,缺乏與使用復雜的機器學習架構相關的詳細知識和專業知識會影響智能模型的性能,阻止對一些關鍵的超參數進行定期調整,并最終降低算法的可靠性和這些系統應有的概括性。這些缺點正在阻礙國防的利益相關者,在指揮鏈的各個層級,信任并有效和系統地使用機器學習系統。在這種情況下,鑒于傳統決策系統無法適應不斷變化的環境,采用智能解決方案勢在必行。
此外,加強國防領域對機器學習系統不信任的一個普遍困難是,采用單一數據倉庫對智能模型進行整體訓練的前景[1],由于需要建立一個潛在的單點故障和對手的潛在戰略/主要目標[6],這可能造成嚴重的技術挑戰和隱私[5]、邏輯和物理安全等嚴重問題。相應地,可以使更完整的智能分類器泛化的數據交換也給敏感數據的安全和隱私帶來了風險,而軍事指揮官和操作人員并不希望冒這個風險[7]。
為了克服上述雙重挑戰,這項工作提出了FAMEL。它是一個整體系統,可以自動選擇和使用最合適的算法超參數,以最佳方式解決所考慮的問題,將其作為一個尋找算法解決方案的模型,其中通過輸入和輸出數據之間的映射來解決。擬議的框架使用元學習來識別過去積累的類似知識,以加快這一過程[8]。這些知識使用啟發式技術進行組合,實現一個單一的、不斷更新的智能框架。數據保持在操作者的本地環境中,只有模型的參數通過安全流程進行交換,從而使潛在的對手更難干預系統[9,10]。
在提議的FAMEL框架中,每個用戶在水平聯邦學習方法中使用一個自動元學習系統(水平聯邦學習在所有設備上使用具有相同特征空間的數據集。垂直聯邦學習使用不同特征空間的不同數據集來共同訓練一個全局模型)。以完全自動化的方式選擇具有最佳超參數的最合適的算法,該算法可以最佳地解決給定的問題。該實施基于實體的可用數據,不需要在遠程存儲庫中處置或與第三方共享[11]。
整個過程在圖1中描述。
圖1.FAMEL框架。
具體來說就是:
步驟1--微調最佳局部模型。微調過程將有助于提高每個機器學習模型的準確性,通過整合現有數據集的數據并將其作為初始化點,使訓練過程具有時間和資源效率。
步驟2--將本地模型上傳至聯邦服務器。
步驟3--由聯邦服務器對模型進行組合。這種集成方法使用多種學習算法,以獲得比單獨使用任何一種組成的學習算法都要好的預測性能。
步驟4--將集成模型分配給本地設備。
從這個過程中產生的最佳模型(贏家算法)被輸送到一個聯邦服務器,在那里通過啟發式機制創建一個集成學習模型。這個集成模型基本上包含了本地最佳模型所代表的知識,如前所述,這些知識來自用戶持有的本地數據[12]。因此,總的來說,集成模型提供了高概括性、更好的預測性和穩定性。它的一般行為平滑了噪音,同時降低了在處理本地數據的場景中由于建模或偏見而做出錯誤選擇的總體危險[13,14]。
將機器學習應用于現實世界的問題仍然特別具有挑戰性[44]。這是因為需要訓練有素的工程師和擁有豐富經驗和信息的軍事專家來協調各自算法的眾多參數,將它們與具體問題關聯起來,并使用目前可用的數據集。這是一項漫長的、費力的、昂貴的工作。然而,算法的超參數特征和理想參數的設計選擇可以被看作是優化問題,因為機器學習可以被認為是一個搜索問題,它試圖接近輸入和輸出數據之間的一個未知的潛在映射函數。
利用上述觀點,在目前的工作中,提出了FAMEL,擴展了制定自動機器學習的一般框架的想法,該框架具有有效的通用優化,在聯邦層面上運作。它使用自動機器學習在每個聯邦用戶持有的數據中找到最佳的本地模型,然后,進行廣泛的元學習,創建一個集成模型,正如實驗所顯示的那樣,它可以泛化,提供高度可靠的結果。這樣,聯邦機構就有了一個專門的、高度概括的模型,其訓練不需要接觸他們所擁有的數據的聯合體。在這方面,FAMEL可以應用于一些軍事應用,在這些應用中,持續學習和環境適應對支持的行動至關重要,而且由于安全原因,信息交流可能很難或不可能。例如,在實時優化有關任務和情況的信息共享方面就是這種情況。在部署了物聯網傳感器網格的擁擠環境中,FAMEL的應用將具有特別的意義,需要滿足許多安全限制。同樣,它也可以應用于網絡空間行動,在雜亂的信息環境和復雜的物理場景中實時發現和識別潛在的敵對活動,包括對抗負面的數字影響[45,46]。必須指出的是,在不減少目前所描述的要點的情況下,所提出的技術可以擴展到更廣泛的科學領域。它是一種通用的技術,可以發展和產生一種開放性的整體聯邦學習方法。
盡管總的來說,聯邦學習技術的方法論、集成模型以及最近的元學習方法已經強烈地占據了研究界,并提出了相關的工作,提升了相關的研究領域,但這是第一次在國際文獻中提出這樣一個綜合框架。本文提供的方法是一種先進的學習形式。計算過程并不局限于解決一個問題,而是通過一種富有成效的方法來搜索解決方案的空間,并以元啟發式的方式選擇最優的解決方案[47,48]。
另一方面,聯邦學習模型應該對合作訓練數據集應用平均聚合方法。這引起了人們對這種普遍方法的有效性的嚴重關注,因此也引起了人們對一般聯邦架構的有效性的關注。一般來說,它將單個用戶的獨特需求扁平化,而不考慮要管理的本地事件。如何創建解決上述局限性的個性化智能模型,是目前一個突出的研究問題。例如,研究[49]是基于每個用戶必須以聯邦的形式解決的需求和事件。解釋是可解釋系統的各種特征,在指定的插圖的情況下,這些特征有助于得出結論,并在局部和全局層面提供模型的功能。建議只對那些變化程度被認為對其功能的演變相當重要的特征進行再訓練。
可以擴大擬議框架研究領域的基本課題涉及元集成學習過程,特別是如何解決創建樹和它們的深度的問題,從而使這個過程自動完全簡化。還應確定一個自動程序,以最佳的分離方式修剪每棵樹,以避免負收益。最后,探索將優化修剪的樹的版本添加到模型中的程序,以最大限度地提高框架效率、準確性和速度。
(完整內容請閱讀原文)
計算思維和數據科學的進步導致了人工智能系統的新時代,這些系統被設計來適應復雜的情況并開發可操作的知識。這些學習系統旨在可靠地理解情況的本質,并構建關鍵的決策建議,以支持自主和人機團隊的運作。
同時,數據的數量、速度、種類、真實性、價值和變異性的不斷增加,使這些新系統的復雜性受到影響--在其開發和實施方面造成了挑戰。對于支持具有較高后果的關鍵決策的人工系統來說,安全已經成為一個重要的問題。需要有方法來避免故障模式,并確保只允許期望的行為。
元認知是一種解決策略,它能促進人工智能系統內部的自我意識,以了解其外部和內部的運行環境,并利用這些知識來識別潛在的故障,實現自我修復和自我管理,以實現安全和理想的行為。
人工智能戰爭決策輔助工具通過增強戰斗空間知識、解決不確定性、推薦戰術行動方案、制定交戰戰略來支持作戰人員決策。
人工智能(AI)的最新進展為許多經典的AI應用帶來了突破,例如計算機視覺、自然語言處理、機器人和數據挖掘。因此,有很多人努力將這些進展應用于軍事領域,如監視、偵察、威脅評估、水雷戰、網絡安全、情報分析、指揮和控制以及教育和培訓。然而,盡管人工智能在軍事應用上有很多可能性,但也有很多挑戰需要考慮。例如,1)高風險意味著軍事人工智能系統需要透明,以獲得決策者的信任并能進行風險分析;這是一個挑戰,因為許多人工智能技術具有黑盒性質,缺乏足夠的透明度;2)軍用 AI 系統需要穩健可靠;這是一個挑戰,因為已經表明即使對所使用的 AI 技術沒有任何了解,AI 技術也容易受到輸入數據微小變動的影響,并且 3) 許多 AI 技術基于需要大量數據的機器學習訓練;這是一個挑戰,因為在軍事應用中經常缺乏足夠的數據。本文介紹了正在進行的項目成果,以說明軍事應用中人工智能的可能性,以及如何應對這些挑戰。
人工智能(AI),特別是機器學習(ML)和深度學習(DL),在十年內已經從研究機構和大學的原型設計轉向工業和現實世界應用。使用DL技術的現代人工智能已經徹底改變了傳統人工智能應用的性能,如機器翻譯、問答系統和語音識別。這一領域的許多進展也將其優秀的想法變成了卓越的人工智能應用,能夠進行圖像說明、唇語閱讀、語音模仿、視頻合成、連續控制等。這些成果表明,一個能夠自我編程的機器有潛力:1)提高軟件和硬件開發的效率,2)以超越人類的水平完成特定的任務,3)為人類以前沒有考慮過的問題提供創造性的解決方案,4)在人類已知的主觀、偏見、不公平、腐敗等方面提供客觀和公平的決定。
在軍事背景下,人工智能的潛力存在于所有維度的軍事空間中(即陸地、海洋、空中、空間和信息)和所有級別的戰爭內(即政治、戰略、作戰和戰術)。例如,在政治和戰略層面,人工智能可以通過制作和發布大量的虛假信息來破壞對手的穩定狀態。在這種情況下,人工智能很可能也是抵御這種攻擊的最佳人選。在戰術層面,人工智能可以改善無人系統的部分自主控制,以便人類操作員可以更有效地操作無人系統,最終擴大戰場影響力,增強戰場實力。
然而,正如我們將在這項工作中指出的那樣,有幾個關鍵挑戰可能會減緩或限制現代人工智能在軍事應用中的使用:
本文的目的是強調人工智能在軍事應用中的可能性和主要挑戰。第2節簡要介紹了DL,它是本文關注的主要人工智能技術。第3節提供了幾個人工智能在軍事領域中應用的例子。第4節描述了與軍事領域中人工智能的關鍵挑戰,以及部分可用于解決這些挑戰的技術。第5節提出了結論。
我們所說的DL是指由多個非線性處理單元層組成的機器學習模型。通常情況下,這些模型由人工神經網絡表示。在這種情況下,神經元指的是一個單一的計算單元,其輸出是通過一個(非線性)激活函數的輸入的加權和(例如,一個只有在信號為正時才通過的函數)。DNN指的是具有大量串連神經元層(神經元層由神經元并聯組成)的系統。與DNN相對的是淺層神經網絡,它只有一層平行連接的神經元。
直到大約十年前,DNN的訓練幾乎是不可能的。第一個成功的深度網絡的訓練策略是基于一次訓練一個層。逐層訓練的深度網絡的參數最終使用隨機梯度方法進行微調(同時),以最大限度地提高分類精度。此后,許多研究進展使得直接訓練DNN成為可能,而無需逐層訓練。例如,人們發現,網絡權重的初始化策略與激活函數的選擇相結合是解決問題的關鍵。甚至一些技術,如在訓練階段隨機停用神經元,以及在信號到達激活函數之前對其進行歸一化處理,也已證明對于使用 DNN 獲得良好結果非常重要。
表示學習是DNN高性能的主要原因之一。使用DL和DNN,不再需要手動制作學習特定任務所需的特征。相反,辨別特征是在 DNN 的訓練過程中自動學習的。
支持 DL 應用的技術和工具如今比以往任何時候都更加好用。通過廉價的計算資源、免費的 ML 框架、預訓練模型、開源數據和代碼,僅使用有限的編程/腳本技能即可成功應用和定制高級 DL。
本節介紹了幾個可以應用人工智能來提高軍事能力的例子。
海上監視是利用固定雷達站、巡邏飛機、船舶,以及近年來使用自動識別系統(AIS)對海上船只進行的電子跟蹤。這些信息源提供了大量的關于船只運動的信息,這些信息可能會揭示船舶非法的、不安全的、有威脅的和異常的行為。然而,大量的船舶運動信息使得手動檢測此類行為變得困難。因此ML-方法被用來從船舶運動數據中生成常態模型。任何偏離常態模型的船舶運動都被認為是異常的,并提交給操作員進行人工檢查。
一種早期的海事異常檢測方法使用模糊 ARTMAP 神經網絡架構根據港口位置對正常船舶速度進行建模。另一種方法是利用運動模式的關聯學習來預測基于其當前位置和行駛方向的船舶運動。其他方法則使用基于高斯混合模型(GMM)和內核密度估計(KDE)的無監督聚類。這些模型能夠檢測出改變方向、穿越海路、向相反方向移動或高速行駛的船只。最近的方法是使用貝葉斯網絡來檢測錯誤的船舶類型,以及不連續的、不可能的和徘徊的船舶運動。海事異常檢測的未來發展還應該考慮周圍的船只和多艘船只之間的互動。
水雷對海上船只構成重大威脅,被用來限制船只行動或阻止船只通過受限水域。因此,反水雷措施(MCM)試圖定位和消除水雷,以實現行動自由。越來越多地使用配備合成孔徑聲納 (SAS) 的自主水下航行器 (AUV) 進行水雷搜索,該水下航行器能提供厘米分辨率的海底聲學圖像。由于AUV收集了大量的SAS圖像,自動目標分類對于區分潛在的水雷與其他物體是很有用的。雖然對水雷的自動目標分類已經研究了很長時間,但DNN在圖像分類方面的高性能表現使人們對如何將這種辦法用于自動地雷探測產生了興趣。
一些研究顯示了DNN在水雷探測方面的潛力。例如,這些研究描述了如何將假水雷的形狀、類似水雷的目標、人造物體和巖石放置在海底的各種地理圖形位置上。然后用AUV和SAS對海底進行測量。結果顯示,與傳統的目標分類器相比,DNN的性能明顯提高,對水雷形狀的檢測概率更高,誤報率更低。同樣,這些研究也描述了如何生成圓柱形物體和各種海底景觀的協同SAS圖像,并這些圖像用來訓練DNN。進一步的研究可能會探究如何從所有類型的雜波物體中分辨出水雷,結合檢測和分類,以及對噪聲、模糊和遮擋的魯棒性等
入侵檢測是網絡安全的重要組成部分,可在惡意網絡活動危及信息可用性、完整性或機密性之前對其進行檢測。入侵檢測是使用入侵檢測系統(IDS)進行的,該系統將網絡流量分類為正常或入侵。然而,由于正常的網絡流量往往具有與實際攻擊相似的特征,網絡安全分析師對所有入侵警報的情況進行分析,以確定是否存在實際的攻擊。雖然基于簽名的IDS通常擅長檢測已知的攻擊模式,但它們不能檢測以前未見過的攻擊。此外,基于簽名的檢測的開發往往是緩慢和昂貴的,因為它需要大量的專業知識。這限制了系統對快速演變的網絡威脅的適應性。
許多研究使用 ML 和其他 AI 技術來提高已知攻擊的分類準確性、檢測異常網絡流量(因為這可能表明新的攻擊模式偏離了正常網絡流量)以及自動化模型構建。然而,這些系統很少被實際使用。其原因是,入侵檢測給出了具體的挑戰,如缺乏訓練數據、網絡流量變化大、錯誤成本高以及難以進行相關評估。雖然可以收集大量的網絡流量,但這些信息往往是敏感的,只能部分匿名化處理。使用模擬數據是另一種選擇,但它往往不夠真實。然后,必須根據模式是正常還是入侵,或用于確保無攻擊的異常檢測來標記數據以進行監督學習,這通常很難做到。最后,模型需要是透明的,以便研究人員能夠理解檢測限制和特征的含義。
另一項提高網絡安全的措施是在安全審計期間進行滲透測試,以確定潛在的可利用的安全弱點。由于許多網絡的復雜性和其中的大量主機,滲透測試通常是自動化的。一些研究已經調查了如何使用網絡的邏輯模型而不是實際的網絡將 AI 技術用于模擬滲透測試。網絡通常用攻擊圖或樹來表示,描述對手如何利用漏洞闖入系統。描述了模型在表征方式方面的不同之處:1) 攻擊者的不確定性,從抽象的成功和檢測概率到網絡狀態的不確定性,以及 2) 從已知的前后條件到一般感知和觀察的攻擊者行為-結果的服務。此外,通過網絡和主機的正式模型,可以對不同的緩解策略進行假設分析。未來對滲透測試的研究可能會使用攻擊者和防御者之間交互的認知有效模型,例如,深度強化學習來探索可能攻擊的大問題空間。
正如第3節中的案例所示,在為軍事目的開發和部署的基于人工智能的應用之前,有一些尚未解決的挑戰是很重要的。在本節中,我們將討論我們認為對軍事人工智能最關鍵的挑戰:1)透明度,2)脆弱性,以及3)在有限的訓練數據下的學習。其他重要的,但不太關鍵的,與優化、泛化、架構設計、超參數調整和生產級部署有關的挑戰,在本節中沒有進一步討論。
許多應用除了需要高性能外,還需要高透明度、高安全性以及用戶的信任或理解。這種要求在安全關鍵系統、監控系統、自主智能體、醫學和其他類似的應用中很典型。隨著最近人工智能技術的突破,人們對透明度的研究也越來越感興趣,以支持最終用戶在此類應用中的使用與透明度相關的成果。
人工智能所需的透明度取決于終端用戶的需求。利普頓描述了透明度可能涉及五種類型的用戶需求:
原則上,有兩種方法可以使人工智能系統透明。首先,某些類型的模型被認為比其他的更容易解釋,例如線性模型、基于規則的系統或決策樹。檢查這些模型可以理解它們的組成和計算。Lipton描述了可解釋性取決于用戶是否能夠預測系統的建議,理解模型參數,以及理解訓練算法。其次,系統可以解釋其建議。這種解釋可以是文字的,也可以是視覺的。例如,通過指出圖像的哪些方面最有助于其分類。Miller 對社會科學研究中如何使用這些知識來設計 AI 系統的進行了的回顧。通常情況下,人們用他們感知到的信念、欲望和意圖來解釋其他智能體的行為。對于人工智能系統來說,信念對應于系統關于情況的信息,欲望對應于系統的目標,而意圖對應于中間狀態。此外,解釋可能包括行動的異常性、使成本或風險最小化的偏好、對預期規范的偏離、事件的回顧性和行動的可控性。主要的發現是:
貝葉斯規則列表(BRL)是可解釋模型的一個例子。BRL由一系列的if(條件)then(結果)else(替代)語句組成。Letham等人描述了如何為一個高度準確和可解釋的模型生成BRL來估計中風的風險。條件離散化了影響中風風險的高維多變量特征空間,結果描述了預測的中風風險。BRL在預測中風風險方面具有與其他ML方法類似的性能,并且與其他現有評分系統一樣具有可解釋性,但其準確性較低。
基于詞典的分類器是文本分類的另一個可解釋模型的例子。基于詞典的分類器將術語的頻率與每個類別中出現的術語的概率相乘。得分最高的類別被選為預測對象。Clos等人使用一個門控遞歸網絡對詞典進行建模,該網絡同時學習術語和修飾語,如副詞和連詞。受過訓練的詞典是關于論壇中的帖子是支持還是反對死刑以及對商業作品的看法。詞典的表現比其他ML方法更好,同時也是可解釋的。
盡管DNN在許多應用中提供了很高的性能,但它們的子符號計算可能有數百萬個參數,這使得人們很難準確理解輸入特征對系統推薦的貢獻。由于DNN的高性能對許多應用來說是至關重要的,因此人們對如何使它們更容易解釋產生了濃厚的興趣(見一篇評論)。許多用于解釋DNN的算法將DNN處理轉化為原始輸入空間,以便將辨別特征可視化。通常,有兩種通用方法用于特征的可視化,即激活最大化和DNN解釋。
激活最大化會計算哪些輸入特征將最大限度地激活可能的系統建議。對于圖像分類來說,這代表了理想的圖像,它顯示了每個類別的可區分和可識別的特征。然而,由于各類可能使用同一物體的許多方面,而且圖像中的語義信息往往是分散的,所以圖像往往看起來不自然。激活最大化的方法的一些例子是梯度上升法,更好的正則化方法以增加通用性,以及合成首選圖像法。
DNN的解釋是通過強調區分輸入特征來解釋系統建議。在圖像分類中,這種可視化可能會突出顯示支持或反對某個類別的區域,或者僅顯示包含區分特征的區域。計算鑒別特征的一種方法是使用局部梯度或其他變化度量的敏感性分析。然而,敏感性分析的一個問題是,它可能顯示輸入中不存在的判別特征。例如,在圖像分類中,敏感性分析可能會顯示物體被遮擋的部分,而不是可見部分。逐層相關性傳播通過考慮特征存在和模型反應來避免這個問題。
與分類不同的是,人工智能規劃是基于動態的領域模型。Fox等人描述如何使用領域模型來解釋為什么行動被執行或不執行,為什么一些行動不能被執行,使未來行動的因果關系,以及重新規劃的需要。
由于公平性對許多人工智能應用來說非常重要,Tan等人描述了如何利用模型蒸餾來檢測黑箱模型的偏差。模型蒸餾法將更大更復雜的模型進行簡化,而沒有明顯的準確性損失。為了提高透明度,他們使用了基于淺層樹的廣義加性模型,對每個參數和兩個參數之間的相互作用進行建模。他們根據黑盒模型的系統建議訓練一個透明模型,并根據實際結果訓練一個透明模型。對兩個模型的推薦差異的假設檢驗體現了黑盒模型引入偏差的情況,然后可以通過比較兩個透明模型來診斷偏差。該系統在犯罪風險、借貸風險和卷入槍擊事件的個人風險方面進行了評估。結果顯示,一個黑盒模型低估了年輕罪犯和白種人的犯罪風險,而高估了美國本土非洲裔犯罪的風險。
在本節中,我們討論DNN在兩個不同方面的脆弱性。1)對輸入操縱的脆弱性和2)對模型操縱的脆弱性。我們首先看一下對輸入信號的操縱:
在提供DNN的情況下,人們發現很容易調整輸入信號,從而使分類系統完全失敗。當輸入信號的維度很大時,例如圖片,通常只需對輸入中的每個元素(即像素)進行不易察覺的微小調整,就足以欺騙系統。用同樣的技術來訓練DNN,通常是采用隨機梯度法,通過觀察梯度的符號,你可以很容易地找到每個元素應該朝哪個方向改變,以使分類器錯誤地選擇目標類別或僅僅是錯誤分類。只需幾行代碼,最好的圖像識別系統就會被欺騙,相信一張車輛的圖片是一只狗。下面的圖 1 顯示了操作前后的圖像以及操作前后類的可能性。
上述方法假設有對DNN的完全訪問權,即所謂的白盒攻擊。人們發現,即使是所謂的黑箱攻擊,即你只觀察到系統的輸入和輸出類型,也是可能的。在其中,作者采用從他們想要攻擊的黑盒系統中稀疏采樣所獲得的數據來訓練一個替代網絡。鑒于替代網絡,你可以使用上述的白盒攻擊方法來制作對抗性輸入。一個學習替代網絡的替代方法被提出來,在這個方法中,遺傳算法被用來創建導致系統錯誤分類的攻擊向量。同一作者甚至表明,通常只需修改圖像中的一個像素,盡管常常是可察覺的,就能實現成功的攻擊。
圖 1:從小型貨車到西伯利亞雪橇犬。 原始圖像和操縱(對抗性制作)圖像之間的絕對差異(放大 20 倍)顯示在右側。 對抗性示例(中心)是使用 Kurakin 的基本迭代方法(BIM)生成的。
當設計一個DNN,但只能獲得少量的訓練數據時,通常會使用預訓練的模型來達到良好的性能。這個概念被稱為遷移學習,一個常見的應用是采用在大量數據上訓練過的模型,根據具體問題替換和定制網絡中的最后幾層,然后在最后階段(有時甚至是整個系統)利用可用的訓練數據微調參數。目前已經有大量的預訓練模型可以從互聯網上下載。那么一個相關的問題是:"我們怎么知道那些上傳模型的人沒有壞心眼?"。作者在識別美國交通標志的模型中插入后門,就考慮了這種類型的漏洞。例如,一個貼紙被訓練為屬于停止標志以外的類別。然后他們表明,當使用后門(即在交通標志上放置一個貼紙)時,基于美國交通標志網絡的識別瑞典交通標志的系統會有負面的反應(大大損害了瑞典交通標志系統的分類準確性)。
減少DNN對輸入信號操縱的脆弱性的一種方法是在模型的訓練過程中明確包括被操縱/對抗的例子。也就是說,除了原始訓練數據外,還產生了對抗性例子,并用于模型的訓練。
另一種方法是使用一個叫做防御蒸餾的概念。簡而言之,該方法試圖降低輸出信號只指出真實類別的要求,并迫使其他類別的概率為零。這分兩步完成。第一步是對DNN進行常規訓練。在第二步,將第一個神經元網絡的輸出(類別概率)用作新的類別標簽,并使用新的(軟)類別標簽訓練一個新的系統(具有相同的架構)。這已被證明可以減少漏洞,因為你沒有把DNN與訓練數據貼得太緊,并保留了一些合理的類間關系。
其他防御方法,例如特征壓縮技術,例如均值或中值濾波或非線性像素表示,例如單熱或溫度計編碼。
不幸的是,所描述的方法都不能完全解決漏洞問題,尤其是如果攻擊者對模型和防御方法有充分的了解的話。
在軍事背景下開發基于ML的應用是具有挑戰性的,因為軍事組織、訓練設施、平臺、傳感器網絡、武器等的數據收集應用最初不是為ML目的設計的。因此,在這個領域,往往很難找到真實世界的、高質量的、足夠大的數據集,可以用來學習和深入理解的。在本節中,我們將探討即使在有限的訓練數據中也可以用來建立ML應用的技術。
遷移學習(也在第4.2.2節中提到)是一種技術,通常在數據集較小和計算資源有限時使用。這個想法是在開發針對其他類似任務的新模型時,重復使用通常由 DNN 表示的預訓練模型的參數。至少有兩種方法可用于DL應用中的遷移學習:
事實證明,遷移學習也可以提高模型的泛化能力。然而,隨著源任務和目標任務之間距離的增加,遷移學習的積極作用往往會減少。
生成性對抗網絡(GANs)是由Goodfellow等人發明的,是一種生成模型,可用于半監督學習,其中將一小組標記的數據與一大組未標記的數據相結合以提高模型的性能。基本的GAN實現由兩個DNN組成,分別代表一個生成器和一個判別器。生成器被訓練成產生假數據,而判別器被訓練成將數據分辨為真實或虛假。當這兩個網絡同時被訓練時,一個網絡的改進也會導致另一個網絡的改進,直到最后達到一個平衡。在半監督學習中,生成器的主要目標是產生未標記的數據,用于提高最終模型的整體性能。除了半監督學習之外,GANs還被用于:
建模和仿真已被軍隊廣泛用于培訓、決策支持和研究等。因此,有很多經過長期驗證的模型,也有可能被用于生成ML應用的合成數據。例如,飛行模擬器可以用來生成置于不同環境中飛機的合成圖像。在這種情況下,標簽是自動的,因為在生成合成圖像之前,飛機的類型是已知的。然而,不足為奇的是,在將模型應用于真實世界的圖像時,使用合成圖像可能會導致性能不佳。目前正在探索的一種方法是采用GANs增強合成圖像,使其具有照片般的真實性。這種方法已經得到成功的應用。
人工智能最近的突破正在逐漸達到可以用于軍事應用的地步。 該論文描述了在監視、水下魚雷戰和網絡安全中使用人工智能的一些可能性。 其他潛在應用包括使用半自動駕駛車輛和傳感器系統進行偵察、在具有長時間要求的防空系統中進行威脅評估、新興模式的情報分析、指揮和控制系統以及教育和培訓。 然而,人工智能的軍事應用需要考慮以下方面的挑戰:
專注于人工智能的透明度、可解釋性和可解釋性問題的研究人員已經取得了許多進展。這些進展中的許多部分也都可能被用于軍事人工智能應用中。然而,需要進行更徹底的需求分析以了解如何利用這些研究成果。軍事需求在風險、數據質量、法律要求等方面與一般情況相比非常不同,有些類型的透明度甚至可能不適用。此外,還需要對如何利用社會科學研究來提高人工智能的可解釋性進行更多研究。未來的研究還應該包括如何充分利用在視覺分析研究領域中開發地豐富的可視化技術。
由于目前還沒有解決脆弱性問題的有效方案,因此在監測這一研究領域不斷尋找有希望的解決方案非常重要。然而,在這種解決方案出現之前,有必要盡量減少外部對模型和防御技術的訪問。否則,對手可能會試圖利用這些漏洞來為自己謀利。
最后,遷移學習使其有可能將預先訓練好的模型應用于訓練數據和計算資源都有限的軍事應用。GAN是另一種有很前途的技術,它能夠采用標記的和未標記的數據進行學習(半監督學習)。GAN也可以與仿真結合使用,以提高合成的訓練數據的真實性。
作為一項關鍵技術,人工智能(AI),特別是以深度神經網絡的形式,已經在許多數字化業務中成功應用,包括生物識別、醫療保健和汽車等領域的安全和安保相關應用。盡管人工智能有無可爭議的好處,但它的使用也帶來了質量和數量上的新風險和脆弱性。隨著人工智能的不斷傳播,這就要求審計方法能夠保證其可信度,并能夠將新興的人工智能標準和人工智能監管工作付諸實施,例如歐洲人工智能法案。審計人工智能系統是一項復雜的工作,因為在人工智能的生命周期中需要考慮多個方面,需要多學科的方法。人工智能審計方法和工具在許多情況下是研究的主題,還沒有實際應用。為了在不同的使用情況下對人工智能系統的可審計性進行全面的盤點,并允許跟蹤其隨時間的進展,我們在此建議采用新開發的 "認證準備矩陣"(CRM),并提出初步概念。通過使用CRM概念作為框架來總結為期一天的人工智能系統審計研討會的結果,其中包括基礎研究、應用人工智能審計工作和標準化活動,我們證明了某些方面的審計方法已經發展成熟,而其他方面仍然需要更多的研究和開發新的審計技術和工具。
機器學習已經成為近年來最流行的話題之一。我們今天看到的機器學習的應用只是冰山一角。機器學習革命才剛剛開始。它正在成為所有現代電子設備不可分割的一部分。在自動化領域的應用,如汽車、安全和監視、增強現實、智能家居、零售自動化和醫療保健,還不多。機器人技術也正在崛起,主宰自動化世界。機器學習在機器人領域的未來應用仍未被普通讀者發現。因此,我們正在努力編寫這本關于機器學習在機器人技術上的未來應用的編輯書籍,其中幾個應用已經包含在單獨的章節中。這本書的內容是技術性的。它試圖覆蓋機器學習的所有可能的應用領域。這本書將提供未來的愿景在未探索的領域的應用機器人使用機器學習。本書中提出的觀點得到了原始研究結果的支持。本章在這里提供了所有必要的理論和數學計算的深入研究。對于外行人和開發人員來說,它將是完美的,因為它將結合高級材料和介紹性材料,形成一個論點,說明機器學習在未來可以實現什么。它將詳細介紹未來的應用領域及其方法。因此,本書將極大地有利于學術界、研究人員和行業項目管理者開發他們的新項目,從而造福人類。