題目: A Comprehensive Survey of Multilingual Neural Machine Translation
摘要:
本文對近年來備受關注的多語言神經機器翻譯進行了綜述。由于翻譯知識的遷移(遷移學習),MNMT在提高翻譯質量方面發揮了重要作用。MNMT比統計機器翻譯更有前途,也更有趣,因為端到端建模和分布式表示為機器翻譯的研究開辟了新途徑。為了利用多語言并行語料庫來提高翻譯質量,人們提出了許多方法。但是,由于缺乏全面的調查,很難確定哪些方法是有希望的,因此值得進一步探討。在這篇論文中,我們對現有的關于MNMT的文獻進行了深入的綜述。我們首先根據中心用例對各種方法進行分類,然后根據資源場景、基礎建模原則、核心問題和挑戰對它們進行進一步分類。只要有可能,我們就通過相互比較來解決幾種技術的優缺點。我們還討論了未來的方向,跨國公司的研究可能采取。本文的目標讀者既有初學者,也有專家。我們希望這篇論文能夠作為一個起點,同時也為那些對MNMT感興趣的研究人員和工程師提供新的思路。
作者簡介:
Raj Dabre,目前在日本NICT做博士后研究。在京都大學完成了博士學位。現在做機器翻譯方面的研究,對機器翻譯的深度學習方法很感興趣。主要研究方向:人工智能、機器翻譯、自然語言處理、遺傳學。個人主頁:
題目: A Comprehensive Survey of Multilingual Neural Machine Translation
摘要: 本文綜述了近年來備受關注的多語言神經機器翻譯(MNMT)。由于翻譯知識的轉移(遷移學習),MNMT在提高翻譯質量方面發揮了重要作用。MNMT比統計機器翻譯更有前途,也更有趣,因為端到端建模和分布式表示為機器翻譯的研究開辟了新途徑。為了利用多語言并行語料庫來提高翻譯質量,人們提出了許多方法。但是,由于缺乏全面的綜述,很難確定哪些方法是有希望的,因此值得進一步探討。在這篇論文中,我們對現有的關于MNMT的文獻進行了深入的綜述。我們首先根據中心用例對各種方法進行分類,然后根據資源場景、基礎建模原則、核心問題和挑戰對它們進行進一步分類。只要有可能,我們就通過相互比較來解決幾種技術的優缺點。我們還討論了未來的方向,跨國公司的研究可能采取。本文的目標讀者既有初學者,也有專家。我們希望這篇論文能夠作為一個起點,同時也為那些對MNMT感興趣的研究人員和工程師提供新的思路。
題目
Pre-trained Models for Natural Language Processing: A Survey
關鍵詞
預訓練語言模型,深度學習,自然語言處理,BERT,Transfomer,人工智能
簡介
最近,預訓練模型(PTM)的出現將自然語言處理(NLP)帶入了一個新時代。 在此調查中,我們提供了針對NLP的PTM的全面概述。 我們首先簡要介紹語言表示學習及其研究進展。 然后,我們基于分類從四個角度對現有PTM進行系統分類。 接下來,我們描述如何使PTM的知識適應下游任務。 最后,我們概述了PTM未來研究的一些潛在方向。該調查旨在作為實踐指南,幫助您理解,使用和開發適用于各種NLP任務的PTM。
作者
Xipeng Qiu, Tianxiang Sun, Yige Xu, Yunfan Shao, Ning Dai ,Xuanjing Huang
譯者
專知成員,范志廣
題目: Exploring Benefits of Transfer Learning in Neural Machine Translation
摘要: 眾所周知,神經機器翻譯需要大量的并行訓練語句,這通常會妨礙它在低資源語言對上的優勢。本文探討了跨語言遷移學習在神經網絡中的應用,以解決資源匱乏的問題。我們提出了幾種轉移學習方法來重用預先訓練在高資源語言對上的模型。我們特別注意技術的簡單性。我們研究了兩種情形:(a)當我們重用高資源模型而不事先修改其訓練過程時;(b)當我們可以預先準備第一階段的高資源模型用于轉移學習時。對于前一個場景,我們通過重用其他研究人員訓練的模型,提出了一種概念證明方法。在后一種情況下,我們提出了一種在翻譯性能上得到更大改進的方法。除了提出的技術外,我們還著重于對遷移學習技術進行深入的分析,并試圖對遷移學習的改進有所啟發。我們展示了我們的技術如何解決低資源語言的特定問題,甚至在高資源轉移學習中也是適用的。我們通過研究轉移學習在各種情況下的潛在缺陷和行為,例如,在人為損壞的訓練語料庫下,或者在固定的模型部分下。
作者簡介: Tom Kocmi,查爾斯特大學,數學與物理學院,形式與應用語言學研究所博士,他的主要研究方向是基于神經網絡的機器翻譯。個人主頁://ufal.mff.cuni.cz/tom-kocmi
題目: A Survey on Document-level Machine Translation: Methods and Evaluation
摘要: 機器翻譯(Machine translation,MT)是自然語言處理(NLP)中的一項重要任務,它使翻譯過程自動化,減少了對人工翻譯的依賴。隨著神經網絡的出現,翻譯質量超過了使用統計技術得到的翻譯質量。直到三年前,所有的神經翻譯模型都是獨立翻譯句子的,不包含任何額外的句子信息。本文的目的是突出神經革命前后在文檔級機器翻譯領域所做的主要工作,以便研究人員能夠認識到我們從哪里開始,我們正朝著哪個方向前進。在談到統計機器翻譯(SMT)的文獻時,我們關注的是那些試圖改善特定話語現象翻譯的作品,而在神經機器翻譯(NMT)中,我們關注的是那些明確使用更廣泛語境的作品。除此之外,我們還介紹了為說明該領域的改進而引入的評估策略。
題目: A Comprehensive Survey of Graph Embedding: Problems, Techniques and Applications 摘要: 圖形是一種重要的數據表示形式,它出現在現實世界的各種場景中。有效的圖形分析可以讓用戶更深入地了解數據背后的內容,從而有利于節點分類、節點推薦、鏈路預測等許多有用的應用。然而,大多數圖形分析方法都存在計算量大、空間開銷大的問題。圖嵌入是解決圖分析問題的有效途徑。它將圖形數據轉換為一個低維空間,其中圖形結構信息和圖形屬性被最大程度地保留。在這項調查中,我們對圖嵌入的文獻進行了全面的回顧。本文首先介紹了圖嵌入的形式化定義及相關概念。之后,我們提出了兩個分類的圖形嵌入,對應于什么挑戰存在于不同的圖形嵌入問題設置,以及現有的工作如何解決這些挑戰,在他們的解決方案。最后,我們總結了圖形嵌入在計算效率、問題設置、技術和應用場景等方面的應用,并提出了四個有前途的研究方向。
作者簡介: Hongyun Cai,經驗豐富的研究人員,有在研究行業工作的經驗。精通計算機科學,C++,數據庫,Java和機器學習。昆士蘭大學計算機科學專業研究生,哲學博士。
Vincent W. Zheng,新加坡先進數字科學中心(ADSC)的研究科學家,也是伊利諾伊大學香檳分校協調科學實驗室的研究附屬機構。他目前領導著ADSC的大型社交項目。該項目旨在利用目前在我們的數字社會(即社交媒體)中普遍存在的巨大“人類傳感器”,并實現對此類數據的社會分析,從而建立一個以人為中心的網絡系統。他還對圖形表示學習、深度學習、自然語言處理、移動計算等領域感興趣,并在社交挖掘、文本挖掘、實際位置和活動識別、用戶分析、移動推薦、增強現實等方面有應用。
Kevin Chen-Chuan Chang是伊利諾伊大學香檳分校計算機科學教授,他領導了數據搜索、集成和挖掘的前沿數據實驗室。他在國立臺灣大學獲得理學學士學位,在斯坦福大學獲得電機工程博士學位。他的研究涉及大規模信息訪問,用于搜索、挖掘和跨結構化和非結構化大數據的集成,目前的重點是“以實體為中心”的Web搜索/挖掘和社交媒體分析。他在VLDB 2000年和2013年獲得了兩項最佳論文獎,2002年獲得了NSF職業獎,2003年獲得了NCSA院士獎,2004年和2005年獲得了IBM院士獎,2008年獲得了創業領導力學院院士獎,并在2001年、2004年、2005年、2006年、2010年和2011年獲得了伊利諾伊大學不完整的優秀教師名單。他熱衷于將研究成果帶到現實世界中,并與學生共同創辦了伊利諾伊大學(University of Illinois)的初創公司Cazoodle,致力于在網絡上深化垂直的“數據感知”搜索。
題目: Neural Machine Translation: A Review
簡介: 機器翻譯(MT)是將書面文本從一種自然語言自動翻譯成另一種自然語言,近年來,機器翻譯領域經歷了一次重大的范式轉變。統計機器翻譯主要依賴于各種基于計數的模型,在過去幾十年中一直主導機器翻譯的研究,但現在它已在很大程度上被神經機器翻譯(NMT)所取代。在這項工作中,我們將追溯現代NMT架構的起源到詞和句子嵌入和早期的例子的編碼器-解碼器網絡家族。最后,我們將對該領域的最新趨勢進行調查。
題目: Neural Machine Reading Comprehension:Methods and Trends
摘要: 近年來,隨著深度學習的出現,要求機器根據給定的語境回答問題的機器閱讀理解(MRC)越來越受到廣泛的關注。雖然基于深度學習的MRC研究方興未艾,但目前還缺乏一篇全面的綜述文章來總結本文提出的方法和近期的發展趨勢。因此,我們對這一有希望的領域的最新研究工作進行了全面的綜述。具體來說,我們比較了不同維度的MRC任務,并介紹了其總體架構。我們進一步提供了流行模型中使用的最新方法的分類。最后,我們討論了一些新的趨勢,并通過描述該領域的一些開放性問題得出結論。
論文題目: Blockchain for Future Smart Grid: A Comprehensive Survey
論文摘要: 智能電網的概念已被引入,作為常規電網的新視野,以尋求一種整合綠色和可再生能源技術的有效方法。通過這種方式,連接互聯網的智能電網(也稱為能源互聯網)也正在作為一種創新的方法出現,以確保隨時隨地的能源供應。這些發展的最終目標是建立一個可持續發展的社會。但是,對于傳統的集中式網格系統而言,集成和協調大量不斷增長的連接可能是一個具有挑戰性的問題。因此,智能電網正在從其集中形式轉變為分散式拓撲。另一方面,區塊鏈具有一些出色的功能,使其成為智能電網范例的有前途的應用程序。本文旨在對區塊鏈在智能電網中的應用進行全面的調查。因此,我們確定了可以通過區塊鏈解決的智能電網場景的重大安全挑戰。然后,我們提出了許多基于區塊鏈的最新研究成果,這些研究成果發表在不同的文獻中,涉及智能電網領域的安全問題。我們還總結了最近出現的幾個相關的實用項目,試驗和產品。最后,我們討論了將區塊鏈應用于智能電網安全問題的基本研究挑戰和未來方向。
論文摘要:遷移學習的目的是通過遷移包含在不同但相關的源域中的知識來提高目標學習者在目標域中的學習性能。這樣可以減少對大量目標域數據的依賴,從而構建目標學習者。由于其廣泛的應用前景,轉移學習已經成為機器學習中一個熱門和有前途的領域。雖然已經有一些關于遷移學習的有價值的和令人印象深刻的綜述,但這些綜述介紹的方法相對孤立,缺乏遷移學習的最新進展。隨著遷移學習領域的迅速擴大,對相關研究進行全面的回顧既有必要也有挑戰。本研究試圖將已有的遷移學習研究進行梳理和梳理,并對遷移學習的機制和策略進行全面的歸納和解讀,幫助讀者更好地了解當前的研究現狀和思路。與以往的研究不同,本文從數據和模型的角度對40多種具有代表性的遷移學習方法進行了綜述。簡要介紹了遷移學習的應用。為了展示不同遷移學習模型的性能,我們使用了20個有代表性的遷移學習模型進行實驗。這些模型是在三個不同的數據集上執行的,即,亞馬遜評論,路透社-21578,Office-31。實驗結果表明,在實際應用中選擇合適的遷移學習模型是非常重要的。
關鍵詞:遷移學習 機器學習 域適應 可解釋性