準確和強大的自主水下導航(AUV)需要在各種條件下進行位置估計的基本任務。此外,美國海軍更希望擁有不依賴外部信標系統的系統,如全球定位系統(GPS),因為它們會受到干擾和欺騙,并會降低操作效率。目前的方法,如地形輔助導航(TAN),使用外部感知成像傳感器來建立一個本地參考位置估計,當這些傳感器超出范圍時,就沒有用了。現在需要的是多個導航過濾器,每個過濾器都能根據任務條件發揮更大的作用。本論文研究了如何結合多個導航過濾器來提供一個更穩健的AUV位置估計。提出的解決方案是利用基于信息論框架的交互式多模型(IMM)估計方法,混合兩種不同的過濾方法。第一個過濾器是基于模型的擴展卡爾曼過濾器(EKF),在航位推算(DR)條件下有效。第二個是用于主動地形輔助導航(ATAN)的粒子濾波方法,在傳感器范圍內適用。利用在華盛頓州新月湖收集的數據,我們開發了每個導航過濾器的結果,然后我們演示了如何使用IMM信息理論方法來混合方法,以改善位置和方向的估計。
近年來,美國防部已指示加速采用人工智能(AI),并建立一支技術先進、能夠確保美國安全的部隊。未來自主海上行動的一個重要組成部分是無人自主車輛能夠在不使用全球定位系統(GPS)或其他外部信標系統的情況下運行。
在一個快速發展的技術世界中,在拒絕使用GPS的環境中或不使用聲學轉發器等系統,甚至是深海導航定位系統(POSYDON)系統的情況下進行操作從未如此關鍵。領先的解決方案是地形輔助導航(TAN),它利用機載地圖和傳感器系統的組合,以便在已知的地圖內進行相關的測量。這種方法的最大缺點是需要不同的濾波估計方法,而這些方法在設計上可能無法協同工作。
這項研究將分幾個部分介紹。首先是實施一個新的擴展卡爾曼濾波器(EKF),作為海軍研究生院的遠程環境監測單元100(REMUS)車輛上的航位推算(DR)模型,以改善其在速度估計不準確時的估計。其次,這項研究試圖在信息理論的基礎上建立一個用于主動地形輔助導航(ATAN)的粒子過濾器(PF)。最后,也許是最重要的,本研究試圖在PF和EKF之間實現一個新的信息理論聯合過程,以改善所有狀態的估計。
圖 1.1 定位、導航和授時替代層次結構。
圖1.2 可能需要不同過濾技術的情況。狀況1,AUV在水面附近作業,可以利用GPS數據。由于深度原因,AUV無法利用任何其他傳感器,必須使用DR模型。狀態2,太深了,無法快速獲取GPS數據,而且還沒有深到可以使用面向海底的傳感器。制度3可以利用DVL/ADCP和慣性導航系統(INS),可以提供更準確的運動估計。制度4可以利用成像傳感器來進一步提高導航的準確性。
圖5.1 機載水深和成像傳感器提供的測量值與粒子分布相關。該分布的香農熵顯示了粒子分布中的不確定性,高值表明該分布對位置不確定。由于從AUV經歷地形到計算香農熵有一個時間延遲,標量值不會完全一致。然而,它將很好地表明分布具有低水平的不確定性。
本論文的組織結構如下。第2章是文獻回顧,包括設備說明、貝葉斯濾波(BF)和信息論的必要背景,以及現場實驗的概述。第3章將介紹位置估計濾波技術和交互式多模型(IMM)的概述。第4章將討論基于模型的擴展卡爾曼濾波器(EKF)的發展。第5章將討論粒子濾波器(PF)的開發和仿真結果。第6章將討論信息理論互動多模型(IT-IMM)的開發和仿真結果。論文將在第7章中總結和討論未來的工作。
介紹一種新的IT-IMM估算方法,通過綜合使用后驗概率分布中的香農熵和預測PF性能的地形適宜性措施,將基于模型的EKF和PF聯合起來。
在沒有ADCP/DVL的情況下,基于模型的EKF用于估計前進和側滑速度。
一種PF算法,實現了粒子再分配的信息理論框架。
目前,使用蒙特卡洛方法對導航系統進行分析可能很慢,而且計算成本很高。協方差分析是一種可以及時返回交易空間分析結果的工具,而且計算費用低廉。協方差分析工具大多是臨時性的或在專有接口內。這對導航領域來說尤其如此,因為大多數協方差分析的論文都是處理單一場景,并為所述場景編寫一個臨時的模擬器[1, 2]。
這項研究的目的是在一個新的模塊化和可插拔的導航框架庫--導航工具包中創建一個協方差分析工具。導航工具包是一個政府參考庫,可以與被稱為pntOS的模塊化和可插拔的傳感器融合架構一起開箱使用。在模塊化和可插拔的導航軟件包內創建一個協方差分析工具,將使研究人員能夠快速獲得交易空間分析結果,并使用與實際傳感器融合所使用的基本相同的代碼輕松進行自己的協方差分析模擬。研究人員將能夠利用導航工具包中預裝的大量的傳感器模型、算法和過濾器。
通過分析兩個不同的導航場景,解釋了這個協方差工具的創建。對這些不同的導航方案的結果進行了探討,以確定傳感器組合背后的好處和缺點。一個新的多普勒激光雷達速度傳感器首先用一組簡短的、四百秒的模擬飛行數據進行評估,以證明協方差工具的功能,并同時展示新傳感器的能力。最后的評估是使用3小時的飛行數據進行的。該方案將多普勒激光雷達速度傳感器與高靈敏度標量磁強計配對,以了解這兩種傳感器的組合如何改善導航解決方案。
這項工作從第二章開始,在第二章中介紹了用于創建協方差分析工具的軟件套件的背景。第二章還將描述我們將在未來的章節中使用協方差分析工具分析的用例。接下來的第三章和第四章是單獨的論文,介紹了協方差分析工具的兩個不同的使用案例。第三章在2021年的國家航空航天和電子會議(NAECON)上發表[11]。下一章,即第四章將之前的多普勒激光雷達速度傳感器與MagNav傳感器結合在一起,展示了兩個傳感器在組合導航方案中可以創建的解決方案,并將提交給《導航學會雜志》。最后,第五章總結了研究結果和工具的創建,然后以未來可能的工作作為結束。
為了面對軍事防御的挑戰,軍隊及其戰術工具的現代化是一個持續的過程。在不久的將來,各種任務將由軍事機器人執行,以實現100%的影響和0%的生命風險。國防機器人工程師和公司有興趣將各種戰略自動化,以獲得更高的效率和更大的影響,因為陸地防御機器人的需求正在穩步增長。在這項研究中,軍事防御系統中使用的陸地機器人是重點,并介紹了各種類型的陸地機器人,重點是技術規格、控制策略、戰斗參與和使用目的。本研究還介紹了陸地機器人技術在世界軍事力量中的最新整合,其必要性,以及各國際防務公司對世界經濟的貢獻,表明其在軍事自動化和經濟穩定中的優勢。本報告還討論了近期發展的局限性和挑戰、機器人倫理和道德影響,以及與機器人安全有關的一些重要觀點和克服近期挑戰的一些建議,以促進未來的發展。
為了加強軍事防御系統,必須大力發展和提高智能自主戰略能力。在大多數第一世界國家,研究國防技術改進是實現軍事防御現代化的優先事項。未來戰爭的特點可以根據不同領域的沖突進行分析,如:海洋、陸地、空中、網絡、太空、電磁和信息。隨著現代智能和機器人技術的改進,跨域(X域)和多域戰略也需要被關注。無人自主X域(多域)系統,簡稱UAxS,現在是研究和發展的重點,以使軍事力量更加強大、有力和智能。圖1展示了多域和X域的戰爭模式。
圖 1:多域和 X 域戰爭模型
現代防御機制可以在四個相互關聯的領域進行研究:先進的戰艦、良好的通信、人工智能和自主武器。這基本上意味著在軍事防御系統中實施機器人技術。在戰場上,一支裝備精良的機械化部隊是指揮官非常重要的資產。在戰爭中,指揮官必須專注于火力、機動性、人機合作、決策、支持裝甲和指揮步兵。在未來,機器人和自動化系統將通過提供支持和減少負擔來幫助解決這些問題,因為這些系統將更加智能、可靠和合作。在最近的軍事活動中,機器人和自主技術被用于偵察、設備供應、監視、掃雷、災難恢復、受傷士兵的檢索等(Dufourda, & Dalgalarrondo, 2006;Akhtaruzzaman, et al., 2020)。
為了確保可靠的使用和獲得最高的技術影響,機器人必須在半自動化、自動化和人機交互工程方面進行良好的設計。無人地面車輛(UGV)很有前途,在國防應用中具有很大的潛力,在這些應用中高度需要更快和可靠的通信鏈接(鏈接預算)和快速獲取信息(RAtI)(Akhtaruzzaman, et al., 2020)。機器人的價值比人的生命還要低。機器人在感知、檢測、測量和分析方面速度更快。機器人沒有任何激情或情感,不會像人類那樣感到疲勞或疲倦,而是在極端和關鍵條件下保持運作。在不久的將來,機器人將成為作戰計劃和參與的核心技術(Abiodun, & Taofeek, 2020)。它們將能夠通過智能傳感器技術與環境溝通,通過建模理解環境,理解人類的行動,定義威脅,服從命令,以更高的處理能力獲取信息,通過信息交換和共享與其他機器人互動,通過先進的控制技術自主適應敵對環境,并通過強大的計算能力與自動生成的程序應用智能進行自我學習(Akhtaruzzaman, & Shafie, 2010a, 2010b; Karabegovi?, & Karabegovi?, 2019)。
在不久的將來,UGV系統將成為軍事行動的關鍵技術,因為它們將確保幾乎零人力風險,不需要將人力直接安置到戰斗中。UGV系統還將能夠開放各種設施,如負載、自動監視、邊境巡邏、風險降低、障礙物清除、力量倍增器、遠程操縱、信號中繼等(Sathiyanarayanan等人,2014)。陸地防衛機器人必須能夠適應各種崎嶇的地形、惡劣的環境和非結構化的區域,同時發揮指定的作用并保持指揮層次。作為軍事部隊的一種程度,陸地機器人不能給團隊帶來任何額外的工作負擔。因此,必須實施有效的人工智能(AI)工程,以實現UGV或陸地機器人與行動部隊之間可靠的人機合作。
今天的智能機器人或自主武器仍然處于狹義人工智能(ANI)的水平(Horowitz,2019年),或者以某種方式處于ANI和通用人工智能(AGI)之間。這反映出它們還沒有準備好在災難或戰爭等敵對情況下完全自主并做出可靠的決定。人類擁有在很大程度上應用感知經驗的智慧,能夠適應環境,并能在關鍵情況下做出適當的決定。如果這些能力能夠被植入機器人的大腦,該系統就可以說是AGI系統。盡管與人類相比,機器人可以抵御枯燥、骯臟和危險的工作,但它們包括一些有限的功能,如航點或目標導向的導航、障礙物檢測、障礙物規避、威脅檢測、人類檢測和識別、定位、地圖構建、通過圖像和聲音處理提取信息,以及與其他機器人的某種合作。因此,如果能確保機器人和人類之間的良好合作,機器人將在人類的監督下自主工作,那么軍用地面機器人將是最有效的。
本研究對軍用陸地機器人系統、最近的技術進步、應用和道德影響進行了回顧。一些發達國家和不發達國家的現狀,以及通過推進和發展軍事武器、自動化武器和智能技術對世界經濟的工業影響,都反映在審查研究中。本文還闡述了參與戰爭的機器人倫理以及該技術對道德國家的影響。該研究主要試圖通過確定最近的差距、局限性和技術進步的倫理影響,來確定地面機器人技術的最新應用和實施情況。
本報告著重于2025年混合部隊的任務工程過程。來自OPNAV N9I的最新任務強調了關注使用成本保守的無人系統的必要性。具體來說,重點放在近鄰的競爭對手大國以及在南海的反介入/區域拒止(A2/AD)情況下可能出現的問題。海軍水面作戰中心的任務工程方法被用來確定擬議的替代艦隊架構的具體事件,然后使用作戰模擬和優化模型進行分析。對目前的無人系統,特別是那些正在開發的高技術準備水平無人系統的性能特征和成本的研究進行了匯編。提議的無人系統架構是作為A2/AD問題的解決方案而開發的。然后,無人系統架構通過優化模型運行,以最大限度地提高系統性能,同時最小化成本。然后,架構優化的結果被輸入到建模和仿真中。然后比較每個架構的整體有效性,以找到最有效的解決方案。對結果進行了分析,以顯示預期的任務有效性和利用擬議解決方案的無人架構的擬議成本。最有效的架構包括搜索、反蜂群、運送和攻擊系統。
系統工程分析31組由美海軍作戰司令部戰爭整合處(OPNAV N9I)負責確定一個解決方案,以彌補與大國在2025年的預期能力差距(Boensel 2021)。該解決方案系統必須具有成本效益并能在2025年之前交付。SEA團隊利用任務工程過程來確定候選的未來艦隊架構來解決問題(工程副主任辦公室2020)。
到2025年,如何才能有效地對抗近鄰對手的反介入和區域拒止能力?
以具有成本效益的方式調整目前的能力,并創建一個未來的架構,以加強美國海軍的作戰能力,包括存在、欺騙、ISR以及在反介入和區域拒止環境中的防御和進攻能力。
利用任務工程流程,總體情景被設定在2025年的南海。大國已執行了其九段線的領土要求,并建立了一個反介入/區域拒止(A2/AD)區。大國不斷擴大的艦隊、對人造島嶼的使用、遠距離ASCMs以及對無人系統的擴大使用使美國的水面作戰艦艇處于高風險之中。總體任務是美國海軍DDG通過提高其殺傷力和生存能力,在A2/AD區域內進行FONOPS。在整個方案中,有三個小場景被開發出來。OTH ISR、目標選擇和交戰,威脅無人機蜂群,以及提供目標選擇的威脅無人機ISR資產。
衡量任務成功與否的總體標準是美國海軍部隊在近乎同行的反介入區域拒止環境中的作戰能力。有助于衡量成功的有效性的措施是DDG的生存能力和殺傷力的提高程度與解決方案系統的成本相結合。
為了分析擬議的系統解決方案(SoS)是否能達到既定的成功標準,設計了一個價值體系。利用通用的海軍任務列表,項目組確定了擬議的系統解決方案需要完成的三個二級任務,以完成任務(海軍部,2008)。
對三個選定任務下的后續任務進行了評估,以確定擬議系統需要完成的具體功能。通過這次審查,確定了候選無人系統需要完成的四項高級功能。這些功能是交付、搜索、通信中繼和打擊。為每項功能選擇了性能措施,以用于多屬性價值分析。
多屬性價值分析被用來比較完成四個功能中一個或多個功能的候選系統。一個系統的價值是根據每個性能指標對完成一個特定功能的重要性,給每個性能指標分配一個權重而得出的。權重從1到5不等,其中5表示最重要的MOP。計算MOP和權重的乘積,并將每個乘積相加,以獲得系統的價值。
為了確定可行的候選系統,項目組成員各自研究了一個不同的無人系統,并收集了每個候選系統的性能衡量標準。如果一個特定的無人系統的MOP值不知道,則推斷其值與一個類似的系統相同。如果不存在這樣的類似系統,則使用啟發式方法估計該值。對于每項功能,至少有一個系統符合技術成熟度,可考慮用于2025年的混合部隊。
為了實現所有四個功能,候選系統的組合被排列組合成16個系統簇。每個備選方案的系統價值和成本都被計算出來。系統價值的計算方法是將每個備選方案中的每個系統的價值相加。
為了產生用于比較的替代方案,該團隊使用整數線性規劃生成了架構。這是用Pyomo的優化功能完成的。線性規劃被創建、約束以更好地表示現實,并被解決以生成分別針對性能、預算和替代合約選項進行優化的替代架構。
現代導彈戰可以使用炮擊作戰模型進行評估。這個模型被用來計算每個小場景中的每個SoS備選方案的有效性。結果顯示了超視距ISR平臺的重要性,一個獨立的武器系統來對付敵人的無人機,目前IAMD作戰系統的有限防御能力,以及超視距搜索和瞄準能力。
“大國”和美國都擁有深入的綜合空中和導彈防御。為了證明這種互動,在微軟Excel中使用反二項式函數對不同的交戰進行了建模。每一個擬議的艦隊架構都被輸入到三個小插曲的戰斗模擬中。為了獲得隨機的結果,試驗的數量被設定為300次,每個概率都有一個可能的值范圍。該模型中的自變量可分為防御性或進攻性變量。防御性變量是每個單位的綜合防空和導彈防御武器的殺傷數量和殺傷概率。PLAN的進攻性變量是YJ-18 ASCM和Harpy無人機的命中數。美國海軍的進攻性變量是海上攻擊戰斧、ASCM和特定攻擊無人機的進攻性命中數量。
模擬的結果顯示了擊中敵方水面平臺或美國海軍水面部隊的數量。通過比較建議的系統與基線的命中率,可以得出變化的百分比。在我們的分析中,進攻和防御的有效性被平均加權,允許將進攻和防御百分比變化的高值相加,以計算出高低變化的總百分比。
基于智能體的建模和仿真(ABMS)被用來驗證每個設想的系統架構與所需的MOE。ABMS旨在通過對智能體之間的相互作用進行建模,來捕捉戰爭交戰的隨機性,但又很復雜。進行了蒙特卡洛分析,以收集每個系統性能的個體層面的數據。隨后的統計分析提供了一個途徑,以確定和量化每個擬議的系統架構所實現的改進。為此目的,指揮部:現代行動(CMO),是一個跨領域的現代兵棋推演計算機軟件,旨在模擬戰術到作戰水平的行動,被用作仿真引擎。CMO模擬的是基于規則的智能體,它們相互之間以及與環境之間的互動,包括感興趣的場景中的武器系統(Coyote, YJ-18, Chaff)和平臺(例如PLAN DDG, Luyang)。與多屬性價值分析方法相比,CMO允許對定量的系統MOP進行建模,并在模擬結果中觀察其相對差異。
電子表格戰斗模型模擬的第一個結果是解放軍DDG在三個不同的迭代中對美國海軍DDG的命中率,即只用YJ-18攻擊,只用哈比攻擊,以及YJ-18和哈比同時攻擊。同時使用YJ-18和Harpy的命中率被作為防御性MOE的基線值。接下來,兩種不同的防御性無人機系統被分別加入到作戰模型中。對只有哈比的攻擊和YJ-18與哈比的同時攻擊進行了重復模擬。每個系統的防御性百分比變化是用前面描述的公式計算的。
接下來的結果是美國海軍DDG在三次不同的迭代中擊中PLAN DDG的次數。模擬了僅用MST攻擊、僅用ASUW無人機攻擊以及MST和ASUW同時攻擊的結果。只用MST攻擊的命中率作為進攻性MOE的基線值。接下來,七個不同的運載系統被分別加入到作戰模型中。對僅有ASUW無人機攻擊和同時進行的MST和ASUW無人機攻擊進行了重復模擬。每個投送系統的進攻百分比變化被計算出來。
將同等權重的進攻和防守百分比變化相加,計算出高和低的總變化百分比。根據該模型,期望值是這樣的:在0.95的置信度下,增加SoS將使水面部隊的有效性增加一個介于高值和低值之間的百分比。
總的來說,從ABMS觀察到的性能與從電子表格模型觀察到的性能MOE相關。在所有提議的架構中,都觀察到了防御和進攻MOE的明顯改善。這是預料之中的,因為在DDG上增加任何防御性武器系統應該減少艦隊DDG的直接命中數量。同樣,增加一個具有增強OTH感知能力的進攻性武器系統會增加對目標直接作用的武器數量。
對防御性和進攻性MOE與每一方所消耗的平均武器數量的比率的進一步分析顯示,由于美國海軍DDG上增加了反群武器系統,防御性MOE得到了改善。這種增加被證明是對所有架構的一種有效的廣泛改進。三種提議的架構之間最明顯的差異來自于進攻性MOE(%),其中性能系統優于其他架構。與發射的武器總數相比,預計一個性能更好的系統會向目標發射更少的武器,同時造成更多的命中。
這項工作證明了低成本的無人駕駛威脅系統給傳統水面戰艦帶來的危險,這些系統可以在幾乎沒有警告的情況下進行協調和攻擊,并為船員提供很少的反應時間。為了避免強制增加對峙距離以提高生存能力,有必要使用增程傳感器系統和反無人機系統來彌補預期的能力差距并提供進入被拒絕區域的機會。為了使這些系統可行和安全,高帶寬的通信系統將是必需的。
為了滿足這些需求,建議的解決方案系統利用Dive-LD來運送Coyote無人機平臺。搜索和通信中繼將由兩個VBAT無人機平臺提供。這種平臺組合為每一美元的系統成本提供了最高的進攻和防御能力的提高。叢林狼 "無人機也將作為一個蜂群來防御威脅性無人機群和威脅性無人機ISR資產。增加解決方案系統的采購將提高艦隊的生存能力和殺傷力,并允許在其他艦隊優先領域進行額外投資。
建議通過為無人機平臺配備額外的無源傳感器來改進該系統,以利用電磁頻譜的所有部分,從而提高在所有天氣和戰斗條件下探測敵方威脅的能力。此外,擬議的解決方案系統可以擴展到許多其他領域和任務區,如港口防御和反對出口。
美國陸軍作戰能力發展指揮部分析中心創建了一種算法,用于估計定位、導航和授時(PNT)傳感器和系統的目標位置誤差。即使系統用來尋找感興趣目標的確切算法是專有的或未知的,該算法也可以使用。該程序具有高度的模塊化和可擴展性;因此,相對來說,添加各種不同的PNT傳感器、系統和目標是很容易的。然而,目前僅有的傳感器是使用到達時間差、到達頻率差和/或到達角度的信號智能系統,以及可能有激光測距儀和測量校準源輻射的光子計數探測器的電子光學/紅外(EO/IR)系統。
美國防部有各種傳感器,作戰人員可以用它們來尋找位置。一些傳感器可以讓作戰人員找到潛在的威脅。如果作戰人員目前不能使用GPS,他們可能需要使用傳感器來確定自己的位置。傳感器可以單獨使用,也可以在更復雜的情況下連接在一起,以估計一個感興趣的物體的位置。為了確保美國陸軍為作戰人員配備能夠執行任務的傳感器,建立一個能夠估計這些位置傳感器在任何情況下的性能的模型至關重要。
美國陸軍作戰能力發展司令部(DEVCOM)分析中心需要一種算法來估計正在進行定位、導航和授時(PNT)計算的各種傳感器和系統的性能。DEVCOM分析中心(DAC)開發了多用途通用簡化TLE計算器(MUSTC)模型,該模型可用于查找各種傳感器的目標位置誤差(TLE),進而用于定位各種物體。
MUSTC算法并不要求用戶了解系統如何使用傳感器的測量結果來確定位置。在MUSTC軟件中添加一個新的傳感器類型所需要的只是一個模型,該模型可以估計傳感器測量的原始值,作為傳感器和目標參數以及它們的位置的函數。
為了使算法能夠確定TLE,算法需要知道所有參考傳感器和目標在場景中的位置、可能影響位置測量的變量和這些變量的不確定性,以及用戶希望為感興趣的項目計算TLE值的空間位置。然后,該算法將假定感興趣的物品在名義上位于用戶想要估計TLE的位置。一旦知道了位置,軟件就可以使用測量模型來確定傳感器將為該場景測量什么。然后,該軟件可以使用這些測量結果,以及優化算法,來確定感興趣的項目在空間指定點的TLE。
該算法的主要優點是,它可以擴展到確定來自不同傳感器類型的測量的各種不確定性如何影響總TLE,或找到感興趣的項目的位置的不確定性。
該算法的主要缺點是,由于反復調用實現優化算法的函數來計算TLE,所以計算有時會很耗時。程序可以使用許多優化算法,有些算法比其他算法快。即使程序使用一個相對較快的優化算法,如果優化算法被調用足夠多的次數,計算時間仍然會增加。DAC努力減輕這一缺點,找到了可用的最快的優化算法,但仍能產生正確的答案,將程序寫成多線程應用程序,以便利用大多數現代計算機處理器的多個核心,并試圖在最終結果的準確性和必須調用優化算法的次數之間找到最佳平衡。
高能激光(HEL)系統在對射程外的目標進行定位時,很容易受到大氣湍流的影響。目前的HEL系統使用波前傳感器和復雜的自適應光學系統來補償這些畸變。本論文的主要目的是研究使用機器學習算法的目標圖像像差補償技術,消除對復雜的波前傳感硬件的需要。目標圖像將從高能激光光束控制研究試驗臺(HBCRT)獲得,圖像像差將被模擬,以提供必要的數據集來訓練和驗證圖像像差補償方法。這些技術的性能將被評估為軍事成像應用。
高能激光(HEL)平臺可以證明是艦載防御無人駕駛飛行器的重要系統,因為HEL的彈倉深度大,成本低[1]。然而,HEL系統必須瞄準無人機的特定位置以達到最佳破壞效果。這一要求導致需要對目標進行精確成像以確定最佳瞄準點。圖像的清晰度會因為HEL系統和目標之間的大氣湍流而降低。為了補償這些大氣畸變,目前的HEL系統使用波前傳感器和自適應光學系統(AO)來測量大氣畸變并改變激光的聚焦方式。這些系統的制造成本很高,并增加了HEL系統的復雜性。人工神經網絡的發展為補償大氣像差提供了可能,而無需使用復雜的波前傳感器。
本論文的目的是研究如何使用深度學習模型來補償無人機圖像中的大氣像差。首先,將通過一種稱為盲去卷積的經典去模糊技術來設定性能基線。然后,基線性能將與兩個最先進的深度學習模型(U-Net和DeblurGAN)的性能進行比較。
本論文在第二章將首先概述HEL系統、AO和人工智能(AI)以及深度學習(DL)。第三章進一步介紹了DL模型如何應用于HEL系統的像差補償。第四章將介紹模型的訓練和實現過程,第五章將討論模型的性能結果。最后,第六章將總結已完成的研究,并提供未來工作的方向。
人工智能(AI)方法能否檢測出軍用全球定位系統(GPS)基礎設施上的欺騙行為?利用人工智能和機器學習(ML)工具,展示了對美國防部高級GPS接收器(DAGR)欺騙行為的成功檢測。利用系統工程原理,對問題空間進行了分析,包括進行文獻審查以確定人工智能的技術水平。這一探索的結果揭示了應用于解決這一問題的新穎解決方案。在早期階段,考慮了各種系統設計,然后確定了一個同時包含實時和模擬的GPS信息流量的系統。將基于模型的系統工程(MBSE)原則整合到設計概念中,以映射系統層次和互動。Humphreys等人(2008)將GPS欺騙威脅定義為三種技術,即簡單攻擊、中級攻擊和復雜攻擊。簡單的攻擊建立在使用商業GPS信號模擬器、放大器和天線向目標GPS接收器廣播信號的概念上。中級欺騙攻擊是利用基于接收機的欺騙器,向目標接收器的天線產生欺騙信號。復雜的欺騙攻擊是三種方法中最復雜的,有能力改變每個天線發射的載波和碼相輸出,同時控制發射天線之間的相對碼/載波相位(Humphreys等人,2008)。由于成功的GPS欺騙攻擊會影響到時間、頻率和空間領域,所開發的系統至少必須考慮這些參數。設計概念采用了識別數據集中非明顯和非瑣碎關系的要求。
該系統的設計采用了雙管齊下的方法;1)開發一個硬件系統,在GPS基礎設施上注入欺騙信號;2)開發一個軟件應用程序,以檢測欺騙的注入。該硬件系統包括一個用于創建欺騙場景的GNSS模擬器、一個便于輸入實時和模擬信息流的射頻(RF)分離器、一個DAGR和各種數據收集工具。系統操作遵循簡單的欺騙攻擊技術來執行公開欺騙攻擊。公開欺騙的一個特點是 "干擾-欺騙 "策略。Chapman(2017,1)將公開欺騙攻擊描述為 "偽造的GPS信號只是以明顯高于真實衛星信號的功率水平進行廣播"。在公開欺騙中,對手增加欺騙信號的功率,以壓倒合法的GPS信號饋送。我們成功地將公開欺騙技術應用于工程系統,并收集數據進行分析。該數據集構成了人工智能開發工具的基礎,包括國家海洋電子協會0183(NMEA 0183)和接口控制文件-GPS 153(ICD GPS153)信息流。雖然NMEA 0183標準定義了用于商業用途的GPS信息,但ICD 153標準是用于設計和實施軍事平臺上使用的信息。在這項研究中,我們同時使用了NMEA 0183和ICD 153信息標準的信息。
在數據集上應用主成分分析(PCA)等數據縮減工具,發現參數的相關性導致數據集的方差約為94%。第一個主成分PC1解釋了這些方差。對人工智能工具的研究確定了無監督和有監督學習工具的適用性。無監督學習對識別數據集內的特征很有效,而有監督學習方法則適用于有已知目標的數據集。使用聚類方法,如k-means,我們清楚地識別了在信號上應用欺騙所形成的聚類。聚類作為一種視覺工具是有效的。無監督學習模型有效地識別了由欺騙情況形成的聚類。欺騙行為對數據結構的影響在與應用欺騙信號前后形成的聚類不同的聚類中顯示出來。我們發現了數據參數中的特殊性和以前未被發現的關聯性,這對研究有啟發性。
利用數據挖掘和數據分析工具,我們再次對數據集進行了處理,以應用標記的參數,并訓練一個監督模型來對欺騙行為進行分類。我們對數據集進行了處理,并使用幾個監督學習模型檢查結果。我們在標記的數據集上執行了這些模型,其中85%的數據用于訓練,15%的數據保留給測試,同時使用交叉驗證。對模型應用交叉驗證,就不需要對數據集進行驗證分割。隨機森林和邏輯回歸模型的結果顯示,在訓練集和測試集上都有100%的真陽性率,進一步證明了人工智能模型可以檢測GPS用戶基礎設施上的欺騙行為。
使用一套通常適用于ML、數據科學和統計問題的性能指標來評估監督學習模型的有效性。模型的訓練呈現出優秀的結果,所有模型的召回率和精確度都很完美。召回率是一個重要的指標,用于評估一個工具在檢測惡意活動方面的效果,如對DAGR的欺騙企圖。這項研究的結果表明,如果有適當的工具和權限,對手可以有效地欺騙軍用GPS設備。我們在整個論文中開發和展示的工具表明,人工智能方法可以檢測到對軍用GPS基礎設施的欺騙性攻擊。