使用全球導航衛星系統(GNSS)進行導航是自主車輛(地面或空中)的常見做法。不幸的是,基于GNSS的導航解決方案往往容易受到干擾、干涉和衛星數量有限的影響。當基于GNSS的系統出現故障時,一種被提議的技術可以幫助導航,即利用地球的磁異常場進行導航。這種解決方案有其自身的問題,包括需要在每個使用磁導航的地區提供高質量的磁力圖。目前許多可用的磁力圖是由過時的磁力測量組合產生的,導致地圖充滿了空間上的相關誤差,其相關結構在很大程度上是未知的。在導航時,這些關聯性被進一步混淆,因為除了原始的關聯性誤差結構外,它們還取決于車輛在地圖上移動的速度。傳統上,這種空間相關性是通過在估計程序中引入一階高斯-馬爾科夫(FOGM)噪聲模型來處理的,FOGM參數設置得有些隨意。在本文中,我們研究了使用不考慮相關性的融合技術(即協方差交叉和概率保守融合)進行磁導航的可能性。這些技術的優點是不需要任何參數調整;無論空間相關性如何,都使用相同的方法和調整參數。我們證明,利用概率保守融合導致的導航結果優于許多調諧方法,并合理地接近于FOGM的最佳調諧參數。
導航技術是不斷發展的。幾個世紀以來,導航員已經從簡單的駕駛、航位推算和天體導航發展到更復雜的技術,如使用全球導航衛星系統(GNSS)的電子導航。無論哪種導航技術,都必須進行準確的姿態(位置、速度、姿態)估計,才能進行有效的路徑規劃。在各種各樣的環境中,一個強大的導航框架的應用范圍越來越廣。基于GNSS的導航是非常準確的,但有許多可能失敗的情況,包括但不限于以下情況:
在隧道內或密集的城市地區,衛星信號會被阻斷。
頻率干擾和欺騙,這可能導致導航解決方案不再收到準確的估計。[1]
由于GNSS的準確性,目前的替代性導航系統并不試圖取代GNSS,而是在這些潛在的故障情況下對其進行增強。目前的替代性導航系統,如基于無線電的技術、計算機視覺方法、星際跟蹤器、地形高度匹配和重力梯度測量等,往往只在特定環境下的特定條件下發揮作用[2]。一個能與全球GNSS的可用性相匹配的替代性導航系統可以改善并取代目前大量的替代性導航系統。
一個有前途的、能與GNSS相匹配的導航系統是磁導航(Magnav)[2][3]。Magnav的可用性使其比其他替代性導航解決方案更具優勢,但Magnav也有許多必須克服的挑戰,包括但不限于以下幾點。
磁性地圖的可用性
磁力圖的質量,包括元數據的質量(共變性、偏向)。
磁力圖的空間相關誤差,導致對Magnav產生的導航估計有明顯的過度自信。
本文著重于解決第二和第三點,組織結構如下。在第二節中,我們介紹了Magnav的一些背景并解釋了需要克服的問題。在第三節中,我們解釋了我們在擴展卡爾曼濾波器(EKF)中對空間相關誤差進行建模的新穎解決方案。第四節從數學上定義了數據融合問題,并回顧了不考慮相關因素的數據融合的協方差交叉和概率保守方法。在第五節中,我們將這些技術相互比較。第六節是本文的結論。
計算機視覺中的一項挑戰性任務是尋找技術來提高用于處理移動空中平臺所獲圖像的機器學習(ML)模型的目標檢測和分類能力。目標的檢測和分類通常是通過應用有監督的ML技術完成的,這需要標記的訓練數據集。為這些訓練數據集收集圖像是昂貴而低效的。由于一般不可能從所有可能的仰角、太陽角、距離等方面收集圖像,這就導致了具有最小圖像多樣性的小型訓練數據集。為了提高在這些數據集上訓練的監督性ML模型的準確性,可以采用各種數據增強技術來增加其規模和多樣性。傳統的數據增強技術,如圖像的旋轉和變暗,在修改后的數據集中沒有提供新的實例或多樣性。生成對抗網絡(GAN)是一種ML數據增強技術,它可以從數據集中學習樣本的分布,并產生合成的復制,被稱為 "深度偽造"。這項研究探討了GAN增強的無人駕駛飛行器(UAV)訓練集是否能提高在所述數據上訓練的檢測模型的可推廣性。為了回答這個問題,我們用描述農村環境的航空圖像訓練集來訓練"你只看一次"(YOLOv4-Tiny)目標檢測模型。使用各種GAN架構重新創建幀中的突出目標,并將其放回原始幀中,然后將增強的幀附加到原始訓練集上。對航空圖像訓練集的GAN增強導致YOLOv4-微小目標檢測模型的平均平均精度(mAP)平均增加6.75%,最佳情況下增加15.76%。同樣,在交叉聯合(IoU)率方面,平均增加了4.13%,最佳情況下增加了9.60%。最后,產生了100.00%的真陽性(TP)、4.70%的假陽性(FP)和零的假陰性(FN)檢測率,為支持目標檢測模型訓練集的GAN增強提供了進一步證據。
對從移動平臺上獲得的數據進行圖像和視頻分類技術的調查,目前是計算機視覺領域中一個越來越受關注的領域。由空中飛行器收集的圖像對于收集信息和獲得對環境的洞察力非常重要,否則在地面上的評估是無法實現的。對于訓練目標檢測模型來說,用于創建這些模型的訓練集的一個重要特征是這些訓練集必須在其圖像中包含廣泛的細節多樣性。過去的數據增強技術,例如旋轉、添加噪音和翻轉圖像,被用來增加訓練集的多樣性,但由于它們無法向數據集添加任何新的圖像,所以是弱的方法。研究新的圖像增強和分類方法,其中包括機器學習(ML)技術,有助于提高用于航空圖像分類的模型的性能。
最近,使用ML算法對圖像進行分類或預測的情況越來越多。雖然ML已經被使用了幾十年,但在圖像上,我們看到合理的進展是在過去的20年里。隨著信息收集和存儲的技術進步及其可及性的擴大,可用于分析的數據量正以指數級的速度增長。計算機的隨機存取存儲器(RAM)和硬件存儲的增加迎合了擁有巨大的數據集來訓練、測試和驗證ML模型以實現較低的偏差和變異的需要。技術上的其他進步來自于計算機圖形處理單元(GPU)的改進,它允許以更快的速度處理大量的數據,這是實時圖像處理的兩個重要能力[2]。
人工神經網絡(ANNs)是ML的一個子集,其靈感來自于大腦中神經元的生物結構,旨在解決復雜的分類和回歸問題[3]。深度學習是ANNs的一個子集,它創建了多個相互連接的層,以努力提供更多的計算優勢[3]。卷積神經網絡(CNN)是ANN的一個子集,它允許自動提取特征并進行統一分類。一般來說,CNN和ANN需要有代表性的數據,以滿足操作上的需要,因此,由于現實世界中的變化,它們往往需要大量的數據。雖然在過去的十年中收集了大量的數據,但微不足道和不平衡的訓練數據集的問題仍然阻礙著ML模型的訓練,導致糟糕的、有偏見的分類和分析。相對較小的數據集導致了ML模型訓練中的過擬合或欠擬合。過度擬合的模型在訓練數據上顯示出良好的性能,但在模型訓練完成后,卻無法推廣到相關的真實世界數據。通過提供更大、更多樣化的訓練數據集,以及降低模型的復雜性和引入正則化,可以避免模型過擬合[4]。
過度擬合的模型不能學習訓練集的特征和模式,并對類似的真實世界數據做出不準確的預測。增加模型的復雜性可以減少欠擬合的影響。另一個克服模型欠擬合的方法是減少施加在模型上的約束數量[4]。有很多原因可以說明為什么大型、多樣的圖像集對訓練模型以檢測視頻幀中捕獲的目標很有用。當視頻取自移動平臺,如無人機或汽車時,存在Bang等人[5]所描述的進一步問題。首先,一天中拍攝圖像的時間以及天氣狀況都會影響亮度和陰影。其次,移動平臺收集的圖像有時會模糊和失真,這是因為所使用的相機類型以及它如何被移動平臺的推進系統投射的物理振動所影響。移動平臺的高度、太陽角度、觀察角度、云層和距離,以及目標的顏色/形狀等,都會進一步導致相機采集的樣本出現扭曲的影響。研究人員忽視這些參數的傾向性會導致模型在面對不同的操作數據時容易崩潰。這些因素使得我們有必要收集大量包含各種特征、圖像不規則性和扭曲的視頻幀,以復制在真實世界的圖像收集中發現的那些特征,從而訓練一個強大的目標檢測和分類模型。
為了增加圖像的多樣性,希望提高在數據上訓練的分類模型的結果準確性,可以使用數據增強技術來扭曲由無人駕駛飛行器(UAV)收集的圖像。目前的一些數據增強技術包括翻轉、旋轉或扭曲圖像的顏色。雖然這些增強技術可以在數據集中引入更多的多樣性,但它們無法為模型的訓練提供全新的框架實例。
生成性對抗網絡(GAN)是一種ML技術,它從數據集的概率分布和特征中學習,以生成數據集的新的合成實例,稱為 "深度假象"。GAN的實現是一種更強大的數據增強技術,因為它為訓練集增加了新的、從未見過的實例,這些實例仍然是可信的,并能代表原生群體。為ML模型提供這種新的訓練實例,可以使模型在實際操作環境中用于檢測時更加強大。
圖像采集面臨的一個普遍問題是沒有收集足夠大和多樣化的訓練和測試數據集來產生高效的ML模型。這些微不足道的訓練集所顯示的多樣性的缺乏,使模型在用于實時檢測時表現很差。找到增加這些數據集的方法,無論是通過額外的數據收集還是其他方法,對于創建一個強大的、可歸納的模型都很重要。
計算機視覺中的第二個問題是傳統的數據增強技術所產生的圖像多樣性增加不足。通過旋轉、翻轉或調暗每一個收集到的視頻幀來增強數據集,不能為訓練集增加任何額外的實例,這與上面提到的第一個問題相矛盾。需要找到一種新的數據增強技術,在不需要收集更多數據的情況下提供新的實例,這對于快速訓練檢測模型以便在快速變化的操作環境中部署非常重要。
本研究試圖回答以下問題:
1.由移動平臺獲取的包含GAN生成的合成圖像的增強圖像訓練數據集是否會提高卷積神經網絡(CNN)目標檢測模型的分類精度和可推廣性?
2.由移動平臺獲取的包含GAN生成的合成圖像的增強圖像訓練數據集是否會提高CNN目標檢測模型的定位和通用性?
3.從未增強的數據集和增強的數據集中可以得出什么推論,顯示它們的相似性和不相似性?
提供支持第一和第二個問題的證據可以改變數據科學家進行數據收集的方式,并將他們的努力轉向使用GAN的增強技術來創建用于ML研究的數據集。該模型不僅要能夠對目標進行分類,而且要訓練一個強大的目標檢測模型,使其能夠在圖像中找到感興趣的目標,并具有較高的交叉聯合(IoU)值,這就驗證了該模型能夠找到移動的目標,這些目標在捕獲的幀中的位置各不相同。一個模型的泛化是指該模型對網絡從未見過的輸入進行準確預測和分類的能力[6]。增強的數據集必須在質量和數量上與原始數據集相似,以證明模型泛化能力增強的斷言。
對最后一個問題的回答提供了理由,即來自GAN的增強對象在性質上是否與原始樣本相似,并且是對現實世界環境中發現的東西的合理復制。同類目標之間的高相似率可能會使GAN增強變得脆弱,需要進一步研究以用于實際應用。
本研究的最大限制之一是能否獲得適當的硬件和軟件來實現不同的ML算法。雖然ML模型可以在中央處理器(CPU)上執行,但本論文中的模型在單個CPU上運行需要幾天,甚至幾周的時間。在運行深度學習模型時,GPU的效率要高得多,尤其是那些為圖像探索設計的模型。在整個研究過程中,GPU的使用非常有限,這給CNN和GAN模型的復雜性增加了限制,也增加了每個模型完成訓練迭代的時間。模型不可能同時運行,大大增加了本論文的完成時間。
另一個限制是本研究過程中可用的內存和硬盤內存的數量。內存不足進一步導致了模型復雜性的下降,以及模型在研究的訓練和測試過程中某一時刻可以利用的數據量的下降。這兩個模型組成部分的減少會導致次優模型。在這項研究中,我們采取了一些措施來減輕這些影響,包括選擇參數較少但性能與較復雜的模型相同的高水平的模型。此外,在訓練和測試過程中,將數據集劃分為多個批次,有助于緩解RAM和硬盤內存問題。
本章討論了本論文將集中研究的ML的一般領域,以及概述了ML研究中出現的好處和限制。第2章提供了一個文獻回顧,研究了CNNs和GANs的理論。此外,它還提供了使用CNNs、GANs和從無人機收集的圖像幀進行的相關研究。第3章詳細介紹了數據集增強前后的CNN檢測模型的訓練過程。第4章提供了用于增強訓練集的合成目標的細節。第5章介紹了在原始和增強的訓練集上訓練的最佳模型的評估結果。第6章概述了在原始測試集訓練結束后進行的三個不同實驗的方法。第7章回顧了這三個不同實驗的結果。最后,第8章討論了從結果中得出的結論,以及對使用生成性對抗網絡(GANs)對移動平臺獲取的圖像進行數據增強領域的未來研究建議。
準確和強大的自主水下導航(AUV)需要在各種條件下進行位置估計的基本任務。此外,美國海軍更希望擁有不依賴外部信標系統的系統,如全球定位系統(GPS),因為它們會受到干擾和欺騙,并會降低操作效率。目前的方法,如地形輔助導航(TAN),使用外部感知成像傳感器來建立一個本地參考位置估計,當這些傳感器超出范圍時,就沒有用了。現在需要的是多個導航過濾器,每個過濾器都能根據任務條件發揮更大的作用。本論文研究了如何結合多個導航過濾器來提供一個更穩健的AUV位置估計。提出的解決方案是利用基于信息論框架的交互式多模型(IMM)估計方法,混合兩種不同的過濾方法。第一個過濾器是基于模型的擴展卡爾曼過濾器(EKF),在航位推算(DR)條件下有效。第二個是用于主動地形輔助導航(ATAN)的粒子濾波方法,在傳感器范圍內適用。利用在華盛頓州新月湖收集的數據,我們開發了每個導航過濾器的結果,然后我們演示了如何使用IMM信息理論方法來混合方法,以改善位置和方向的估計。
近年來,美國防部已指示加速采用人工智能(AI),并建立一支技術先進、能夠確保美國安全的部隊。未來自主海上行動的一個重要組成部分是無人自主車輛能夠在不使用全球定位系統(GPS)或其他外部信標系統的情況下運行。
在一個快速發展的技術世界中,在拒絕使用GPS的環境中或不使用聲學轉發器等系統,甚至是深海導航定位系統(POSYDON)系統的情況下進行操作從未如此關鍵。領先的解決方案是地形輔助導航(TAN),它利用機載地圖和傳感器系統的組合,以便在已知的地圖內進行相關的測量。這種方法的最大缺點是需要不同的濾波估計方法,而這些方法在設計上可能無法協同工作。
這項研究將分幾個部分介紹。首先是實施一個新的擴展卡爾曼濾波器(EKF),作為海軍研究生院的遠程環境監測單元100(REMUS)車輛上的航位推算(DR)模型,以改善其在速度估計不準確時的估計。其次,這項研究試圖在信息理論的基礎上建立一個用于主動地形輔助導航(ATAN)的粒子過濾器(PF)。最后,也許是最重要的,本研究試圖在PF和EKF之間實現一個新的信息理論聯合過程,以改善所有狀態的估計。
圖 1.1 定位、導航和授時替代層次結構。
圖1.2 可能需要不同過濾技術的情況。狀況1,AUV在水面附近作業,可以利用GPS數據。由于深度原因,AUV無法利用任何其他傳感器,必須使用DR模型。狀態2,太深了,無法快速獲取GPS數據,而且還沒有深到可以使用面向海底的傳感器。制度3可以利用DVL/ADCP和慣性導航系統(INS),可以提供更準確的運動估計。制度4可以利用成像傳感器來進一步提高導航的準確性。
圖5.1 機載水深和成像傳感器提供的測量值與粒子分布相關。該分布的香農熵顯示了粒子分布中的不確定性,高值表明該分布對位置不確定。由于從AUV經歷地形到計算香農熵有一個時間延遲,標量值不會完全一致。然而,它將很好地表明分布具有低水平的不確定性。
本論文的組織結構如下。第2章是文獻回顧,包括設備說明、貝葉斯濾波(BF)和信息論的必要背景,以及現場實驗的概述。第3章將介紹位置估計濾波技術和交互式多模型(IMM)的概述。第4章將討論基于模型的擴展卡爾曼濾波器(EKF)的發展。第5章將討論粒子濾波器(PF)的開發和仿真結果。第6章將討論信息理論互動多模型(IT-IMM)的開發和仿真結果。論文將在第7章中總結和討論未來的工作。
介紹一種新的IT-IMM估算方法,通過綜合使用后驗概率分布中的香農熵和預測PF性能的地形適宜性措施,將基于模型的EKF和PF聯合起來。
在沒有ADCP/DVL的情況下,基于模型的EKF用于估計前進和側滑速度。
一種PF算法,實現了粒子再分配的信息理論框架。
全源傳感器的自主和彈性管理(ARMAS)框架在獨特的傳感器排除濾波器組(稱為子濾波器)中監測殘余空間測試統計數據,以提供一個有保證的彈性、抗故障的全源導航架構。本文所展示的這個架構的一個關鍵假設是所有子濾波器之間的狀態觀測完全重疊。全源傳感器,特別是那些只提供部分狀態信息的傳感器(高度計、TDoA、AOB等)在本質上不符合這一要求。
本文提出了一種監測實時重疊位置狀態可觀察性的新方法,并在ARMAS框架內引入了一個 "可觀察性銀行",稱為穩定可觀察性監測(SOM)。SOM使用實時穩定性分析,向ARMAS提供對故障檢測和排除(FDE)功能的內在認識。我們將保持一致的全源FDE以恢復故障傳感器的能力定義為導航彈性。那么,彈性的FDE能力是一種 "意識到 "何時需要更多的傳感器信息以保護FDE的一致性和完整性功能不被破壞的能力。SOM是作者所知道的這種系統的第一個示范,用于所有來源的傳感器。
創建了一個模擬GNSS和位置及速度替代性導航傳感器的多代理3D環境,并利用單個GNSS偽距傳感器的異常情況來展示該新型算法的能力。本文展示了SOM在ARMAS框架內的無縫集成,提供了及時的提示,以增加其他代理的新傳感器信息,并指出框架的穩定性和保持所有來源的導航完整性何時實現。
本文提出了一種在非視線條件下定位因子圖公式中估計輸入的協方差方法。提出了一種基于協方差估計和線性回歸問題中的M-估計器的一般解決方案,該方案被證明可以得到多個方差的無偏估計值,并且對異常值具有魯棒性。提出了一種迭代重加權的最小二乘法算法,以共同計算所提出的方差估計和非線性因子圖優化的狀態估計。該方法的有效性在一項模擬研究中得到了說明,該研究使用了不同過程和測量模型以及測量離群情況下的機器人定位問題。一個涉及城市環境中基于全球定位系統的定位和包含多路徑問題的數據的案例研究證明了所提技術的應用。
關鍵詞:貝葉斯估計,魯棒估計,多路徑,因子圖
基于全球定位系統(GPS)的定位的一個重要挑戰是在城市環境中經常遇到的非視線或多路徑問題。當衛星的直接視線被建筑物阻擋時,其信號可能通過建筑物的反射到達地面上的接收器,導致偽距測量中的巨大誤差或異常值[1]。通常依賴高斯模型誤差的基于最小二乘法的定位方法會因為離群值而嚴重失真,導致定位精度低下。最近的文獻中,一些補救這一問題的穩健估計方法是基于數據加權的。依靠對離群觀測值進行降權的M-估計器[2],在傳感器模型中對離群觀測值進行明確建模的混合分布[3],利用開關變量對單個姿勢約束進行降權的可切換約束[1,4],動態協方差縮放[5]和監測衛星完整性的接收器自主完整性監測(RAIM)[6]。然而,這些穩健的估計方法都沒有考慮方差估計器的無偏性。
許多數據融合應用需要結合來自異質傳感器的測量結果或匹配多個測量結果的特征,這兩項任務都需要對測量結果的噪聲協方差矩陣進行準確描述。特別是,在城市或有爭議的環境中,基于GPS的定位依賴于導航解決方案中來自慣性測量單元(IMU)或光探測和測距(LiDAR)系統的測量的融合[7],以減輕多徑問題。在基于視覺的定位中,結合連續的測量需要在這些測量中識別出的地標進行匹配,這就需要對協方差有準確的認識[8, 9]。在動態過程的貝葉斯狀態估計中,一個常見的假設是,噪聲源的協方差矩陣是已知的,或者存在一些可靠的先驗估計。不幸的是,在實踐中可能無法獲得準確的先驗知識或協方差矩陣的估計,不準確的協方差估計會導致系統狀態估計質量的顯著下降。此外,隨著貝葉斯估計的應用從高質量、昂貴的系統(如阿波羅任務)轉移到具有低質量傳感器的低成本系統(如手機),準確描述系統所有輸入的不確定性的能力在一類傳感器中的可重復性和經濟上的可行性都變得更低。
在本文中,我們提出了當傳感器數據被異常值污染且數據的高斯性不被滿足時,以因子圖的形式對噪聲協方差進行新的無偏估計,特別適用于非視線條件下基于GPS的定位問題。本文的貢獻在于將[10]中提出的因子圖問題的無偏方差估計器擴展到多路徑問題,研究了線性和非線性車輛運動模型,并通過實際GPS數據調查了該方法的性能。提出了一個基于非線性回歸和穩健估計的一般解決方案,該方案被證明可以在因子圖表述中給出無偏的多變量估計值。為了共同計算擬議的方差估計和狀態估計,提出了一種迭代重加權最小二乘法(IRLS)算法。與現有的依靠最大似然原則并使用殘差的樣本方差來估計噪聲方差的方法相比,本文的主要貢獻是納入了噪聲方差的無偏估計,正如將說明的那樣,這可以實現比現有方法更顯著的定位精度。
過去的研究表明,神經網絡在進行量子糾錯(QEC)解碼時,比算法解碼器更準確、更高效。由于量子計算機中的量子比特是不穩定的,在它們解體之前只能在幾毫秒內使用,為了在量子算法的時間預算內糾正數據量子比特的錯誤,有必要采用快速量子糾錯的方法。算法解碼器善于解決只有幾個數據量子比特的邏輯量子比特的錯誤,但在含有更多數據量子比特的系統中效率較低。有了神經網絡解碼器,實際的量子計算變得更加可實現,因為糾錯操作的計算速度比MWPM或部分查找表的實現方式快得多。這項研究旨在進一步推動神經網絡QEC解碼器的研究,通過使用高性能計算算法生成詳盡和隨機采樣的數據集,評估數據集生成方法對這些神經網絡與類似模型相比的有效性的影響。這項工作的結果表明,不同的數據集會影響各種性能指標,包括準確性、F1得分、接收者操作特征曲線下的面積和QEC周期。
太空一直是一個需要高度自主的領域。所需的自主性帶來的挑戰使其難以在短時間內完成復雜的任務和操作。隨著越來越多地使用多Agent系統來增強空中領域的傳統能力和展示新能力,在軌道上和近距離多Agent操作的發展需求從未如此強烈。本文提出了一個分布式的、合作的多Agent優化控制框架,為在近距離操作環境中執行多Agent任務相關的分配和控制問題提供解決方案。然而,所開發的框架可以應用于各種領域,如空中、太空和海上。所提出的解決方案利用第二價格拍賣分配算法來優化每個衛星的任務,同時實施模型預測控制來優化控制Agent,同時遵守安全和任務約束。該解決方案與直接正交配位法進行了比較,并包括了對調整參數的研究。結果表明,所提出的技術允許用戶用模型預測控制來優化超越相位的控制,并以三個調諧參數實現編隊交會。與傳統的多相MPC相比,這更好地接近了配位技術中的相變。
兵棋模擬是一種決策工具,可以為利益相關者分析的場景提供定量數據。它們被廣泛用于制定軍事方面的戰術和理論。最近,無人駕駛飛行器(UAVs)已經成為這些模擬中的一個相關元素,因為它們在當代沖突、監視任務以及搜索和救援任務中發揮了突出的作用。例如,容許戰術編隊中的飛機損失,有利于一個中隊在特定戰斗場景中勝利。考慮到無人機的分布可能是這種情況下的決定性因素,無人機在超視距(BVR)作戰中的位置優化在文獻中引起了關注。這項工作旨在考慮敵人的不確定性,如射擊距離和位置,使用六種元啟發法和高保真模擬器來優化無人機的戰術編隊。為紅軍蜂群選擇了一種空軍經常采用的戰術編隊,稱為line abreast,作為案例研究。優化的目的是獲得一個藍軍蜂群戰術編隊,以贏得對紅軍蜂群的BVR戰斗。采用了一個確認優化的穩健性程序,將紅軍蜂群的每個無人機的位置從其初始配置上改變到8公里,并使用兵棋方法。進行了戰術分析以確認優化中發現的編隊是否適用。
索引詞:優化方法,計算機模擬,無人駕駛飛行器(UAV),自主智能體,決策支持系統,計算智能。
兵棋是在戰術、作戰或戰略層面上模擬戰爭的分析性游戲,用于分析作戰概念,訓練和準備指揮官和下屬,探索情景,并評估規劃如何影響結果。這些模擬對于制定戰術、戰略和理論解決方案非常有用,為參與者提供了對決策過程和壓力管理的洞察力[1]。
最近,無人駕駛飛行器(UAVs)作為一種新的高科技力量出現了。利用它們來實現空中優勢可能會導致深刻的軍事變革[2]。因此,它們的有效性經常在兵棋中被測試和評估。
由于具有一些性能上的優勢,如增加敏捷性、增加過載耐久性和增加隱身能力,無人機已經逐漸發展起來,并在許多空中任務中取代了有人系統[3]。然而,由于戰斗的動態性質,在視覺范圍之外的空戰中用無人系統取代有人平臺是具有挑戰性的。在空戰中,無人機可以被遠程控制,但由于無人機飛行員對形勢的認識有限,它將在與有人平臺的對抗中處于劣勢。然而,這種限制可以通過自動戰斗機動[4]和戰術編隊的優化來克服。此外,使用無人機可以允許一些戰術編隊和戰略,而這些戰術編隊和戰略在有人駕駛的飛機上是不會被考慮的,例如允許中隊的飛機被擊落,如果它有助于團隊贏得戰斗。文獻中最早的一篇旨在優化超視距(BVR)作戰中的飛機戰術編隊的文章[5]表明,空戰戰術是用遺傳算法(GA)進行優化的候選方案。該實施方案采用分層概念,從小型常規作戰單位建立大型編隊戰術,并從兩架飛機的編隊開始,然后是四架飛機,最后是這些飛機的倍數。在模擬中沒有對導彈發射進行建模。當一架飛機將其對手置于武器交戰區(WEZ)的高殺傷概率(Pkill)區域內一段特定時間,簡化的交戰模擬器就宣布傷亡。事實證明,所提出的方法的應用是有效的,它消除了團隊中所有沒有優化編隊的飛機,并為整個優化編隊的飛機團隊提供了生存空間。
Keshi等人[6]使用了與[5]相同的分層概念,從由兩架飛機組成的元素中構建大型戰術編隊。模擬退火遺傳算法(SAGA)被用來優化編隊,使其能夠克服對局部最優解的收斂。對16架飛機的編隊進行了優化,提出的最優解表明SAGA比基本的GA更有效。最后,為了探索一個穩健的SAGA,對不同的馬爾科夫鏈進行了比較,事實證明自調整馬爾科夫電流更適合所提出的問題。
Junior等人[7]提出使用計算機模擬作為一種解決方案,以確定BVR空戰的最佳戰術,使擊落敵機的概率最大化。在低分辨率下使用通用參數對飛機和導彈進行建模,并改編了名為COMPASS的模擬優化算法,模擬了兩架飛機對一架飛機的BVR戰斗。低分辨率模型假定在水平面的二維空間內有一個均勻的直線運動。使用優化的戰術表明,擊落敵機的平均成功率從16.69%提高到76.85%。 Yang等人[8]提出了一種方法來優化飛機對一組目標的最佳攻擊位置和最佳路徑。該工作考慮到飛機能夠同時為每個目標發射導彈,并將飛機與目標有關的攻擊性和脆弱性因素作為評價攻擊位置的指標。一個高保真模擬被用來模擬每個導彈的飛機、雷達、導彈和WEZ的動態特性。這項工作并沒有解決在BVR戰斗場景中優化一組飛機對另一組飛機的編隊問題。
Li等人[9]提出了一種基于指揮員主觀認識的編隊優化方法,即在空戰中目標設備信息不確定的情況下選擇飛機編隊的問題。首先,計算戰斗機的戰斗力,這是通過指揮員的主觀認識評估目標戰斗力的基礎。戰斗機的戰斗力以能力的形式表現出來,包括攻擊、探測、生存能力、通信、電子戰、預警系統等。因此,通過采用前景理論和綜合模糊評估來優化空戰訓練。最后,一個應用實例證明了該方法在小規模空戰中的可行性。作者聲稱,利用戰斗力評估戰斗情況的能力為優化空戰訓練提供了一種新的方法。
?zpala等人[10]提出了一種在兩個對立小組中使用多個無人駕駛戰斗飛行器(UCAVs)進行空戰的決策方法。首先,確定兩隊中每個智能體的優勢地位。優勢狀態包括角度、距離和速度優勢的加權和。在一個團隊中的每個智能體與對方團隊中的每個智能體進行比較后,每個航空飛行器被分配到一個目標,以獲得其團隊的優勢而不是自己的優勢。為一對對立的團隊實施了一個零和博弈。對許多智能體參與時的混合納什均衡策略提出了一種還原方法。該解決方案基于博弈論方法;因此,該方法在一個數字案例上進行了測試,并證明了其有效性。
Huang等人[11]開發了新的方法來處理UCAV編隊對抗多目標的合作目標分配和路徑規劃(CTAPPP)問題。UCAV的編隊是基于合作決策和控制的。在完成目標偵察后,訓練指揮中心根據戰場環境和作戰任務向每架UCAV快速傳輸任務分配指令。UCAV機動到由其火控系統計算出的最佳位置,發射武器裝備。合作目標分配(CTAP)問題通過增強型粒子群優化(IPSO)、蟻群算法(ACA)和遺傳算法(GA)來解決,并在歸因、精度和搜索速度等方面進行了比較分析。在進化算法的基礎上發展了UCAV多目標編隊的合作路徑規劃(CPPP)問題,其中提供并重新定義了獨特的染色體編碼方法、交叉算子和突變算子,并考慮燃料成本、威脅成本、風險成本和剩余時間成本來規劃合作路徑。
Ma等人[12]開展的工作解決了在BVR作戰場景中優化兩組(R和B)無人機對手之間的優勢地位問題。一個無人機ri∈R對一個無人機bj∈B的優勢是通過ri和bj之間的距離、ri的導彈發射距離的下限和上限、ri的高度和bj的高度之差以及ri的最佳發射高度來估計的。決定性的變量是無人機在兩組中的空間分布和每架飛機在這些組中的目標分配。無人機在三維作戰空間BVR中的可能位置被簡化(離散化),通過立方體的中心位置來表示。每個無人機組都有一組立方體。優化問題被建模為一個零和博弈,并被解決以獲得納什均衡。
Ma等人[12]提出的工作沒有使用高保真模擬來分析無人機空間分布的選擇和分配給它們的目標對BVR作戰的影響。高保真模擬對飛機、雷達、導彈及其導彈的WEZ的動態特性進行建模。這些動態特性也影響到BVR作戰時每架飛機的行動觸發,因此也影響到最終的結果。例如,如果在兩組無人機之間第一次沖突后的時間窗口內考慮高保真BVR作戰模擬,新的沖突可能會發生,直到模擬結束。因此,每個在交戰中幸存的無人機將能夠選擇一個新的目標,這取決于可用目標的優勢值。在[12]中沒有考慮與無人機行為有關的不確定性。有關敵方無人機在戰術編隊中的確切位置及其導彈發射距離的信息是行為不確定性的例子。這兩個信息和上面描述的其他信息在BVR戰斗中是相關的:它們直接影響飛機之間的交戰結果。
在這項研究中,我們試圖解決文獻中發現的一些局限性,如低分辨率模擬、與敵人有關的不確定性的處理以及缺乏對優化解決方案的穩健性的確認,旨在提高兵棋結果的質量。我們的目標是驗證哪些藍色蜂群的戰術編隊可以在BVR戰斗中戰勝紅色蜂群。作為一個案例研究,RED蜂群使用了空軍經常采用的戰術編隊,稱為line abreast[13]。為了評估BLUE蜂群解決方案的穩健性,我們解決了新的問題,改變了RED蜂群每架飛機的位置,目的是估計新的RED蜂群編隊對BLUE蜂群的優化戰術編隊的效率的影響。
我們使用自主智能體和高保真計算機模擬來優化BVR戰斗中的無人機戰術編隊,考慮與敵人相關的不確定性,如戰術編隊中的位置誤差和導彈發射距離。統一行為框架(UBF)被采納為創建自主智能體的基礎。飛機和導彈在三維環境中用六個自由度(DoFs)建模。
該程序將在接下來的章節中進一步討論。
?在日益復雜的軍事行動環境中,下一代兵棋推演平臺可以減少風險,降低作戰成本,并改善整體結果。基于具有多模態交互和可視化能力軟件平臺的新型人工智能(AI)兵棋推演方法,對于提供滿足當前和新興戰爭現實所需的決策靈活性和適應性至關重要。我們強調了未來作戰人-機器交互的三個發展領域:由人工智能引導的決策指導,高計算力下的決策過程,以及決策空間的真實呈現。這些領域的進展將使有效的人機協作決策得以發展,以滿足當今戰斗空間日益增長的規模和復雜性。
關鍵詞:決策、交互、兵棋推演、人工智能、增強/混合現實、可視化
在傳統的兵棋推演中,指揮官利用一個共同的基于地圖的作戰地形,并在軍事決策過程(MDMP,方框1)中模擬各種因素的組合如何產生行動方案(COA)、可能的反擊行動、資源使用估計和預測結果(美國陸軍,1997年,2014年,2015年)。在幾天或幾周的時間里,MDMP過程導致了一套精煉的COAs,它對作戰環境做出了一定的假設,包括地形、天氣以及戰區資產的可用性和能力(即塑造支持主要作戰行動的活動)。
方框1. 軍事決策過程(MDMP) | |
---|---|
MDMP是美國陸軍解決問題的理論方法,從接到任務開始,到生成作戰命令結束。MDMP被用作一種工具,幫助指揮人員審查眾多的友軍和敵軍的作戰行動。MDMP的7個步驟在規劃新任務、擴展行動和執行訓練演習所需的決策過程中灌輸徹底、清晰、合理的判斷、邏輯和專業知識(美陸軍,1997年,2015年)。 | |
指揮官在接到任務后啟動了MDMP。在MDMP的第1步中,所有的工作人員和關鍵的任務參與者都被告知任務和待定的規劃要求,包括進行MDMP的可用時間量。確定進行任務分析所需的工具,并收集與任務和作戰區有關的文件。步驟2,執行任務分析,建立對任務的全面理解,包括關鍵的事實和假設,形成擬議的任務說明和任務分析簡報,為制定COA做準備。 | |
MDMP的第3至第6步著重于制定COA以進行分析和比較。這些步驟包括:第3步,制定COA;第4步,COA分析(兵棋推演);第5步,COA比較;第6步,COA批準。COA是對一個已確定的問題的潛在解決方案。每個COA都要使用篩選標準來檢查其有效性,如在既定的時間框架、空間和資源限制內完成任務。COA的選擇過程通常涉及到兵棋推演,它試圖在考慮到友軍力量和敵人能力的情況下,將行動的順序流程可視化,同時考慮到行動區域內平民的影響和要求(美陸軍,2014)。戰術模擬(兵棋推演)方法的好處是突出了作戰行動的優勢和劣勢。這往往是一個反復的過程,對作戰行動方案進行評估,然后根據需要進行修改,直到出現一個或多個具有最高成功概率的作戰行動方案來完成任務目標。 | |
在一個具體的行動方案得到指揮部的批準后,MDMP的最后一步是制作行動指令,這是一份給下屬和鄰近單位的指令,旨在協調所有參與任務的組織的活動。這一步驟涉及到所有受命令傳播影響的組織之間的積極合作,并建立起對局勢的共同理解。 |
盡管MDMP幫助指揮官了解作戰環境和考慮作戰方法,但這個過程有很多局限性,如時間密集、假設僵化、跨場景訓練的機會有限,以及將人工智能(AI)指導納入決策過程的機會很少。傳統上,一項任務的成功與指揮部執行MDMP的能力直接相關。然而,鑒于當今多域作戰(MDO)的復雜性增加(Feickert,2021年),有大量的任務指揮系統和流程,與行動相關的所有活動的整合和同步變得越來越困難,甚至到了人為無法完成的地步。由于MDMP的缺陷而導致的規劃專業知識的缺乏,可能會導致不同步和不協調的行動,從而最終導致士兵的生命損失。
MDMP中沒有具體描述戰斗空間的可視化能力,但它顯然在決策過程中發揮著重要作用。最近,集成了先進可視化能力的新系統和新技術已經被開發出來,它們可以提高態勢感知,從而增強決策過程。美陸軍的例子包括Nett Warrior(Gilmore,2015),它使下馬戰士能夠直觀地看到附近的友軍和敵軍,同時根據當地的地形協同規劃戰術任務。盡管這項技術將無線電和數字地圖擴展到了下馬戰士,但它缺乏一個底層的人工智能引擎來提供決策幫助。戰斗空間可視化和交互平臺(BVI,前身為增強現實沙盤,ARES)是陸軍技術的另一個例子,它能夠為任務規劃提供分布式協作,具有從任意視角和廣泛選擇設備的共同作戰畫面的二維和三維可視化能力(Su等人,2021)。BVI架構的制定是為了拉入外部計算服務,如分析管道、模型和人工智能引擎。美陸軍研究實驗室正在努力將這些類型的服務納入BVI,包括用于加強決策支持的人工智能。
目前,MDMP并沒有將人工智能指導納入整體任務規劃方法中。美陸軍的自動規劃框架(APF)(Bailey,2017)開始通過將自主技術插入MDMP工作流程來解決人工智能輔助決策問題。指揮人員可以通過APF的數字規劃呈現、規劃創建和規劃監控工具,在任務規劃和COA開發期間獲得背景援助。任務執行和估計能力通過監測任務的規劃和實際進展,為改進決策跟蹤和支持活動提供自動協助。盡管APF為MDMP引入了基本的自動化水平,但它缺乏Nett Warrior和BVI所提供的先進的可視化和用戶互動能力。
提供地面部隊自動化和用戶可視化能力的是美陸軍最知名的兵棋推演平臺--半自動化部隊(OneSAF),為計算機生成的地面部隊提供建模和模擬能力(PEO_STRI, 2022)。OneSAF提供了半自動和全自動的軍事實體(即士兵、坦克、直升機和綜合單位)的建模,在類似真實世界的戰斗空間中以不同的保真度來支持特定的應用和場景。OneSAF主要用于訓練,并與目前的任務指揮系統具有互操作性。它可以使用多分辨率的地形和詳細的實體相關數據庫來模擬廣泛的作戰環境。然而,OneSAF對地形和實體系統的高保真建模的優勢使得它的設置和運行成本很高。它受到老化系統的限制,而且眾所周知,士兵需要大量的培訓來學習如何操作模擬,使用起來很困難(Ballanco,2019)。OneSAF的復雜功能并不適合開發人工智能能力,以實現快速和敏捷的戰士-機器決策。
除了MDMP和上面提到的陸軍平臺外,最近將人工智能納入決策過程的工作包括一些方法(Goecks等人,2021a),在模擬人類決策過程方面取得了一些成功。一般來說,人工智能在決策變量有限的問題上取得了一些成功,如資源分配(Surdu等人,1999)、飛行模擬器(Drubin,2020)和更簡單的場景。正在進行的挑戰包括需要提高人工智能的能力,以解決有多個行為者、不完整和可能沖突的信息、不斷變化的單位行動和環境屬性的復雜決策,以及需要將這些決策的后果在許多空間和時間尺度和領域內可視化。
以下各節描述了對MDMP的潛在改進。"未來軍事決策過程所需的進步"一節概述了支持MDO決策的三個研究領域,并以圖表形式描述了這些研究領域與軍事理論決策方法之間的關系。"未來軍事決策過程所需的進步 "一節中的小節對每個研究領域進行了更深入的討論。"展望推進人-人工智能團隊決策的交互技術 "一節概述了未來的作戰人員-機器接口(WMI)的發展方向,重點是與決策有關的人-人工智能團隊的跨學科研究。
軍事決策過程在支持MDO復雜決策方面的局限性,突出了在三個研究領域的改進需要。首先,有必要將人工智能產生的指導和輔助決策支持納入MDMP。這既包括進一步開發和整合人工智能到戰斗空間決策規劃,也包括進一步改善人工智能決策過程的可解釋性和透明度(Chen等人,2018)。第二,有必要在戰略層面以及戰術邊緣,盡可能地將決策分析與高性能計算(HPC)的力量結合起來。這將能夠利用HPC系統的力量來支持建模、分析和計算時間,同時整合和同步來自所有戰區領域的信息。最后,有必要利用先進的可視化技術,如混合現實技術,對決策空間進行更準確和互動表述。不是簡單地在一個固定的時間尺度上顯示地形的二維渲染,而是需要可視化不同領域的決策是如何相互作用的,并利用混合現實技術來提高理解的吞吐量,并產生平面顯示不可能的洞察力。
除了MDMP之外,其他更廣泛適用的支持戰斗性問題解決的軍事理論包括:DOTMLPF[例如,學說、組織、訓練、物資、領導、人員和設施;(美陸軍,2018年)],這是一個確定差距并為當前和未來作戰要求提出設計解決方案的框架;以及METT-TC[例如,任務、敵人、地形和天氣、部隊、可用時間和民事考慮;(美陸軍,2019年)],這是一個結構化框架,用于捕捉任務相關因素的狀態,以便在軍事行動期間進行共享評估。這些理論定義了MDO戰場的信息背景,構成了應用于上述三個研究領域的軍事決策的核心基礎。如圖1所示,在為人類和人工智能指揮開發復雜軍事決策空間的新表述時,研究進展和MDO相關理論相互借鑒、相互啟發、相互加強(美陸軍,2010)。
圖1. 新型作戰人員-機器交互(WMIs)和人工智能輔助決策所需的三個研究發展領域,以支持和加強基本的MDO理論[右下圖來源:Lebsack(2021)]。
需要新的人工智能支持的WMI,以利用人工智能決策方面正在取得的進展,并為復雜的適應性決策的人工智能學習作出貢獻。在簡化的戰斗空間中測試人工智能決策輔助工具是開發過程中重要的第一步,也是將人工智能納入更成熟的戰斗空間平臺(即BVI、OneSAF)的前奏。開發用于決策輔助實驗的人工智能測試平臺可以在MDO中產生能力越來越強的潛在COA建議。圖2顯示了陸軍開發的兩個人工智能測試平臺的例子。
圖2. 兩個ARL人工智能測試平臺的例子。左邊:ARL Battlespace(Hare等人,2021)( //github.com/USArmyResearchLab/ARL_Battlespace )。右邊:ARL的Simple Yeho測試平臺。圖片由C. Hung制作。
人工智能測試平臺能夠開發出匯集所有領域信息的AI,并計算出人類和AI智能體的風險和預期回報。圖2的左側顯示了ARL戰斗空間測試平臺(Hare等人,2021年),它是從頭開始開發復雜決策的新型人工智能的理想場所。它對戰斗空間的抽象強調了軍隊相關場景下的核心推理原則,在這種情況下,用蜜罐進行網絡欺騙。較小的網格空間使人工智能的學習和發展能夠集中在不確定性下的復雜推理,有多個友好和敵對的agent。圖2的右側顯示了ARL的Simple Yeho測試平臺,它提供了將人工智能開發與更多真實世界場景中的默契推理結合起來的能力,有多個基于地形的海拔高度、視線范圍、障礙物、樹葉(隱蔽)、道路和城市區域。紅色陰影和黑色線條表示任務的起點和終點、左右邊界以及人工智能建議的路線。這種額外的真實性使其能夠與MDO理論相結合,包括DOTMLPF和METT-TC,并使人工智能與自然的、機會主義的士兵行為共同發展。這兩個人工智能測試平臺都可以擴展為傳統和沉浸式混合現實WMI開發平臺。
使用漸進式和可擴展的人工智能測試平臺,可以調查現有人工智能的幾個基本限制,特別是對于具有不確定性的復雜和適應性決策,以及人類和AI智能體的協作和對抗。對多智能體的協作和對抗性決策進行建模可能特別復雜,因為其遞歸性質,其他智能體是模型的一部分(Goldman,1973;Grüning和Krueger,2021),需要對決策特征、個性化的價值、風險規避、記憶和注意力進行動態和不斷發展的估計。這些具有高度不確定性、復雜性和動態性的情況是人類擅長的領域,適當設計的交互界面和人工智能測試平臺的人機協作可以提供加速和更有效的決策。對于有效的團隊合作,新穎的WMI應該幫助作戰人員篩選復雜的信息,并幫助人工智能發現決策的隱含規則。下面,我們提供了關于人機協作如何有效的案例。
多域兵棋推演中需要的復雜決策是開發有效人工智能決策輔助工具的直接挑戰。最近人工智能在圍棋、國際象棋、Minecraft和大富翁等游戲中的成功(Silver等人,2017;Goecks等人,2021b;Haliem等人,2021)是基于對世界現有狀態有完整了解的游戲(即 "開放 "游戲),而兵棋推演平臺通常包括關于作戰環境的不完整(如星際爭霸)、不確定或欺騙性信息(Vinyals等人,2019)。不確定性也可能來自變化的物理學或其他環境規則,正如在《憤怒的小鳥》中所探索的那樣(Gamage等人,2021)。由于世界狀態、不同行動者的狀態以及所采取的行動不確定性,知識的缺乏使得人工智能agent難以計算未來行動的風險回報情況(Cassenti和Kaplan,2021)。不確定性也限制了人工智能估計其他行為者的風險回報概況的能力,而這是計算有效的博弈論策略所需要的。人工智能被可能的最優和近似最優選擇的廣度所淹沒(Lavine,2019),即由于信息有限而選擇錯誤的選項,這種情況并不罕見,因為人類在制定有效探索隱藏信息的策略時,采用啟發式方法進行有效的選擇和預測(Gardner,2019)。為了幫助發展人工智能的隱性知識和探索能力,新型的WMI需要有效地解釋和展示決策景觀,以使作戰人員能夠快速和自然地瀏覽可能的選擇,同時使人工智能能夠在不施加認知負擔的情況下從人類的決策中機會主義地學習(Lance等人,2020)。這種機會主義學習可以包括:例如,凝視跟蹤,以捕捉吸引人類興趣和意圖的視覺區域和未標記的目標。它們還可以包括建立在自然的士兵選擇行為基礎上的行動者批評方法,以改善人工智能對人類專家在不確定、不完全信息和欺騙的情況下如何優先考慮某些選擇的學習,這取決于任務相關的背景。
開發人工智能的WMI的另一個基本挑戰是如何有效地整合和顯示MDO中所有五個領域的信息,特別是空間和網絡,因為這些領域的信息具有不同的時空尺度(Gil等人,2018)。對于網絡,決策的規模和速度可能比人類處理和理解的能力更快,需要人類的輸入來指導半自動化的決策,以及實施進攻和防御性欺騙策略的人工智能。WMI需要能夠以這樣的方式顯示決策圖景,即可以解釋一小部分最優和接近最優的決策策略(例如,圖3中的決策樹)。這應該包括對關鍵agent在不確定情況下的未來狀態和風險回報情況的估計(Hare等人,2020),以使有效的博弈論決策能夠被共同開發和相互理解。
圖3. 在頂部,是BVI網絡戰術規劃器應用程序中友軍與敵軍戰爭場景的三維視圖。三維視圖提供了一個比二維視圖更真實的決策視角,例如,顯示友軍(藍色)和敵軍(紅色)機載預警系統(AEWs)和周圍地形的海拔。這使得快速審查可能的視線和相對于周圍地形的感應。下面是人工智能的導航決策樹,為人工智能計算的幾個關鍵選擇的風險/回報概況以及它們如何映射到地形上提供透明度。這種抽象的決策空間還可以整合非空間決策,例如網絡欺騙。虛線表示與友方AEW的通信聯系和對敵方AEW的可能干擾。圖片由C. Hung制作。
這些挑戰為有效的WMIs設計提供了參考。也就是說,我們需要有能力從不同的來源(包括從其他國家的決策輔助工具)提取信息,以及一個能夠承載整合這些信息的計算能力的架構,同時還要處理基礎的人工智能計算(用于學習和部署)。我們還需要共同開發一個界面和算法設計,以適時地利用人類和人工智能agent的優勢并減少其局限性。
在復雜的決策過程中,需要大量的計算能力來處理和記錄所有組件、實體和狀態空間。從積累的動態狀態空間的數據集中建立過去、現在和預測模型,需要利用HPC資源來產生分析性的見解,并在決策背景下創建有用的表述。
實施HPC分析工作流程的一種方法是使用持久性服務框架(PSF)。PSF是一個最近可用的分布式虛擬化解決方案,它可以通過一個基于網絡的前端實現對HPC服務的非傳統訪問,而不像傳統的HPC環境,計算節點在特定的時間段內以批處理模式分配給用戶。此外,PSF提供對數據、數據庫、容器化工具集和其他托管平臺的分布式連續訪問(Su等人,2021)。
在一個PSF方法的例子中,一個模擬引擎連接到PSF,用于記錄人類和人工智能做出的所有決定。這允許分析在任務規劃和COA開發過程中發生的決策行為,以及識別決策模式和戰略,以開發競爭性和現實的兵棋推演場景。一個戰斗空間可視化平臺可以托管在PSF上,并使用消息傳遞協議來更新所有連接的設備接口。來自模擬引擎的狀態信息可用于生成戰斗空間和參與作戰單位的圖形表示。
使用PSF方法并利用HPC資源,可以實施人工智能輔助決策機制,利用大數據攝取和分析,同時可供地理分布的用戶用于協作決策工作和 "永遠在線 "的個性化培訓和紅色團隊。連接到PSF托管服務器的各種混合現實顯示模式可以支持一系列作戰場景,從戰略層面的指揮和控制到作戰邊緣的更多移動戰術使用。
用圖形表示各級行動的軍事決策戰略需要新的可視化方法,這些方法可以應用于以規則變化、認知狀態、不確定性以及個人偏見和啟發式方法為特征的動態環境(Dennison等人,2020;Hung等人,2020;Raglin等人,2020)。戰斗空間的視覺表現應該在技術上盡可能準確和逼真,但又保持在人類可以理解和解釋的認知水平(Kase等人,2020;Larkin等人,2020;Hung等人,2021)。融合了混合現實技術的先進可視化方法有可能更好地表現多領域戰爭的變化特征及其不斷變化的威脅和動態環境。隨著最近混合現實可視化設備的技術進步,成本降低,硬件的可靠性和實用性顯著提高,混合二維和三維可視化方法現在已經成為可能。
由多個二維顯示器組成的混合現實方法增強了更先進的三維可視化能力,可以為指揮人員提供理解復雜的兵棋推演狀態空間所需的洞察力(Su等人,2021)。當需要一個共享的戰斗空間表示時,可以通過在不同的可視化模式上實現多個協調的視圖來實現協作的戰略規劃模式,以根據分布式指揮人員的輸入進行互動更新。
BVI(Garneau等人,2018)平臺表示地理空間地形信息和地圖圖像,允許指揮人員建立和修改戰術任務規劃和COA。作為一個數據服務器,BVI將地形和作戰數據分發給支持多種可視化模式的客戶端應用程序,包括頭戴式顯示器設備、基于網絡的界面、移動安卓平板設備和混合現實設備(例如,HoloLens 2、Oculus Quest)。
例如,圖3(頂部)顯示了位于加利福尼亞州圣貝納迪諾縣歐文堡國家訓練中心的高分辨率地形上的友軍與敵軍的兵棋推演場景(Wikipedia, 2021)。與MDMP期間經常使用的傳統2D地圖顯示相比,戰斗空間的3D視圖可以從多個觀察角度提供更豐富的用戶體驗。三維視圖,在BVI的網絡戰術計劃器(WTP)中,將地形和人工特征的空間信息以及由MIL-STD 2525C符號描繪的單位位置可視化(美國防部,2014)。可以想象,地理空間視角,如BVI提供的視角,支持決策者對動態戰斗空間環境的理解。與可導航的人工智能增強的決策空間(圖3,底部)搭配,組合的視角可以使人們更好地理解視覺空間依賴性、影響和因果關系、估計的風險和價值、不確定性以及復雜決策的欺騙性。將這種以地理空間和決策為中心的視角與人工智能相結合,可以提供必要的廣度,以協調物理行動與網絡和其他非空間領域的行動,跨越多個時間尺度,并具有快速適應變化的任務目標的靈活性。
人工智能和人-人工智能團隊的快速發展需要WMI同步發展。隨著新型人工智能對有價值的COA產生更好的預測,并能更好地處理復雜的決策,它們也必須利用人類的專業知識,學習如何處理具有高度不確定性、欺騙、隱性知識和博弈論的決策。相反,人工智能的推理必須既抽象又能與兵棋推演環境相聯系,以實現透明和信任,同時又不造成過度的認知負擔。基于三維混合現實的WMI可以利用和增強人類固有的三維認知和預測能力(Welchman等人,2005;Kamitani和Tong,2006;Kim等人,2014;Boyce等人,2019;Krokos等人,2019),如果設計得當,其交互將感覺自然,同時擴大顯示多個領域的信息的能力,同時使AI能夠適時地從用戶的決策中學習。
我們強調了三個關鍵的發展領域,即人工智能引導的決策指導,支持這種指導的計算基礎設施,以及決策透明度的混合現實表現的發展。這些領域的進步需要跨越許多不同學科的專業知識。新的人工智能發展需要融合神經科學、心理學和數學的思想,以克服復雜決策中長期存在的問題的瓶頸。這包括跨時間尺度的學習和變化環境下的災難性遺忘,以及更具體的兵棋推演問題,如具有不確定性、欺騙和博弈論的多Agent決策。計算基礎設施也需要發展,因為計算能力和數據框架對于在戰術邊緣產生人-人工智能團隊的共同操作圖來說都是必不可少的。為了有效地開發,應該通過一個共同的框架來抽象出專有的限制和軟件的依賴性,并為使用和故障排除提供清晰的文檔,以使學術界、政府和工業界更好地專注于解決人與人工智能的合作問題。這個通用框架應該包括有效的信息傳遞,同時提供靈活性和適應性,以滿足人工智能開發和人類用戶在訓練和實際使用環境中的需求。最后,交互技術的開發本身需要跨學科的協同專業技術。一個基礎性的問題是如何壓縮信息使之被用戶有效地理解,以及如何最好地利用用戶的互動來進行機會主義學習。人類的大腦并不處理所有的感官信息,而是對世界進行預測和假設,以便在信息不完整的環境下節約計算。一個有效的WMI應該同時預測潛在的決策結果以及個人用戶的期望和假設。此外,人工智能決策輔助工具必須估計用戶的默契,使其能夠提供最相關的信息和最有希望的選擇,這些信息來自整個作戰領域。
信息作戰和指揮與控制(C2)是美國陸軍可以向盟友和伙伴提供的兩種能力。在未來的作戰環境中,不僅要為動能作戰做準備,而且要為混合作戰和以信息為重點的戰爭做準備。這需要在復雜和默契推理的人工智能能力方面取得進展,在能夠提供持續訓練、分布式混合決策和大數據分析系統方面取得進展,以及在人與人工智能協作決策和機會主義學習方面取得進展,以實現人工智能的持續進步和人與人工智能的共同適應。這些進展中的每一項都需要跨學科的計劃性努力,以克服復雜的技術挑戰,創造新的決策原則、理論和理論方法,包括持續開發綜合測試平臺和技術,以實現政府、學術界和工業界的合作和協同發展。
可解釋的人工智能(XAI)提供了克服這一問題的手段,它基于有關深度學習(DL)算法結果的額外補充信息。雖然完全透明對于復雜的DL算法來說仍然是不可行的,但解釋有助于用戶在關鍵情況下對AI信息產品進行判斷。應該指出的是,XAI是透明度、因果關系、可信度、信心、公平、信心和隱私等方面的總稱。因此,基本的方法論是多方面的。一種已經流行的方法是局部可解釋模型-預知解釋(LIME)方法,因為它可以很好地應用于各種應用中的不同模型。在本文中,LIME算法是在戰略運營的決策建議背景下進行研究的。在簡單介紹了其概念后,介紹了文獻中的應用。然后,一個戰略博弈的場景被認為是軍事戰爭的替代環境。一個基于DL的國際象棋人工智能被做成 "可解釋的",以評估信息對人類決定者的價值。得出了與戰略混合行動有關的結論,這反映了所提出的方法的局限性。
根據設想,未來戰略戰爭的決策將在很大程度上受到基于人工智能(AI)方法的信息產品的影響。特別是混合作戰,是在一個高維和變異的環境中進行的,在這種環境中,對潛在的威脅和機會的評估是人類操作者難以掌握的,戰略規劃必須納入異質的、多功能的和高容量的數據源。因此,基于人工智能方法的算法產生的分類、預測和建議在這種復雜的場景中變得越來越重要。在過去的幾年里,人工智能的方法已經獲得了巨大的發展,有大量的創新和令人尊敬的成果,可以從大型數據集中獲得更高層次的信息。然而,深度學習(DL)方法的一個主要缺點是其固有的黑箱屬性,即由于計算模型的復雜性,其結果是不透明的。例如,后者可能有數百個層和數百萬個參數,這些參數是在訓練階段通過算法發現和優化的。因此,即使結果是準確的,用戶也沒有機會理解它或掌握輸入數據的因果部分。這反過來又會影響到用戶對輔助設備的信任,在兩個方向上都是如此。這個問題在某些民事應用中起著次要的作用,例如語音識別,它經常被應用于與設備的互動,因為除了體面的失望之外沒有潛在的風險。對于其他非常具體的任務,如手寫字符識別,DL算法的性能超出了人類的平均水平,這意味著失敗的可能性很小,因此關于因果關系的問題可能成為附屬品。然而,在許多軍事應用中,當涉及到與人工智能的互動時,人類的信任是一個關鍵問題,因為錯誤的決定可能會產生嚴重的后果,而用戶始終要負責任。這實際上是兩方面的。一方面,操作者往往需要了解人工智能產品的背景,特別是如果這些產品與他或她自己的本能相悖。另一方面,不可理解的技術會對算法信息產品產生偏見,因為很難確定在哪些條件下它會失敗。因此,適當的信任程度可能很難計算。
可解釋的人工智能(XAI)是向黑盒人工智能模型的用戶提供 "透明度"、"可解釋性 "或 "可解釋性 "的方法的集合。這些術語幾乎沒有一個共同的定義,但許多出版物提到了:
XAI不能完全 "解釋 "DL模型,然而,它為工程師或操作員提供了更好地理解特定AI產品背后的因果關系的手段。而且很多時候,這可以幫助看到,從合理的因果關系鏈暗示算法決策或預測的意義上來說,該模型是否是合理的(或不是)。因此,XAI可以成為人工智能模型工程的一個重要工具,用于安全方面的驗證,甚至用于認證過程,以及為操作員提供額外的信息,以支持明智的決策。
雖然關于XAI的大多數文獻都集中在圖像識別的方法上,但這些結果很難轉化為基于特定挑戰性競爭形勢的戰術和戰略決策領域。在本文中,我們研究了人工智能模型在棋盤評估中的可解釋性。對更復雜的軍事戰略模擬的一些影響進行了討論。
本文的結構如下。在下一節中,簡要介紹了選定的XAI方法。然后,這些方法之一(LIME)被應用于棋盤評估問題,以證明在支持信息方面的解釋的質量。在最后一節,得出了結論,并討論了對更復雜的戰爭博弈和模擬的概括。
?美國軍方對全球定位系統 (GPS) 的依賴以及存在的漏洞強調了對替代導航技術的需求。替代導航方法不僅必須接近 GPS 的準確性,而且必須接近全球范圍內的可用性。提供絕對定位估計的視覺輔助導航系統已經展示了接近 GPS 精度水平的令人鼓舞的結果。然而,它們僅限于海洋和其他地形特征較少的區域。使用地球磁異常場的磁導航已被證明是一種很有前途的替代方案,可以為導航系統提供全球范圍的覆蓋。
這項研究展示了磁性和視覺輔助導航系統的結合,使用擴展卡爾曼濾波器 (EKF) 來輔助飛機的慣性導航系統 (INS)。使用合成磁場測量和飛行測試計算機視覺數據表明,在計算機視覺數據長時間中斷期間,磁導航可以將導航解決方案綁定到粗略的位置估計。一旦計算機視覺數據可用,視覺輔助導航系統就能夠使用粗略的位置估計進行初始化,然后提供接近 GPS 水平精度的 10 米以下精度解決方案。此外,這項研究還展示了 F-16 飛行試驗數據上的有限磁補償方法和磁導航。有限的補償能夠將 F-16 的 10,000 納特斯拉 (nT) 干擾場降低到大約 15nT。然后,補償數據成功地用于磁導航。獲得了一種有界導航解決方案,在導航級 INS 的情況下實現了大約 100 米的精度,在戰術級 INS 的情況下實現了大約 1,000 米的精度。