亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

為了面對軍事防御的挑戰,軍隊及其戰術工具的現代化是一個持續的過程。在不久的將來,各種任務將由軍事機器人執行,以實現100%的影響和0%的生命風險。國防機器人工程師和公司有興趣將各種戰略自動化,以獲得更高的效率和更大的影響,因為陸地防御機器人的需求正在穩步增長。在這項研究中,軍事防御系統中使用的陸地機器人是重點,并介紹了各種類型的陸地機器人,重點是技術規格、控制策略、戰斗參與和使用目的。本研究還介紹了陸地機器人技術在世界軍事力量中的最新整合,其必要性,以及各國際防務公司對世界經濟的貢獻,表明其在軍事自動化和經濟穩定中的優勢。本報告還討論了近期發展的局限性和挑戰、機器人倫理和道德影響,以及與機器人安全有關的一些重要觀點和克服近期挑戰的一些建議,以促進未來的發展。

引言

為了加強軍事防御系統,必須大力發展和提高智能自主戰略能力。在大多數第一世界國家,研究國防技術改進是實現軍事防御現代化的優先事項。未來戰爭的特點可以根據不同領域的沖突進行分析,如:海洋、陸地、空中、網絡、太空、電磁和信息。隨著現代智能和機器人技術的改進,跨域(X域)和多域戰略也需要被關注。無人自主X域(多域)系統,簡稱UAxS,現在是研究和發展的重點,以使軍事力量更加強大、有力和智能。圖1展示了多域和X域的戰爭模式。

圖 1:多域和 X 域戰爭模型

現代防御機制可以在四個相互關聯的領域進行研究:先進的戰艦、良好的通信、人工智能和自主武器。這基本上意味著在軍事防御系統中實施機器人技術。在戰場上,一支裝備精良的機械化部隊是指揮官非常重要的資產。在戰爭中,指揮官必須專注于火力、機動性、人機合作、決策、支持裝甲和指揮步兵。在未來,機器人和自動化系統將通過提供支持和減少負擔來幫助解決這些問題,因為這些系統將更加智能、可靠和合作。在最近的軍事活動中,機器人和自主技術被用于偵察、設備供應、監視、掃雷、災難恢復、受傷士兵的檢索等(Dufourda, & Dalgalarrondo, 2006;Akhtaruzzaman, et al., 2020)。

為了確保可靠的使用和獲得最高的技術影響,機器人必須在半自動化、自動化和人機交互工程方面進行良好的設計。無人地面車輛(UGV)很有前途,在國防應用中具有很大的潛力,在這些應用中高度需要更快和可靠的通信鏈接(鏈接預算)和快速獲取信息(RAtI)(Akhtaruzzaman, et al., 2020)。機器人的價值比人的生命還要低。機器人在感知、檢測、測量和分析方面速度更快。機器人沒有任何激情或情感,不會像人類那樣感到疲勞或疲倦,而是在極端和關鍵條件下保持運作。在不久的將來,機器人將成為作戰計劃和參與的核心技術(Abiodun, & Taofeek, 2020)。它們將能夠通過智能傳感器技術與環境溝通,通過建模理解環境,理解人類的行動,定義威脅,服從命令,以更高的處理能力獲取信息,通過信息交換和共享與其他機器人互動,通過先進的控制技術自主適應敵對環境,并通過強大的計算能力與自動生成的程序應用智能進行自我學習(Akhtaruzzaman, & Shafie, 2010a, 2010b; Karabegovi?, & Karabegovi?, 2019)。

在不久的將來,UGV系統將成為軍事行動的關鍵技術,因為它們將確保幾乎零人力風險,不需要將人力直接安置到戰斗中。UGV系統還將能夠開放各種設施,如負載、自動監視、邊境巡邏、風險降低、障礙物清除、力量倍增器、遠程操縱、信號中繼等(Sathiyanarayanan等人,2014)。陸地防衛機器人必須能夠適應各種崎嶇的地形、惡劣的環境和非結構化的區域,同時發揮指定的作用并保持指揮層次。作為軍事部隊的一種程度,陸地機器人不能給團隊帶來任何額外的工作負擔。因此,必須實施有效的人工智能(AI)工程,以實現UGV或陸地機器人與行動部隊之間可靠的人機合作。

今天的智能機器人或自主武器仍然處于狹義人工智能(ANI)的水平(Horowitz,2019年),或者以某種方式處于ANI和通用人工智能(AGI)之間。這反映出它們還沒有準備好在災難或戰爭等敵對情況下完全自主并做出可靠的決定。人類擁有在很大程度上應用感知經驗的智慧,能夠適應環境,并能在關鍵情況下做出適當的決定。如果這些能力能夠被植入機器人的大腦,該系統就可以說是AGI系統。盡管與人類相比,機器人可以抵御枯燥、骯臟和危險的工作,但它們包括一些有限的功能,如航點或目標導向的導航、障礙物檢測、障礙物規避、威脅檢測、人類檢測和識別、定位、地圖構建、通過圖像和聲音處理提取信息,以及與其他機器人的某種合作。因此,如果能確保機器人和人類之間的良好合作,機器人將在人類的監督下自主工作,那么軍用地面機器人將是最有效的。

本研究對軍用陸地機器人系統、最近的技術進步、應用和道德影響進行了回顧。一些發達國家和不發達國家的現狀,以及通過推進和發展軍事武器、自動化武器和智能技術對世界經濟的工業影響,都反映在審查研究中。本文還闡述了參與戰爭的機器人倫理以及該技術對道德國家的影響。該研究主要試圖通過確定最近的差距、局限性和技術進步的倫理影響,來確定地面機器人技術的最新應用和實施情況

付費5元查看完整內容

相關內容

人工智能在軍事中可用于多項任務,例如目標識別、大數據處理、作戰系統、網絡安全、后勤運輸、戰爭醫療、威脅和安全監測以及戰斗模擬和訓練。

在21世紀初,美國軍隊專注于反叛亂行動,而俄羅斯等競爭對手則專注于常規軍事力量的現代化,威脅著美國的軍事主導地位。美國軍事能力差距的縮小,加上新興技術,如網絡空間、太空和電磁波譜,改變了戰爭的特點。美國陸軍的應對措施,即多域作戰(MOO),試圖利用融合的概念,快速而持續地整合所有軍事領域、電磁波譜和信息環境,以賦予軍事優勢。為了實現融合,美國陸軍必須與其他軍種進行聯合開發,制定軍種間協議,修改人員結構,并修改人事政策。后越南時代空地戰的發展和隨后的 "沙漠風暴行動 "提供了一個歷史案例研究,重點是為實現陸域和空域的融合而進行的組織變革。目前美國軍隊現代化的體制機制主要是在空地戰時期發展起來的,可能需要調整,以確保適應實現MDO融合。

引言

隨著2015年國家安全戰略的發布,標志著美國正式將國家安全重點從過去14年的沖突中轉移。盡管在阿富汗和伊拉克的行動仍在進行,但該文件提到部署的部隊兵力從2009年的約18萬人減少到公布時的不到15000人。雖然仍然承認暴力極端主義組織的威脅,但美國開始將國家安全重點從全球反恐戰爭(GWOT)轉向大國競爭。這種轉變隨著2017年《國家安全戰略》和2021年《臨時國家安全戰略》的發布而加劇,該戰略特別指出俄羅斯等是挑戰美國實力、利益、安全和繁榮的國家。俄羅斯和其他國家競爭者專注于其部隊的現代化,而美國則專注于在伊拉克和阿富汗的反叛亂行動。這增加了競爭者的能力,并對美國的軍事主導地位構成了威脅。美國陸軍的多域作戰(MDO)概念是對美國陸軍領導層提出的安全問題的回應。它是美國陸軍理論、組織、訓練、物資解決方案、領導、人員、設施和政策(DOTMLPFP)現代化的核心重點,以保持對所有對手的競爭優勢。

MDO的一個核心主題給軍隊帶來了新的問題,即技術的出現和普及改變了戰爭的特征。互聯網的發展和全球日常生活的許多方面對這一現象的依賴引起了網絡空間的競爭,其影響可能會影響傳統的戰爭形式。對基于空間的能力的更多依賴和公認的空間軍事化,同樣代表了在以前的沖突或理論中沒有完全實現的戰爭轉變。能夠利用電磁波譜(EMS)的技術,雖然在整個20世紀都在使用,但在21世紀更加普遍,對戰爭的可能影響也更大。所有這些發展都是隨著信息時代的到來而出現的,增加了信息環境在影響戰爭行為和結果方面的重要性。

廣泛的研究問題和主題

擺在作戰人員面前的問題是如何將這些新出現的能力與現有的和經過驗證的框架進行最佳整合。美國陸軍的答案是:"......在所有領域、電磁波譜和信息環境中快速和持續地整合能力,通過跨領域的協同作用優化效果,以戰勝敵人......" 為了完成這一任務,美國陸軍必須與其他軍種進行聯合開發,制定軍種間的協議,修改人員結構,并修改人事政策。海灣戰爭時期空地戰的發展代表了美國空軍和美國陸軍的成功整合,以實現其主要領域的融合,并在DOTMLPFP的各個類別中發生變化。對這一時期土地和領域整合的分析可以為未來網絡空間、空間、信息環境和環境管理系統的領域整合提供有益的見解。

MDO結構廣泛地使用了領域一詞,這一概念是理解融合的一個核心概念。MDO中使用的領域一詞符合聯合出版物(JP)3-0《聯合作戰》中描述的該術語的聯合用法。 聯合條令沒有明確定義領域;然而,它確實將領域的概念貫穿于理解作戰環境和如何組織聯合作戰的描述中。該術語并不意味著所有權或排他性,因為單一軍種可以在多個領域內運作。目前公認的聯合行動的物理領域有四個:陸地、空中、海上和太空。信息環境產生了第五個聯合領域,即網絡空間。

聯合條令并不承認信息環境是一個領域。然而,與四個物理領域和環境管理系統一起,聯合條令將其視為作戰環境的一個主要組成部分,并將其視為一種聯合功能。JP 3-0將信息環境定義為"......包括并聚集了眾多的社會、文化、認知、技術和物理屬性,它們作用于并影響知識、理解、信仰、世界觀,并最終影響個人、團體、系統、社區或組織的行動。" 網絡空間作為一個領域存在于信息環境中。電磁環境,即所有頻率的電磁輻射范圍,也是作戰環境的一個重要因素,但聯合條令并不承認它是一個獨立的領域。

將四個物理領域、網絡空間、信息環境和環境管理系統結合起來,就產生了MDO的融合概念。簡單地說,融合是美國陸軍編隊利用作戰環境的所有可能方面,在武裝沖突中創造對敵人的優勢,利用這種優勢,并取得勝利。部隊通過跨領域的協同作用實現融合,這是MDO理念的核心原則。這個術語也起源于聯合條令,被定義為 "在不同領域的能力的互補性,而不僅僅是相加,從而使每一種能力都能增強其他能力的有效性并彌補其他能力的脆弱性"。融合的產生是由于接受了美國將無法在近距離或同行沖突中享有未來領域的優勢,而是需要使用來自多個領域的協調效應來讓出優勢。

支撐這一分析的理論框架是作戰藝術,即 "在......技能、知識、經驗、創造力和判斷力的支持下,制定戰略、戰役和行動,通過整合目的、方式、手段和評估風險來組織和使用軍隊的認知方法"。MDO是一個作戰層面的構造,旨在為指揮官提供一種方法,通過協調使用所有可用資源,在競爭、危機或武裝沖突中取得戰術勝利。然而,除非在政治目標的背景下實現,否則這種勝利是沒有意義的。然而,將戰術結果與政治目標聯系起來,不屬于本研究的范疇,本研究的重點是戰爭的作戰和戰術層面。

MDO融合領域的新興性質和已發表作品的匱乏限制了這項研究。對后越南時代到今天的發展時期的研究限定了本項目的范圍。雖然在整個軍事史上還有其他領域融合的成功案例,但本研究沒有考慮這些案例。這種劃分也排除了海上、空中和陸地融合的成功案例,這些案例可能會產生比只考慮空中和陸地領域更多或相互矛盾的見解。本研究重點關注美國在空中和陸地融合方面的努力以及對美國陸軍MDO的影響,排除了其他國家的MDO概念發展案例和其他領域融合的歷史案例。最后,本研究主要分析了MDO融合的作戰和戰術影響,因為戰略分析不是MDO構建的重點。

這個項目接受了MDO的一般方法,將其作為一個有效的結構來處理后GWOT時代出現的近距離或同行競爭問題,并作為美國軍隊現代化的基礎。這種方法的一個固有的假設是,實現所有領域、信息環境和EMS的MDO融合會產生對對手的明顯優勢。鑒于持續增加總部組織的規模和復雜性的趨勢,如從2001財年到2012年,作戰指揮部人員增長了50%,增加人員的規模和復雜性可能會阻礙決策和組織適應。最后一個假設是,美國陸軍不能以目前現有的框架實現MDO的最佳融合,這意味著美國陸軍需要進行組織變革以充分實現現代作戰環境的好處。

這個項目采用了案例研究的方法,研究了空地戰發展背后的理由和事件,它的持續演變,以及這個過程在目前的服務和聯合DOTMLPFP類別中是如何體現的。這既代表了極端的情況,因為美國陸軍和美國空軍元素在作戰環境中的接近帶來了自相殘殺的危險,也代表了關鍵的情況,因為空陸一體化的發展可能適用于其他領域、信息環境和環境管理系統。這種分析也可能發現案例研究是務實的,揭示了一種有效的方法來實現與新的戰爭領域的銜接。本研究的一般格式是從文獻回顧,到方法概述,案例研究本身,分析和發現,最后是結論。

付費5元查看完整內容

美國防部負責研究和工程的副部長辦公室(Alexandria, VA)成立了美國防部健康和人類表現生物技術委員會(BHPC)研究小組,以持續評估生物技術的研究和發展。BHPC小組評估了具有潛在軍事用途的改善健康和性能的科學進展;確定了相應的風險和機會以及倫理、法律和社會影響;并向高級領導層提供了為未來美國部隊減輕對抗性威脅和最大化機會的建議。在BHPC執行委員會的指導下,BHPC研究小組進行了為期一年的評估,題為 "2050年的半機械士兵:人/機融合和對國防部未來的影響"。這項工作的主要目的是預測和評估在未來30年內與人體結合的機器對軍事的影響,以增強和提高人類的表現。本報告總結了這一評估和發現;確定了該領域新技術的四個潛在軍事用途;并評估了它們對美國防部組織結構、作戰人員的理論和戰術以及與美國盟友和民間社會的互操作性的影響。

執行總結

美國防部健康和人類表現生物技術委員會(BHPC,弗吉尼亞州亞歷山大)研究小組調查了與協助和提高人類在許多領域的表現有關的廣泛的當前和新興技術。該小組利用這些信息開發了一系列小故事,作為討論和分析的案例,包括可行性;軍事應用;以及倫理、法律和社會影響(ELSI)的考慮。最終,該小組選擇了四個場景,認為它們在2050年或更早之前在技術上是可行的。以下是與軍事需求相關的場景,并提供了超越目前軍事系統的能力:

  • 對成像、視覺和態勢感知的眼球增強。

  • 通過光遺傳體衣傳感器網恢復和編程肌肉控制。

  • 用于通信和保護的聽覺增強。

  • 直接增強人腦的神經,實現雙向數據傳輸。

盡管這些技術中的每一項都有可能逐步提高超出正常人類基線的性能,但BHPC研究小組分析認為,開發直接增強人腦神經的雙向數據傳輸技術將為未來的軍事能力帶來革命性的進步。據預測,這項技術將促進人與機器之間以及人與人之間通過腦與腦之間的互動的讀/寫能力。這些互動將允許作戰人員與無人駕駛和自主系統以及其他人類直接溝通,以優化指揮和控制系統和行動。人類神經網絡和微電子系統之間直接交換數據的潛力可以徹底改變戰術戰士的通信,加快整個指揮系統的知識轉移,并最終驅散戰爭的 "迷霧"。通過神經硅接口對人腦進行直接的神經強化,可以改善目標的獲取和接觸,并加速防御和進攻系統。

盡管直接神經控制所帶來的軍事硬件控制、增強的態勢感知和更快的數據同化將從根本上改變2050年的戰場,但其他三種半機械人技術也可能以某種形式被作戰人員和民間社會采用。BHPC研究小組預測,人類/機器增強技術將在2050年之前廣泛使用,并將穩步成熟,這主要是由民用需求和強大的生物經濟推動的,而生物經濟在今天的全球市場上處于最早的發展階段。全球醫療保健市場將推動人類/機器增強技術,主要是為了增強因受傷或疾病而喪失的功能,國防應用可能不會在后期階段推動市場發展。BHPC研究小組預計,逐步引入有益的恢復性機械人技術將在一定程度上使人們適應其使用。

BHPC研究小組預測,在2050年之后的幾年里,將增強的人類引入普通人群、美國防部現役人員和近似的競爭對手,并將導致既定法律、安全和道德框架的不平衡、不平等和不公平。這些技術中的每一項都將為終端用戶提供某種程度的性能改進,這將擴大增強和未增強的個人和團隊之間的性能差距。BHPC研究小組分析了案例研究并提出了一系列問題,以推動其對國防部計劃、政策和行動的影響評估。以下是由此產生的建議(不按優先順序排列):

1.美國防部人員必須對社會對人/機增強技術的認識和看法進行全球評估。在美國存在一種普遍的看法,即我們的對手更有可能采用美國民眾因道德問題而不愿或不愿意使用的技術。然而,對手對這些技術的態度從未被證實過。引入新技術后的社會憂慮會導致意料之外的政治障礙,并減緩國內的采用,而不考慮價值或現實的風險。對全球態度的評估將預測在哪些地方可能因為社會政治障礙而難以引進新技術,以及在哪些地方對手采用抵消技術可能會更容易被接受。

2.美國領導層應利用現有的和新開發的論壇(如北約)來討論在接近2050年時對盟國伙伴互操作性的影響。這將有助于制定政策和實踐,使部隊的互操作性最大化。機械人技術的快速發展速度對軍隊的互操作性有影響。美國防部要求在北約和其他全球聯盟框架內與盟國伙伴保持互操作性,這就需要努力使半機械人資產與現有的盟國伙伴關系理論保持一致。

3.美國防部應投資發展其控制下的動態法律、安全和道德框架,以預測新興技術。由于這些技術在美國和世界其他國家(盟國和敵國)的發展速度,目前的法律、安全和道德框架是不夠的。因此,國防部應支持制定具有前瞻性的政策(內部和外部),以保護個人隱私,維持安全,并管理個人和組織的風險,同時使美國及其盟友和資產的明確利益最大化。由于國家安全技術的操作化是國防部任務的核心,這些框架的結構應該是靈活的,并對美國國內或其他地方開發的新技術做出反應。

4.應努力扭轉關于增強技術的負面文化敘述。在流行的社會和開源媒體、文學和電影中,使用機器來增強人類的身體狀況,在娛樂的名義下得到了扭曲的和反社會的敘述。一個更現實、更平衡(如果不是更積極)的敘述,以及政府對技術采用的透明度,將有助于更好地教育公眾,減輕社會的憂慮,并消除對這些新技術的有效采用的障礙。一個更加知情的公眾也將有助于闡明有效的社會關注,如那些圍繞隱私的關注,以便國防部人員可以盡可能地制定緩解策略。雖然這不是國防部的固有任務,但國防部領導層應該明白,如果這些技術要投入使用,需要克服公眾和社會的負面看法。

5.美國防部人員應進行桌面兵棋推演和有針對性的威脅評估,以確定盟軍和敵軍的理論和戰術。兵棋推演是衡量不對稱技術對戰術、技術和程序影響的既定機制。探討美國或其對手整合和使用人類/機器技術的各種場景的桌面演習將預測抵消優勢,確定北約和其他盟國組織的互操作性摩擦點,并告知高級軍事戰略家和科技投資者。國防部人員應利用對這一新興領域有針對性的情報評估來支持這些努力。

6.美國政府應支持努力建立一個全國性的人/機增強技術的方法,而不是整個政府的方法。聯邦和商業在這些領域的投資是不協調的,并且正在被中國的研究和開發努力所超越,這可能導致美國在本研究的預計時間框架內失去在人/機增強技術方面的主導地位。在商業領域接近同行的主導地位將使美國在國防領域的利益處于劣勢,并可能導致到2050年在人/機增強領域的劣勢被抵消。為保持美國在半機械人技術方面的主導地位而做出的國家努力符合國防部和國家的最佳利益。

7.美國防部應支持基礎研究,在投入使用前驗證人/機融合技術,并跟蹤其長期安全性和對個人和團體的影響。人機融合帶來的好處將是巨大的,通過恢復因疾病或受傷而喪失的任何功能,將對人類的生活質量產生積極影響。軍事界也將看到影響行動和訓練的能力機會。隨著這些技術的發展,科學和工程界必須謹慎行事,最大限度地發揮其潛力,并關注我們社會的安全。在這些領域的相應投資將致力于減少這些技術的誤用或意外后果。

付費5元查看完整內容

自動化使系統能夠執行通常需要人類投入的任務。英國政府認為自動化對保持軍事優勢至關重要。本論文討論了當前和未來全球自動化的應用,以及它對軍事組織和沖突的影響。同時還研究了技術、法律和道德方面的挑戰。

關鍵要點

  • 在軍事行動中部署自動化技術可以提高有效性并減少人員的風險。
  • 在英國和國際上,自動化正被用于情報收集、數據分析和武器系統。
  • 英國政府正在開發自動化系統;技術挑戰包括數據管理、網絡安全以及系統測試和評估。
  • 軍事自動化的法律和道德影響受到高度爭議,特別是在武器系統和目標選擇方面。

背景

許多軍事系統都有自動化的特點,包括執行物理任務的機器人系統,以及完全基于軟件的系統,用于數據分析等任務。自動化可以提高某些現有軍事任務的效率和效力,并可以減輕人員的 "枯燥、骯臟和危險 "的活動。 許多專家認為,自動化和自主性是與系統的人類監督水平有關的,盡管對一些系統的定位存在爭議,而且對系統是否應被描述為 "自動化 "或 "自主 "可能存在分歧。英國防部在其 "自主性譜系框架 "中概述了5個廣泛的自主性水平,從 "人類操作 "到 "高度自主"。一個系統可能在不同的情況下有不同的操作模式,需要不同程度的人力投入,而且只有某些功能是自動化的。方框1概述了本公告中使用的定義。

方框1:該領域的術語并不一致,關鍵術語有時可以互換使用。

  • 自動化系統。自動系統是指在人類設定的參數范圍內,被指示自動執行一組特定的任務或一系列的任務。這可能包括基本或重復的任務。

  • 自主系統。國防科學與技術實驗室(Dstl)將自主系統定義為能夠表現出自主性的系統。自主性沒有公認的定義,但Dstl將其定義為 "系統利用人工智能通過自己的決定來決定自己的行動路線的特點"。自主系統可以對沒有預先編程的情況作出反應。

  • 無人駕駛車輛。朝著更高水平的自主性發展,使得 "無人駕駛 "的車輛得以開發,車上沒有飛行員或司機。有些是通過遠程控制進行操作,有些則包括不同程度的自主性。最成熟的無人駕駛軍事系統是無人駕駛航空器,或稱 "無人機",其用途十分廣泛。

  • 人工智能。人工智能沒有普遍認同的定義,但它通常是指一套廣泛的計算技術,可以執行通常需要人類智慧的任務(POSTnote 637)。人工智能是實現更高水平的自主性的一項技術。

  • 機器學習:(ML,POSTnote 633)是人工智能的一個分支,是具有自主能力的技術的最新進展的基礎。

英國政府已經認識到自主系統和人工智能(AI,方框1)的軍事優勢以及它們在未來國防中可能發揮的不可或缺的作用。在其2021年綜合審查和2020年綜合作戰概念中,它表示致力于擁抱新的和新興的技術,包括自主系統和人工智能。2022年6月,英國防部發布了《國防人工智能戰略》,提出了采用和利用人工智能的計劃:自動化將是一個關鍵應用。在全球范圍內,英國、美國、中國和以色列擁有一些最先進的自主和基于AI的軍事能力。方框2中給出了英國和全球活動的概述。

方框2:英國和全球活動

  • 英國 英國政府已表明其投資、開發和部署用于陸、海、空和網絡領域軍事應用的自主和人工智能系統的雄心。最近的投資項目包括NELSON項目,該項目旨在將數據科學整合到海軍行動中;以及未來戰斗航空系統,該系統將為皇家空軍提供一個有人員、無人員和自主系統的組合。在2021年綜合審查發表后,政府成立了國防人工智能中心(DAIC),以協調英國的人工智能國防技術的發展。這包括促進與學術界和工業界的合作,并在紐卡斯爾大學和埃克塞特大學以及艾倫-圖靈研究所建立研究中心。

  • 全球背景 對自主軍事技術的投資有一個全球性的趨勢:25個北約國家已經在其軍隊中使用一些人工智能和自主系統。有限的公開信息給評估軍隊的自主能力帶來了困難,但已知擁有先進系統的國家包括。

    • 美國。美國國防部2021年預算撥款17億美元用于自主研發,以及20億美元用于人工智能計劃。
    • 以色列。國有的以色列航空航天工業公司生產先進的自主系統,包括無人駕駛的空中和陸地車輛以及防空系統。
    • 中國。據估計,中國在國防人工智能方面的支出與美國類似。 分析師認為,這包括對情報分析和自主車輛的人工智能的投資。

俄羅斯和韓國也在大力投資于這些技術。在俄羅斯,機器人技術是最近成立的高級研究基金會的一個重點,該基金會2021年的預算為6300萬美元。

應用

自主系統可以被設計成具有多種能力,并可用于一系列的應用。本節概述了正在使用或開發的軍事應用系統,包括情報、監視和偵察、數據分析和武器系統。

情報、監視和偵察

自動化正越來越多地被應用于情報、監視和偵察(ISR),通常使用無人駕駛的車輛(方框1)。無人駕駛的陸上、空中和海上車輛配備了傳感器,可以獲得數據,如音頻、視頻、熱圖像和雷達信號,并將其反饋給人類操作員。一些系統可以自主導航,或自主識別和跟蹤潛在的攻擊目標。英國有幾架ISR無人機在服役,還有一些正在試用中。這些無人機的范圍從非常小的 "迷你 "無人機(其重量與智能手機相似)到可以飛行數千英里的大型固定翼系統。英國正在試用的一個系統是一個被稱為 "幽靈 "無人機的迷你直升機,它可以自主飛行,并使用圖像分析算法來識別和跟蹤目標。無人駕駛的水下航行器被用于包括地雷和潛艇探測的應用,使用船上的聲納進行自主導航。這些車輛還可能配備了一種技術,使其能夠解除地雷。

數據分析

許多軍事系統收集了大量的數據,這些數據需要分析以支持操作和決策。人工智能可用于分析非常大的數據集,并分辨出人類分析員可能無法觀察到的模式。這可能會越來越多地應用于實地,為戰術決策提供信息,例如,提供有關周圍環境的信息,識別目標,或預測敵人的行動。英國軍隊在2021年愛沙尼亞的 "春季風暴 "演習中部署了人工智能以提高態勢感知。美國的Maven項目旨在利用人工智能改善圖像和視頻片段的分析,英國也有一個類似的項目,利用人工智能支持衛星圖像分析。

武器系統

以自動化為特征的武器系統已被開發用于防御和進攻。這些系統包括從自動響應外部輸入的系統到更復雜的基于人工智能的系統。

  • 防御系統。自動防空系統可以識別和應對來襲的空中威脅,其反應時間比人類操作員更快。這種系統已經使用了20多年;一份報告估計有89個國家在使用這種系統。目前使用的系統可以從海上或陸地發射彈藥,用于應對來襲的導彈或飛機。英國使用Phalanx CIWS防空系統。雖然沒有在全球范圍內廣泛采用,但以色列將固定的無機組人員火炮系統用于邊境防御,并在韓國進行了試驗。這些系統能夠自動瞄準并向接近的人或車輛開火。

  • 導向導彈。正在使用的進攻性導彈能夠在飛行中改變其路徑,以達到目標,而不需要人類的輸入。英國的雙模式 "硫磺石"(DMB)導彈于2009年首次在阿富汗作戰中使用,它可以預先設定搜索特定區域,利用傳感器數據識別、跟蹤和打擊車輛。

  • 用于武器投送的無人平臺。為武器投送而設計的無人空中、海上和陸地運載工具可以以高度的自主性運行。這些系統可以自主地搜索、識別和跟蹤目標。大多數發展都是在空中領域。英國唯一能夠自主飛行的武裝無人機是MQ-9 "收割者",但有幾個正在開發中。英國防部還在開發 "蜂群 "無人機(方框3)。雖然存在技術能力,但無人駕駛的進攻性武器并不用于在沒有人類授權的情況下做出射擊決定;報告的例外情況很少,而且有爭議。 自主系統在識別目標和作出射擊決定方面的作用,是廣泛的倫理辯論的主題(見下文)。

方框3:無人機蜂群

無人機蜂群是指部署多個能夠相互溝通和協調的無人機和人員,以實現一個目標。在軍事環境中,蜂群可能被用來監視一個地區,傳遞信息,或攻擊目標。2020年,英國皇家空軍試驗了一個由一名操作員控制的20架無人機群,作為Dstl的 "許多無人機做輕活 "項目的一部分。蜂群技術還沒有廣泛部署。據報道,以色列國防軍于2021年首次在戰斗中使用無人機蜂群。

影響

自動化技術和人工智能的擴散將對英國軍隊產生各種影響,包括與成本和軍事人員的角色和技能要求有關的影響。對全球和平與穩定也可能有影響。

財務影響

一些專家表示,從長遠來看,軍事自動化系統和人工智能可能會通過提高效率和減少對人員的需求來降低成本。然而,估計成本影響是具有挑戰性的。開發成本可能很高,而且回報也不確定。提高自動化和人工智能方面的專業知識可能需要從提供高薪的行業中招聘。軍隊可能不得不提高工資以進行競爭,英國防部將此稱為 "人工智能工資溢價"。

軍事人員的作用和技能

自動化可能會減少從事危險或重復性任務的軍事人員數量。然而,一些軍事任務或流程,如高層戰略制定,不太適合自動化。在許多領域,自主系統預計將發揮對人類的支持功能,或在 "人機團隊 "中與人類合作。專家們強調,工作人員必須能夠信任與他們合作的系統。一些角色的性質也可能會受到自動化的影響,所需的技能也是如此。例如,對具有相關技術知識的自主系統開發者和操作者的需求可能會增加。英國防部已經強調需要提高整個軍隊對人工智能的理解,并承諾開發一個 "人工智能技能框架",以確定未來國防的技能要求。一些利益相關者對自動化對軍事人員福祉的影響表示擔憂,因為它可能會限制他們的個人自主權或破壞他們的身份和文化感。

人員對自動化的態度:

關于軍事人員對自動化的態度的研究是有限的。2019年對197名英國防部人員的研究發現,34%的人對武裝部隊使用可以使用ML做出自己的決定的機器人有普遍積極的看法,37%的人有普遍消極的態度。有報道稱,人們對某些自主武器系統缺乏信任,包括在2020年對澳大利亞軍事人員的調查中。在這項研究中,30%的受訪者說他們不愿意與 "潛在的致命機器人 "一起部署,這些機器人在沒有人類直接監督的情況下決定如何在預定的區域使用武力。安全和目標識別的準確性被認為是兩個最大的風險。有證據表明,信任程度取決于文化和熟悉程度。

升級和擴散

一些專家提出了這樣的擔憂:在武器系統中越來越多地使用自主權,有可能使沖突升級,因為它使人類離開了戰場,減少了使用武力的猶豫性。蘭德公司最近的一份戰爭游戲報告(上演了一個涉及美國、中國、日本、韓國和朝鮮的沖突場景)發現,廣泛的人工智能和自主系統可能導致無意中的沖突升級和危機不穩定。這部分是由于人工智能支持的決策速度提高了。升級也可能是由自動系統的非預期行為造成的。

還有人擔心,由于自動化和基于人工智能的技術變得更便宜和更豐富,非國家行為者更容易獲得這種技術。這些團體也可能獲得廉價的商業無人機,并使用開放源碼的人工智能對其進行改造,以創建 "自制 "武器系統。關于非國家行為者使用自主系統的報告是有限的和有爭議的。然而,非國家團體確實使用了武裝無人機,而且人們擔心人工智能會使這種系統更加有效。

技術挑戰

正在進行的包括機器人和人工智能在內的技術研究,主要是由商業驅動的,預計將增加自動化系統的應用范圍和采用程度。該領域的一些關鍵技術挑戰概述如下。一個更普遍的挑戰是,相對于數字技術的快速發展,軍事技術的發展速度緩慢,有可能在部署前或部署后不久組件就會過時。

數據傳輸

無人駕駛的車輛和機器人經常需要向人員傳輸數據或從人員那里接收數據。這可以讓人類監督和指導它們的運作或接收它們收集的數據。在某些情況下,系統也可能需要相互通信,如在無人機群中(方框3)。軍方通常使用無線電波在陸地上傳輸數據,其帶寬(頻率的可用性)可能有限。在傳輸大量數據,如高分辨率圖像時,這可能是個問題。5G技術(POSTbrief 32)可能會促進野外更有效的無線通信。系統之間的無線電通信可以被檢測到,提醒對手注意秘密行動。對手也可能試圖阻止或破壞系統的通信數據傳輸。目前正在研究如何最大限度地減少所需的數據傳輸和優化數據傳輸的方法。更多的 "板載 "或 "邊緣 "處理(POSTnote 631)可以減少傳輸數據的需要。然而,減少通信需要系統在沒有監控的情況下表現得像預期的那樣。

數據處理

具有更高水平的自主性的更復雜的系統通常在運行時在船上進行更多的數據處理和分析。這要求系統有足夠的計算能力。一般來說,一個系統能做多少嵌入式數據處理是有限制的,因為硬件會占用空間并需要額外的電力來運行。這可能會限制需要電池供電運行的系統的敏捷性和范圍。然而,人工智能的進步也可能使系統更有效地運行,減少計算要求。由于未來軟件、算法和計算機芯片技術的進步,計算機的處理能力也有望提高。

訓練數據

創建和整理與軍事應用相關的大型數據集,對生產可靠的人工智能自主系統非常重要。機器學習(ML,方框1)依賴于大型數據集來訓練其基礎算法,這些數據可以從現實世界中收集,或者在某些情況下,使用模擬生成。一般來說,用于訓練ML系統的數據越有代表性、越準確、越完整,它就越有可能按要求發揮作用。準備訓練數據(分類并確保其格式一致)通常需要手動完成,并且是資源密集型的。

數據隱私:

一些人工智能系統可能會在民用數據上進行訓練。人們普遍認為,如果使用與個人有關的數據,他們的隱私必須得到保護。這可以通過對個人數據進行匿名化處理或只分享經過訓練的人工智能系統來實現。

網絡安全

由計算機軟件支撐的系統數量的增加增加了網絡攻擊的機會。網絡攻擊者可能試圖控制一個系統,破壞其運作,或收集機密信息。基于人工智能的系統也可以通過篡改用于開發這些系統的數據而遭到破壞。英國防部在2016年成立了網絡安全行動中心,專注于網絡防御。在英國,2021年成立的國防人工智能中心,有助于促進行業伙伴或其他合作者對高度機密數據的訪問。

測試和評估

重要的是,軍事系統要可靠、安全地運行,并符合法律和法規的規定。人工智能和自動化給傳統軟件系統帶來了不同的測試和保證挑戰。 進一步的挑戰來自于ML的形式,它可能不可能完全理解輸出是如何產生的(POSTnote 633)。人工智能軟件可能還需要持續監測和維護。利益相關者已經強調缺乏適合的測試工具和流程,并正在開發新的工具和指南。英國政府的國防人工智能戰略致力于建立創新的測試、保證、認證和監管方法。

倫理、政策和立法

目前的準則和立法

目前還沒有專門針對將自動化或人工智能用于軍事應用的立法。雖然它們在戰爭中的使用受現有的國際人道主義法的約束,但這與新技術的關系是有爭議的。在國家和國際層面上有許多關于人工智能更普遍使用的準則,這些準則可以適用于自動化系統。然而,2021年數據倫理與創新中心(CDEI)的人工智能晴雨表研究發現,工業界很難將一般的法規適應于特定的環境。2022年,英國防部與CDEI合作發布了在國防中使用人工智能的道德原則。

責任感

一些利益相關者強調,如果自主系統的行為不合法或不符合預期,那么它的責任是不明確的。這可能導致系統及其決定與設計或操作它的人類之間出現 "責任差距",使法律和道德責任變得復雜。英國防部的原則說,在人工智能系統的整個設計和實施過程中,應該有明確的責任。國防人工智能戰略為供應商設定了類似的期望。

圍繞自主武器系統的辯論

這一領域的大部分法律和道德辯論都集中在武器系統上。然而,某些非武裝系統(例如,基于軟件的決策支持工具)可能在識別目標方面發揮關鍵作用,因此提出了許多與那些同時部署武器的系統相同的道德問題。

國際上對 "致命性自主武器系統"(LAWS)的使用存在著具體的爭論。這個術語沒有普遍認同的定義,它被用來指代具有不同自主能力的廣泛的武器。關于使用致命性自主武器系統的報告存在很大爭議,例如,由于系統使用模式的不確定性。 聯合國《特定常規武器公約》(CCW)自2014年以來一直在討論致命性自主武器系統的可能立法。它在2019年發布了指導原則,但這些原則沒有約束力,也沒有達成進一步的共識。雖然大多數參加《特定常規武器公約》的國家支持對致命性自主武器進行新的監管,但包括英國、美國和俄羅斯在內的其他國家認為,現有的國際人道主義法已經足夠。根據運動組織 "阻止殺手機器人"(SKR)的說法,83個國家支持關于自主武器系統的具有法律約束力的文書,12個國家不支持。

許多利益相關者認為,必須保持人類對武器和瞄準系統的某種形式的控制,才能在法律和道德上被接受。某些組織,如SKR,呼吁禁止不能由 "有意義的人類控制 "的自主武器系統,并禁止所有以人類為目標的系統。他們還呼吁制定法規,確保在實踐中保持足夠的人為控制。在其2022年國防人工智能戰略中,英國政府表示,識別、選擇和攻擊目標的武器必須有 "適當的人類參與"。作為回應,一些呼吁監管的非政府組織表示,需要更加明確如何評估或理解 "適當的人類參與"。包括英國政府在內的利益相關者建議的維持人類控制的潛在措施包括限制部署的時間和地理范圍。被認為會破壞人類控制的因素包括人類做出決定的有限時間和 "自動化偏見",即個人可能會過度依賴自動化系統,而不太可能考慮其他信息。

公眾對該技術的態度

大多數關于軍事自動化的公眾意見調查都集中在自主武器系統上。SKR委托對28個國家的19,000人進行了民意調查。62%的受訪者反對使用致命性武器系統;這一數字在英國是56%。關于公眾對人工智能、數據和更廣泛的自動化的態度的研究發現,公眾關注的主要問題包括數據安全、隱私和失業。然而,公眾的觀點會因系統的功能和使用環境的不同而有很大差異。

付費5元查看完整內容

美國國防部(DOD)使用漏洞評估工具來確定其許多網絡系統的必要補丁,以減輕網絡空間的威脅和利用。如果一個組織錯過了一個補丁,或者一個補丁不能及時應用,例如,為了最大限度地減少網絡停機時間,那么測量和識別這種未緩解的漏洞的影響就會被卸載到紅色團隊或滲透測試服務。這些服務大多集中在最初的利用上,沒有實現利用后行動的更大安全影響,而且是一種稀缺資源,無法應用于國防部的所有系統。這種開發后服務的差距導致了對進攻性網絡空間行動(OCO)的易感性增加。本論文在最初由海軍研究生院開發的網絡自動化紅色小組工具(CARTT)的自動化初始開發模型的基礎上,為OCO開發和實施自動化后開發。實施后開發自動化減少了紅色小組和滲透測試人員的工作量,提供了對被利用的漏洞的影響的必要洞察力。彌補這些弱點將使國防部網絡空間系統的可用性、保密性和完整性得到提高。

1.第二章:背景

第二章詳細介紹了CO中后開發的重要性,并通過分類法解釋了后開發的影響。它還研究了現有的后開發框架和工具,它們試圖將后開發自動化。本章還強調了其他工具和框架的不足之處,并討論了本研究如何在以前的工作基礎上進行改進。

2.第三章:設計

第三章介紹了CARTT是如何擴展到包括自動后開發的。這項研究利用了CARTT客戶-服務器架構的集中化和模塊化來擴展后開發行動。本章還詳細討論了發現、持續、特權升級和橫向移動等后剝削行動。

3.第四章:實施

第四章介紹了CARTT中實現的代碼、腳本和工作流程,以實現自動化的后剝削。它詳細描述了Metasploit框架(MSF)資源腳本的重要性,以及CARTT服務器、CARTT客戶端界面和CARTT操作員角色之間的通信。

4.第五章。結論和未來工作

第五章對所進行的研究進行了總結,并討論了研究的結論。它還提供了未來工作的建議,以進一步擴大CARTT的可用性和能力。

付費5元查看完整內容

科學和技術的進步越來越復雜和普遍。從智能手機到可穿戴健康監測器,再到用于游戲的虛擬現實頭盔,先進的技術正逐漸融入到日常生活中。但是,隨著科學技術越來越先進,我們在如何與新技術互動和使用這些技術在社會中如何發揮作用方面,也面臨著同樣復雜的倫理挑戰。無人駕駛汽車就是一個說明性的例子,它引發了一些倫理上的難題。例如,在無人駕駛汽車必須 "選擇 "撞上老人或小孩的情況下,哪種反應才是正確的?有沒有一個 "正確 "的反應?在這種情況下,人類司機會有正確的反應嗎?無人駕駛汽車是否應該轉彎以避免被駛來的卡車追尾,但這樣做會使一群過馬路的兒童面臨被卡車撞上的風險? 這些問題的答案本來就不簡單。此外,不同的技術在不同的情況和背景下會帶來不同的倫理問題;事實上,新興技術的軍事用途會帶來一些獨特的倫理挑戰。

美國國防部高級研究計劃局幾十年來一直在資助軍事科技研究和開發,僅2015年的年度預算就達29億美元。盡管科技正在快速發展,為軍事問題穩步提供新興技術解決方案,但我們的監管政策卻滯后,導致我們對在戰場上使用特定技術的倫理、社會和法律后果的認識存在差距,這是許多人指出的問題。對軍隊來說,一些最深刻的倫理問題是由新興的人體強化技術和自主或機器人系統引起的。例如,一個強化的士兵是否會被視為比人類更多或更少的東西,從而受到對手的非人待遇?在海外戰區從國內操作無人駕駛飛行器(UAV)的士兵是否被認為是戰斗人員,因此在本土是公平的軍事目標?與民用技術一樣,新興技術的軍事用途所引起的許多倫理問題沒有明確的答案。無論如何,在一項新興技術被廣泛使用--民用或軍用--之前,開發者、利益相關者和政策制定者意識到與之相關的潛在倫理問題是至關重要的,這樣就可以通過修改技術或規范其使用的政策來緩解這些倫理問題。

確保潛在的倫理問題得到承認的方法之一是建立一個全面的框架,以方便識別在使用任何感興趣的特定技術時可能出現的倫理問題。有幾個現有的工具指導對新興技術的倫理評估,其中包括相關問題和考慮因素的清單。例如,Elin Palm和Sven Hansson提出了一個九項檢查清單,包括:信息的傳播和使用;控制、影響和權力;對社會接觸模式的影響;隱私;可持續性;人類生殖;性別、少數民族和正義;國際關系;以及對人類價值的影響。David Wright提出了一個框架,包括一些原則,在這些原則下列出了一些價值或問題,以及在評估過程中需要回答的問題:尊重自主權(自由權);非惡意(避免傷害);善意;正義;隱私和數據保護。Federica Lucivero、Tsjalling Swierstra和Marianne Boenink建議,倫理學家在考慮一項技術的合理性時應避免過多的猜測,而在考慮該技術將如何被社會看待并在社會中發揮作用時應使用更多的想象力。為了促進這一點,他們提出了三類考慮因素:技術可行性、社會可用性和技術的可取性。雖然這些倫理評估框架對確定與平民使用的新興技術相關的倫理問題很有用,但它們對評估軍事倫理是不夠的,因為軍事倫理有一些獨特的特點。

雖然軍事和民用倫理之間有一些共同的價值觀(例如,隱私和健康問題),但在新興技術的軍事使用方面也有特殊的考慮。例如,軍事行動必須遵守《武裝沖突法》(LOAC),該法規定了戰爭手段并保護非戰斗人員和受沖突影響的平民。例如,加拿大武裝部隊(CAF)有一個《道德和價值觀準則》,其中規定了CAF成員必須遵守的價值觀,包括尊重加拿大法律和為加拿大服務高于自己,以及他們必須表現出的價值觀,如誠信和勇氣。

研究倫理原則對于確保包括士兵在內的人類研究對象在新技術的實驗測試階段得到道德對待至關重要。事實上,現代人類研究倫理原則是在軍事研究人員以研究名義進行的應受譴責的行為的歷史中產生的。當研究對象是軍人時,如果研究和軍事需要之間的界限變得模糊,就會出現挑戰,特別是在知情同意方面會出現復雜情況。但是,即使在設計和測試一項新技術時遵循了研究倫理原則,在使用該技術時仍可能出現倫理問題。有一些類似的倫理原則,如知情同意、隱私和保密性,在研究階段和隨后使用一項技術時都應考慮。

即使遵守了法律和法規,并考慮了其他倫理原則,如研究倫理原則,一項新技術仍不一定符合軍事用途的倫理,必須進一步考慮。例如,一項新技術是否會導致士兵之間的不平等,并導致部隊的凝聚力下降?如果一項新技術導致了意外的傷亡,誰來負責?一項技術是否會使士兵面臨被對手探測和攻擊的風險? 在確定一項技術是否有任何軍事倫理問題時,有許多嚴重的問題需要反思。此外,還有人從反面考慮新技術和軍事倫理之間的關系,認為應該修改指導士兵行為的軍事倫理,以實現某些新興技術的潛在倫理優勢。

鑒于全面評估一項技術所需的軍事倫理考慮的數量,以及任何違反倫理的行為對戰斗的潛在嚴重性,迫切需要一個軍事專用的倫理評估工具。其他團體已經將各種倫理原則改編為討論倫理和軍事技術的框架。然而,據我們所知,還沒有一個實用的倫理評估工具,可以用來指導對軍隊感興趣的新興技術進行系統的倫理評估。

為了填補這一空白,我們創建了一個名為 "軍事倫理評估框架"(框架)的綜合框架,將相關社會、法律、研究和軍事倫理領域的廣泛考慮納入其中,以幫助用戶和決策者確定在軍事上使用人體強化技術可能產生的潛在倫理問題。盡管該框架的設計足夠廣泛,可用于對許多不同類型的新興技術進行倫理評估,但我們對該框架的初步測試側重于新興的人類增強技術,因為這些技術對軍隊有很大的意義,而且它們引起了許多倫理問題。未來的研究將檢驗該框架在識別軍隊可能感興趣的其他新興技術(如人工智能技術)所引起的倫理問題方面的效用。 本文的目的是介紹該框架,并通過展示它如何幫助識別與軍隊感興趣的兩種不同的人體增強技術有關的潛在倫理問題來說明該工具的使用。

付費5元查看完整內容

目前,人工智能(AI)為改造許多軍事行動領域提供了巨大的機會,包括作戰、指揮與控制(C2)、后勤、安全和維護,以提高其整體作戰效率。空中和導彈防御(AMD)是一個特別復雜的任務領域,人工智能的應用至關重要。空中導彈防御任務指的是保衛國土、保護區、地面基地、地面部隊或艦艇免受敵對的空中或導彈威脅。AMD的威脅包括敵對的飛機、無人駕駛飛行器(UAV)或機載導彈。AMD行動的復雜性源于威脅的嚴重性、威脅的意外性、對形勢認識的不確定性以及事件的快速發展,因為作戰人員必須迅速評估形勢,制定適當的行動方案,并最好地利用他們的戰爭資產來應對。美國國防部(U.S. DOD)正在研究使用AI系統(或AI-enabled AMD[AI-AMD]系統)作為AMD作戰人員的自動決策輔助工具,以大大減少他們的認知負荷(Jones等人,2020),使AMD決策更快、更好。

人工智能的一個關鍵方面已經聚集了大量的研究興趣,那就是信任。信任是有效團隊的一個基本原則。它同時適用于人類和人機團隊。信任使團隊成員能夠很好地合作,是有效團隊表現的基礎(Lee and See 2004)。與人工智能系統的成功合作將需要人類對人工智能系統有一個校準的信任和依賴程度(泰勒等人,2016)。

隨著更先進和更快的空中和導彈威脅彈藥的發展和投入使用,操作人員更需要在AMD行動中迅速作出監測。不及時的決策和反應將導致災難性的后果。因此,人工智能是一個可能的解決方案,通過自動決策輔助工具加快和加強決策過程。這些AMD自動戰斗管理輔助工具可以幫助戰術操作人員應對更快的決策周期、大量的數據以及需要觀察的幾個系統或屏幕(Galdorisi 2019)。然而,為了有效地利用人工智能能力的潛力,需要操作員的高度信任。操作員對系統的信任程度低,可能會導致人工智能-AMD系統利用不足,受到不適當的監控,或者根本不使用(Floyd, Drinkwater, and Aha 2016)。這些問題中的任何一個都可能導致操作者的工作量不必要的增加,或者任務失敗的可能性。

論文對信任的定義、人機交互(HMI)的概念、信任因素以及包括AMD殺傷鏈模型、威脅場景、架構、模型和功能在內的概念模型進行了廣泛的回顧。有了這樣的認識,論文提出了人工智能-AMD系統的信任框架,對人機交互和人工智能-AMD系統信任因素的描述。論文最后提出了在人類操作者和AI-AMD系統之間實現校準信任的策略

信任框架始于對系統背景的分析。圖1顯示了AI-AMD指揮與控制(C2)系統(包括AI-AMD操作員和決策輔助工具)及其他與之互動的子系統的背景圖,這些子系統有助于操作員和AI-AMD決策輔助工具之間信任的發展。背景圖使我們能夠研究各系統之間的相互作用,以及它們對AI-AMD操作員和決策輔助工具之間信任動態的影響。

圖1. AI-AMD系統框架圖。

這篇論文將信任定義為操作者的態度,即AI-AMD決策輔助工具將有助于實現操作者的目標,即在一個以不確定性和脆弱性為特征的作戰環境中迅速摧毀來襲威脅的任務。這種信任的定義表明,它是對操作者相信或感知AI-AMD決策輔助工具的一種情感評估。為了積極地影響信任,操作者必須親自看到并感受到AI-AMD決策輔助行動的優勢。AI-AMD行動涉及很多不確定因素,以及天氣、電磁干擾和地形等環境因素以及不斷變化的威脅的性質所帶來的脆弱性。操作員將預期AI-AMD決策輔助系統按照 "合同 "執行,以處理這些不確定性和脆弱性。這些合同將是人工智能-AMD決策輔助工具應該執行的感知功能或任務,以及執行這些功能或任務的理想表現。

圖2說明了操作員和AI-AMD決策輔助工具之間的信任框架。y軸代表人類對AI-AMD決策輔助系統的信任程度,x軸代表AI-AMD決策輔助系統的能力。綠色的45°虛線表示最佳的信任水平或校準的信任線,其中的信任與AI-AMD的能力相對應,導致正確的利用(Lee and See 2004)。過度信任由最佳信任水平線以上的區域表示,此時的信任超過了系統能力,導致誤用。低于理想信任水平線的區域表示不信任,這時的信任沒有達到系統能力,導致濫用。假設存在一些默認的信任水平(如黃框所示),目標是制定一個策略,以提高AI-AMD輔助決策能力的信任。在使用該系統時,可能會發生違反信任的情況,從而降低操作員的信任。因此,信任修復行動必須被納入,以保持信任在最佳水平。

圖2. 人類操作員和AI-AMD決策輔助工具之間的信任。

基于功能分配的操作員和AI-AMD決策輔助工具之間的人機交互研究表明,操作員和AI-AMD決策輔助工具應該被設計成在大多數殺戮鏈功能中作為一個 "團隊"運作。這引導論文研究了單獨和集體考慮人類和決策輔助的信任因素。對操作員和人工智能-AMD決策之間的人機交互的研究還顯示,操作員的角色已經從手動控制器變成了監督控制器。因此,一個值得信賴的決策輔助工具是很重要的,因為操作者會期望系統的表現符合預期,以幫助操作者更好地履行他的角色。另外,為了進一步幫助減輕操作者的認知工作量,信息的外部表示、決策輔助工具的建議必須易于閱讀和理解。

關于信任因素,本論文提出了一個 "由外而內 "的框架,如圖3所示。論文首先考慮了與操作環境相關的因素,這些因素描述了AMD操作系統的背景。第二,它研究了與組織環境相關的因素,操作人員和人工智能-AMD系統得到了培訓和發展。第三,論文研究了操作人員和人工智能-AMD決策輔助工具之間的交互,以提出與操作人員、人工智能-AMD、單獨和集體相關的因素。

圖3. 建議的信任因素

圖4顯示了擬議的戰略銜接圖,以實現操作者和AI-AMD輔助決策之間的校準信任。對信任定義、人機界面和信任因素的審查表明,該戰略應關注三個關鍵領域:(1)人類對自動化技術和AI-AMD決策輔助系統的集體和個人感知;(2)增強操作員和AI-AMD決策輔助系統的團隊活力;(3)AI-AMD決策輔助系統的可信度,重點是系統開發。該戰略利用DOTMLPF-P框架提出了三個關鍵原則和五個支持原則。首先,軍事作戰人員需要被告知自動化技術的真正能力和局限性,特別是AI-AMD輔助決策。第二,操作員的培訓要求必須增加,以應對新的工作范圍和不斷變化的威脅。第三,必須在人工智能-AMD決策輔助系統的開發中加入新的要求,以提高系統的可感知的可信度。這三個關鍵原則得到了DOTMLPF-P框架其他方面的支持,如組織、領導、人員、設施和政策。

圖4. 實現操作員和人工智能-AMD決策輔助工具之間校準信任的戰略銜接圖

付費5元查看完整內容

前沿作戰基地(FOB)防御是一項人力密集型任務,需要占用作戰任務的寶貴資源。雖然能力越來越強的無人駕駛飛行器(UAV)具備執行許多任務的能力,但目前的理論并沒有充分考慮將其納入。特別是,如果操作人員與飛行器的比例為一比一時,并沒有考慮提高無人機的自主性。本論文描述了使用先進機器人系統工程實驗室(ARSENL)蜂群系統開發和測試自主FOB防御能力。開發工作利用了基于任務的蜂群可組合性結構(MASC),以任務為中心、自上而下的方式開發復雜的蜂群行為。這種方法使我們能夠開發出一種基于理論的基地防御戰術,在這種戰術中,固定翼和四旋翼無人機的任意組合能夠自主分配并執行所有必要的FOB防御角色:周邊監視、關鍵區域搜索、接觸調查和威脅響應。該戰術在軟件模擬環境中進行了廣泛的測試,并在現場飛行演習中進行了演示。實驗結果將使用本研究過程中制定的有效性措施和性能措施進行討論。

第1章:導言

1.1 背景和動機

2019年,美國海軍陸戰隊司令大衛-H-伯杰將軍發布了他的規劃指南,作為塑造未來四年的部隊的一種方式。他在其中指出:"我們今天做得很好,我們明天將需要做得更好,以保持我們的作戰優勢"[1]。這句話摘自海軍陸戰隊司令大衛-H-伯杰將軍的《2019年司令員規劃指南》(CPG),呼吁采取集中行動,以應對海軍陸戰隊在未來戰爭中預計將面臨的不斷變化的挑戰。在為海軍陸戰隊確定未來四年的優先事項和方向的CPG中的其他指導,呼吁建立一個 "適合偵察、監視和提供致命和非致命效果的強大的無人駕駛系統系列"[1]。伯杰將軍進一步呼吁利用新技術來支持遠征前沿基地作戰(EABO)。EABO將需要靈活的系統,既能進行有效的進攻行動,又能進行獨立和可持續的防御行動。簡而言之,實現EABO將需要最大限度地利用每個系統和海軍陸戰隊。

從本質上講,伯杰將軍正在呼吁改變無人駕駛飛行器的使用方式。通過使用大型的合作自主無人飛行器系統,或稱蜂群,將有助于實現這一目標。無人飛行器蜂群提供了在人力需求和后勤負擔增加最少的情況下成倍提高戰場能力的機會。正如伯杰將軍所提到的 "下一個戰場",海軍陸戰隊將必須利用各種技術,最大限度地利用自主性和每個作戰人員在戰場上的影響。

目前的無人系統使用理論是以很少或沒有自主性的系統為中心。另外,目前的系統依賴于單個飛行器的遠程駕駛;也就是說,每輛飛行器有一個操作員。部隊中缺乏自主系統,這在監視和直接行動的作戰能力方面造成了差距。此外,側重于一對一操作員-飛行器管理的無人系統理論要求操作員的數量與車輛的數量成線性比例。這對于 "下一個戰場 "來說是不夠的。相反,海軍陸戰隊將需要能夠讓操作員擺脫束縛或提高他們同時控制多個飛行器的能力系統[2]。

考慮到這些目標,美國海軍研究生院(NPS)的先進機器人系統工程實驗室(ARSENL)已經開發并演示了一個用于控制大型、自主、多飛行器的系統,該系統利用了分布式計算的優勢,并將駕駛的認知要求降到最低。ARSENL在現場實驗中證明了其系統的功效,在該實驗中,50個自主無人駕駛飛行器(UAV)被成功發射,同時由一個操作員控制,并安全回收[3]。

1.2 研究目標

這項研究的主要目標是證明使用無人機蜂群來支持前沿作戰基地(FOB)的防御。特別是,這需要自主生成、分配和執行有效的、符合理論的基地防御所需的子任務。這部分研究的重點是開發基于狀態的監視、調查和威脅響應任務的描述;實施支持多飛行器任務分配的決策機制;以及任務執行期間的多飛行器控制。

輔助研究目標包括展示基于任務的蜂群可組合性結構(MASC)過程,以自上而下、以任務為中心的方式開發復雜的蜂群行為,探索自主蜂群控制和決策的分布式方法,以及實施一般的蜂群算法,并證明了對廣泛的潛在蜂群戰術有用。總的來說,這些目標是主要目標的一部分,是實現主要目標的手段。

1.3 方法論

基地防御戰術的制定始于對現有基地防御理論的審查。這一審查是確定該行為所要完成的基本任務和子任務的基礎。然后,我們審查了目前海軍陸戰隊使用無人機的理論,以確定這些系統在基地防御任務中的使用情況。

在確定了任務要求的特征后,我們為基地防御的整體任務制定了一個高層次的狀態圖。子任務級別的狀態圖等同于MASC層次結構中的角色。

ARSENL代碼庫中現有的算法和游戲以及在研究過程中開發的新算法和游戲被用來在ARSENL系統中實現子任務級的狀態圖。最后,根據高層次的狀態圖將這些游戲組合起來,完成基地防御戰術的實施。

在游戲和戰術開發之后,設計了基于理論的有效性措施(MOE)和性能措施(MOPs)。通過在循環軟件(SITL)模擬環境中的廣泛實驗,這些措施被用來評估基地防御戰術。在加利福尼亞州羅伯茨營進行的實戰飛行實驗中,也展示了該戰術和游戲。

1.4 結果

最終,本研究成功地實現了其主要目標,并展示了一種包含周邊監視、關鍵區域搜索、接觸調查和威脅響應的基地防御戰術。此外,開發工作在很大程度上依賴于MASC層次結構,以此來制定任務要求,并將這些要求分解成可在ARSENL蜂群系統上實施的可管理任務。這一戰術在實戰飛行和模擬環境中進行了測試,并使用以任務為中心的MOP和MOE進行了評估。最后的結果是令人滿意的,在本研究過程中開發的戰術被評估為有效的概念證明。

1.5 論文組織

本論文共分六章。第1章提供了這項研究的動機,描述了這個概念驗證所要彌補的能力差距,并提供了ARSENL的簡短背景和所追求的研究目標。

第2章討論了海軍陸戰隊和聯合出版物中描述的當前海軍陸戰隊后方作戰的理論。還概述了目前海軍陸戰隊內無人機的使用情況,并描述了目前各種系統所能達到的自主性水平。

第3章概述了以前自主系統基于行為的架構工作,ARSENL多車輛無人駕駛航空系統(UAS)和MASC層次結構。

第4章對基地防御戰術的整體設計以及高層戰術所依賴的游戲進行了基于狀態的描述。本章還詳細介紹了用于創建、測試和評估這一概念驗證的方法。在此過程中,重點是對每一戰術和戰術所針對的MOP和MOE進行評估。

第5章詳細介紹了所進行的實戰飛行和模擬實驗,并討論了與相關MOPs和MOEs有關的測試結果。

最后,第6章介紹了這個概念驗證的結論。本章還提供了與基地防御戰術本身以及更廣泛的自主蜂群能力和控制有關的未來工作建議。

付費5元查看完整內容

地面軍事機器人(UGV)已經發展了二十多年,該領域的當代技術進步正在促進其應用慢慢接近成熟階段。我們可以預期,未來軍事行動的自動化程度將是巨大的,軍事后勤也不例外。軍事人員被機器人系統取代的趨勢在常規和危險任務中很明顯,重點是機器人系統的任務性能,它可以從非常低的傳感器和處理延遲中受益。這方面是人的能力所不能比擬的,它為未來軍事戰場的設想創造了關鍵的基礎。

1.0 引言

未來軍事機器人的關鍵組成部分之一是作戰決策能力,在實際或估計的共同作戰圖景中,實時地、用可用的資產來適應每一個行動方案。本文的重點是作戰物流適應性規劃,在復雜的作戰環境中,應用UGV群來建立一個供應輸送鏈。該任務在數學上被建模為運籌學(多標準)和情報分析問題,其中應用了離散建模和模擬技術。

在自主系統應用的軍事領域,我們對這個問題的理解還處于起步階段。很明顯,這個領域的復雜性非常高,而且分散在幾個層面。如果要對行動畫面的更新做出快速反應,就有一個強烈的假設,即高水平的數據分析過程(基于與C4ISTAR系統相連的數據集)必須是自動化的。

付費5元查看完整內容
北京阿比特科技有限公司