美國國防部(DOD)使用漏洞評估工具來確定其許多網絡系統的必要補丁,以減輕網絡空間的威脅和利用。如果一個組織錯過了一個補丁,或者一個補丁不能及時應用,例如,為了最大限度地減少網絡停機時間,那么測量和識別這種未緩解的漏洞的影響就會被卸載到紅色團隊或滲透測試服務。這些服務大多集中在最初的利用上,沒有實現利用后行動的更大安全影響,而且是一種稀缺資源,無法應用于國防部的所有系統。這種開發后服務的差距導致了對進攻性網絡空間行動(OCO)的易感性增加。本論文在最初由海軍研究生院開發的網絡自動化紅色小組工具(CARTT)的自動化初始開發模型的基礎上,為OCO開發和實施自動化后開發。實施后開發自動化減少了紅色小組和滲透測試人員的工作量,提供了對被利用的漏洞的影響的必要洞察力。彌補這些弱點將使國防部網絡空間系統的可用性、保密性和完整性得到提高。
1.第二章:背景
第二章詳細介紹了CO中后開發的重要性,并通過分類法解釋了后開發的影響。它還研究了現有的后開發框架和工具,它們試圖將后開發自動化。本章還強調了其他工具和框架的不足之處,并討論了本研究如何在以前的工作基礎上進行改進。
2.第三章:設計
第三章介紹了CARTT是如何擴展到包括自動后開發的。這項研究利用了CARTT客戶-服務器架構的集中化和模塊化來擴展后開發行動。本章還詳細討論了發現、持續、特權升級和橫向移動等后剝削行動。
3.第四章:實施
第四章介紹了CARTT中實現的代碼、腳本和工作流程,以實現自動化的后剝削。它詳細描述了Metasploit框架(MSF)資源腳本的重要性,以及CARTT服務器、CARTT客戶端界面和CARTT操作員角色之間的通信。
4.第五章。結論和未來工作
第五章對所進行的研究進行了總結,并討論了研究的結論。它還提供了未來工作的建議,以進一步擴大CARTT的可用性和能力。
空軍行動的成功指揮和控制(C2)始于指揮官。聯合部隊是由分配給聯合部隊指揮官(JFC)(如空軍部隊指揮官[COMAFFOR])的服務部門指揮官和聯合部隊指揮官指定的職能部門指揮官(如聯合部隊空中部門指揮官[JFACC])組成的。
當兩個或更多軍事部門的部隊必須在同一任務區或實際領域內行動時,職能部門指揮官由JFC指定。JFC指定一個JFACC,為聯合空中行動建立統一的指揮和統一的努力。擁有優勢兵力并有能力指揮聯合空軍的軍種指揮官應被指定為JFACC。JFACC通常被指定為地區防空指揮官(AADC)和空域控制當局(ACA),因為這三個角色(JFACC、AADC和ACA)是彼此不可或缺的。
COMAFFOR在履行該局的行政控制(ADCON)職能時,有來自其角色的責任和權力。ADCON是履行軍部第102條規定的行政管理、支持以及組織、訓練和裝備空軍部隊的責任所必需的權力,通常是戰區的高級空軍人員。
在幾乎所有情況下,JFC都會指定COMCF為JFACC。根據聯合理論,雙重指定的空軍司令員將作為指揮官對空軍部隊行使作戰控制(OPCON)和ADCON,并作為JFACC對空軍部隊和其他軍種的部隊進行戰術控制(TACON)。
由于指揮官和聯合空軍司令部幾乎總是同一個人,本附件在提到可由其中一個或兩個人執行的職責或職能時,使用 "空中部隊指揮官"一詞,只有在討論其中一個人特有的職能時,才明確劃分指揮官或聯合空軍司令部(或其各自的參謀人員)。
在競爭性環境中,針對同行對手的空中行動是C2密集型的,由聯合空中作戰中心協調眾多同時進行的任務以支持JFC。利用空中、太空、網絡空間和電磁戰資產,任務指揮官(TACON到空中部分指揮官)計劃不同類型的 "套餐",以擊敗綜合防空系統,攔截C2和野戰部隊,并獲得空中控制。在這些行動中,前線空中力量可以根據常設的 "綜合任務指令"(ITO)進行空中行動。在這種相當于任務指揮的空中行動中,前線空中遠征聯隊或特遣部隊接受基于條件的授權,并在ITO上發布常備命令和指揮官的意圖。這使下級指揮官能夠靈活地提供關鍵的防御性反空作戰空中巡邏(CAPs);空中攔截殺傷箱;壓制敵方防空CAPs;近距離空中支援;或支持地面部隊的情報、監視和偵察。這種分散的執行模式使地方指揮官能夠保持對敵人的壓力,即使是在與同級或近級對手的爭奪環境中,與上級總部的通信中斷。
指揮官應認識到他們被賦予的權力,以及他們在該權力下與上級、下級和橫向部隊指揮官的關系。指揮關系應該被明確界定,以避免混亂。空中力量的指揮需要對所使用的部隊的能力和相互依賴性有復雜的了解,并理解JFC的意圖。
現代軍事行動必須在一個復雜的全球安全環境中,在整個競爭的連續過程中執行。這需要有正確的部隊組合,有明確的指揮關系和適當的指揮和控制機制。
指揮和組織是密不可分的。部隊應圍繞統一指揮的原則進行組織。明確的權力線,在適當的梯隊中明確的指揮官,行使適當的控制權,對于實現統一的努力、減少混亂和保持優先權是至關重要的。指揮員應被明確確定,并被賦予適當的行動和行政指揮權,應明確規定適當的聯合指揮安排,以整合跨軍種的效果。空軍的遠征組織和首選的指揮安排是為了解決統一指揮的問題。
當空軍部隊作為任何級別的聯合部隊(即作戰指揮部、下級統一指揮部或聯合特遣部隊)的一部分被分配或附屬時,他們就成為該聯合部隊的空軍軍種組成部分。所有的空軍軍種都有三個共同特點。空軍部隊適合于聯合部隊的需要和要執行的任務,一個指定的空軍部門指揮官,以及指揮空軍部隊的適當機制和權力。
附屬空軍遠征部隊的組織方式將取決于是否有一個現有的空軍C2結構。交戰指揮部(如美國印太司令部)和下屬的統一指揮部(如美國駐韓部隊)都有空軍軍種的組成部分,有既定的空軍C2結構。根據作戰司令部的情況,空軍服務部門可以是一個主要指揮部(如太平洋空軍)或一個編號的空軍部隊(如第一空軍[北方空軍])的組成部分。
隸屬于作戰指揮官的額外空軍遠征部隊通常應在現有的空軍軍種組成部分內組織。例如,從肖空軍基地(AFB)部署到日本三澤空軍基地作戰的F16中隊,通常應被指定為遠征戰斗機中隊(EFS),(例如,55 EFS),并應在三澤的現有第35戰斗機聯隊下組織。然而,如果作戰指揮官選擇建立一個聯合特遣部隊(JTF),包括附屬的空軍部隊,那么這個聯合特遣部隊就沒有到位的空軍指揮結構。在這種情況下,一個臨時的空中遠征特遣部隊(AETF)
將被組建為聯合特遣部隊的空軍服務部分。AETF的指揮官要么是直接對聯合特遣部隊指揮官負責的指揮官,要么是在戰區空軍部門指揮官的授權下以支持聯合特遣部隊的角色成立。
一些能力可能不屬于該部門,可能通過支持/輔助指揮關系提供,或通過后方或分布式C2安排提供。
人工智能(AI)是一項具有廣泛用途的新興技術。《美國防戰略》強調了人工智能對軍事行動的重要性,以使美國保持對其近似競爭對手的優勢。為了充分實現這一優勢,不僅要在戰術層面,而且要在戰爭的作戰層面整合人工智能。人工智能可以最有效地融入作戰計劃的復雜任務,方法是將其細分為其組成部分的作戰功能,這些功能可以由狹義的人工智能來處理。這種組織方式將問題減少到可以由人工智能解析的規模,并保持人類對機器支持的決策的監督。
人工智能是一套新興的、變革性的工具,有可能幫助軍事決策者。美國國家戰略將人工智能(AI)納入戰爭。《2020年國防授權法》11次提到了人工智能。國防戰略強調了利用人工智能和機器學習方面的商業突破的重要性。人工智能的軍事用途是保留國家安全的一個引人注目的方式。創造工具來支持戰術行動,如摧毀敵軍和從一個點導航到另一個點,具有顯著和可見的效果,使他們在資源有限的環境中在政治上可以接受。它們在訓練和測試方面的可重復性,使它們在采購過程中成為人工智能系統的快速贏家。然而,戰術行動的范圍和時間是有限的。僅在戰術層面上整合人工智能,忽視了在作戰層面上發生的決定性影響。
作戰,也就是實踐者將戰術行動轉化為戰略效果的層面,取決于領導者做出正確決策的能力。聯合部隊海事部分指揮官(JFMCC)的艱巨任務是制定計劃,將戰區戰略和聯合部隊指揮官(JFC)的目標結合起來,通過決定性的海軍交戰來塑造環境。在人工智能的快速認知能力的幫助下,JFMCC將能夠制定并更徹底地分析行動方案(COA)。這些品質對于未來的沖突是必要的。
人工智能必須在戰爭的各個層面進行整體集成,以充分實現其優勢。除了局部的、短期的戰斗,它還需要應用于主要的行動和戰役,涉及整個戰區的數月或數年。在戰爭的戰役(作戰)層面上的實施,放大了為實現戰略目標而進行的有序交戰和同步行動之間的協同作用。除了技術發展之外,行動上的整合將刺激政策和理論的建立,以使作戰人員有意愿使用人工智能。隨著使用人工智能的經驗的增加,其采用率也會增加。為協助海軍作戰計劃而實施的特定人工智能技術可能與那些用于計算射擊方案或在被拒絕的淺灘水域規劃路線的技術不同。然而,在作戰層面的接受度將推動戰術上的使用。
在JFMCC層面,人工智能系統網絡將為決策者提供決定性的優勢,將專注于作戰功能的獨立的人工狹義智能(ANI)單位統一起來將實現最顯著的好處。首先,人工智能解決方案比它們的通用人工智能(AGI)同行更適合于軍事問題的解決。其次,戰爭的性質促使有必要在作戰層面上整合人工智能。最后,雖然有許多方法可以整合,但沿著功能線這樣做會帶來最顯著的好處。不僅在技術意義上吸收人工智能,而且描述其在政策、理論和培訓中的使用,將使海軍能夠充分使用它,并在與我們的戰略競爭對手的競爭中獲得優勢。
目前人工智能在海上行動中的最佳應用是將復雜的海上行動問題分解成子問題,由人工智能來解決,并組合成COA建議。解決小問題的人工智能需要更少的訓練數據,有更直接的邏輯,并且可以連鎖起來解決更重要的問題。麻省理工學院人工智能實驗室前主任羅德尼-布魯克斯(Rodney Brooks)認為,創建動態環境的符號表示是困難的或不可能的。然而,特定任務的智能體可以利用足夠的傳感器數據智能地行動,更重要的是,可以連貫地互動。通過將簡單的活動連鎖起來,失敗的風險很低,更復雜的問題就可以得到解決。多個簡單的行動可以在低認知層平行運行,并將其輸出結合起來,為更高層次的復雜活動提供支持。這種結構的優點是允許軍事工程師開發和訓練人工智能,以首先解決可操作的問題。對人工智能開發者來說更具挑戰性的功能可以保留只由人類決定的方法,直到他們產生解決這些問題的專業知識。與其等待一個完整的系統,部分系統將提供一個臨時的邊際優勢。
鑒于人工智能可以通過將問題分解成更小的決策來最好地解決問題,問題仍然是如何劃分這些問題。重述作戰任務的一個模式是將它們分成作戰功能:指揮和控制(C2)、通信、情報、火力、運動和機動、保護和維持。這些作戰功能為開展有效行動提供了基礎。它們為一個行動提供了采用手段實現其目的的方法。因此,與決定如何實施這些功能以實現目標的決策者一起使用人工智能是很自然的。
如同應用于海上作戰戰爭,最低層的決策支持系統將由感知環境的活動組成:探測艦艇、飛機和潛艇;燃料水平;天氣;以及其他客觀的戰斗空間數據。通過將外部輸入限制在特定的、低層次的任務上,該系統將最大限度地減少對抗性例子或旨在消極操縱自動系統的數據的風險。中間層將把下層的輸出與作戰目標和因素結合起來,如時間、空間和力量的限制,以提供解決問題的方法和作戰功能。由于上層的對抗性數據注入的威脅較小,這些系統可以使用深度學習。深度學習是機器學習的一個子集,它不像其他形式那樣需要高度格式化的數據,但計算成本會更高,而且容易受到欺騙。深度學習將增加這一層的人類互動,并暴露出更復雜的關系。最高層將把C2流程應用于其他六個業務功能,以產生業務建議。中間層的每個功能人工智能將向其他功能人工智能和最高C2層提供建議。中間層的人工智能對復雜的數據和相鄰單位及C2功能的建議進行理解。
如果將中間層人工智能納入規劃和指導、收集、處理、分析和傳播的情報周期,將促進收集資產的更好分配。判斷對有限的收集資產的請求以滿足行動和戰術信息需求是JFMCC關注的一個問題。在收集計劃期間,人工智能可以使用已知的對手軌跡、地點、個人和組織來定義和優先考慮指定的利益區域(NAI)。在執行過程中,人工智能可以根據優先級驅動收集路線,就像企業用它來規劃送貨路線以減少勞動力、燃料和維護成本一樣。采集計劃者可以通過增加對手監視點的位置和范圍來減少反偵查的風險。在C2層面,指揮官和情報官員可以利用收集成果來證明更多的JFMCC收集資產和COA的修改。這種方法適用于其他功能。
人工智能可以在部隊部署不斷變化和對手存在不確定的環境中改善維持能力。相互沖突的要求使如何使用有限的后勤資產來滿足作戰人員的需求的決策變得復雜。后勤單位較低的生存能力促使人們決定是將它們帶入被對手防御系統拒絕的區域,還是將戰斗飛船引離目標。人工智能可以利用軍事和民用運輸的可用性、預先部署的庫存和供應商的響應能力來制定船舶和飛機需求的解決方案。企業利用人工智能準確預測需求,并分辨出影響運輸和倉儲的采購模式。維持型人工智能可以使用這個過程的一個變種,來計劃在高級后勤支持站點(ALSS)或前方后勤站點(FLS)的材料堆放。它可以決定如何以及何時使用穿梭船和站立船來運送到攻擊組。機器學習將使用燃料、食品和武器庫存、威脅環、戰備水平和維修時間來訓練維持人工智能。維持型人工智能可以提供比人類單獨完成的更有效的量化解決方案,并將其反饋給其他功能區和C2高層。
C2層將對來自下層的決定進行仲裁,并提供一個統一的建議。就像一個軍事組織的指揮官一樣,它將把其副手AI的建議合并起來。人工智能過程的早期階段使用傳感器數據和其他客觀信息來確定指揮官的方向;決定行動方案需要建立對戰斗空間的理解,這是一種更高層次的欣賞。戰斗空間的可變性和模糊性將使這一層的人工智能元素最難開發。最終,該系統將作為一個可信的智能體,壓縮指揮官負責的信息量。壓縮的信息減輕了時間有限的決策者工作時的疑慮負擔,使她能夠向下屬單位發出更及時的命令。
圖1說明了基于這些原則的系統的擬議架構。以對手預測為例,許多單一用途的ANI將在最低層結合原始傳感器和單位報告數據。它將評估敵方單位的最可能位置。公司分析評論、社交媒體和論壇發帖的情緒,以確定產品的滿意度。同樣地,這個系統將通過公開的言論和秘密的報告來確定對手的意圖。它將評估當前和歷史天氣模式,以評估氣候對敵人行動的影響。這三個輸入和其他信息將被功能情報ANI用來形成對敵方COA的評估。同樣,火力節點將使用敵人的組成、JFC的優先級和預測的彈藥可用性來產生目標指導。中間層節點將橫向傳遞他們的評估,以完善鄰近的建議,如部隊保護水平。獨立的功能建議也將直接反饋給C2層,以創建整體行動方案。
圖1. 海上人工智能系統的擬議架構
首先,利用聯合人工智能資源的優勢,針對海軍的具體問題修改標準組件。擅長開發軍事人工智能系統的工程師的稀缺性將限制新系統的開發。美國防部的人工智能戰略具體規定了建立通用的工具、框架和標準,以便進行分散的開發和實驗。使用這些現成的組件,為人工智能決策網的所有子系統創建低級別的系統和標準接口。將海軍的資源集中于采購和實施用于海事具體決策的中層和高層系統。避免技術上令人著迷但無效的解決方案,并通過將職能領域的專家與設計團隊相結合來保持解決海事問題的目標。
第二,創建并維護可通過機器學習攝入的作戰數據數據庫,以訓練海軍人工智能。實施能夠在海上作戰中心(MOC)讀取和集中匯總基本作戰數據報告的技術和工藝,如燃料狀態、導彈裝載量。開發記錄和定性評分作戰決策結果的方法,如對手態勢的變化、傷亡修復率和公眾對行動的反應。將輸入與作戰決策和結果聯系起來的數據庫將加速開發符合現實世界標準的系統。
第三,將人工智能的使用納入政策和條令。條令應該編纂人工智能可以被整合到戰爭戰役層面決策中的領域。明確地說,關于情報、行動、火力、后勤、規劃和通信的海軍作戰出版物應說明人工智能在決策過程中產生優勢的地方和方式。描述海上聯合行動的聯合出版物應明確說明如何將JFC的要求解析為JFMCC的AI系統。如果國防部和海軍的政策對指揮官因整合人工智能的決策建議而產生的責任量進行了定性,那么他們在使用人工智能時就可以采取經過計算的風險。讓指揮官和作戰人員掌握使用人工智能的戰術、技術和程序將加速其在艦隊中的應用。
這個頂點項目評估了使用區塊鏈技術來解決一些挑戰,即越來越多的不同的傳感器數據和一個信息豐富的環境,可以迅速壓倒有效的決策過程。該團隊探討了區塊鏈如何用于各種國防應用,以驗證用戶,驗證輸入人工智能模型的傳感器數據,限制對數據的訪問,并在數據生命周期內提供審計跟蹤。該團隊為實施區塊鏈的戰術數據、人工智能和機器學習應用開發了一個概念設計;確定了在戰術領域實施區塊鏈所涉及的挑戰和限制;描述了區塊鏈對這些不同應用的好處;并評估了這個項目的發現,以提出未來對更廣泛的區塊鏈應用的研究。該團隊通過開發三個用例來實現這一目標。一個用例展示了區塊鏈在 "輕數據"信息環境中的戰術邊緣使用。第二個用例探索了區塊鏈在電子健康記錄中對醫療信息的保護。第三個用例研究了區塊鏈在使用多個傳感器收集化學武器防御數據方面的應用,以支持使用人工智能和機器學習的測量和簽名智能分析。
未來針對同級或近級對手的大規模作戰行動,除了更傳統的空中、陸地、海上和空間等物理領域外,還將涉及網絡空間領域。數據和信息在這個連續體中的每一個點上所發揮的作用都不能被低估。此外,同時在多個領域進行有效溝通和協調的能力--擁有必要的指揮和控制--取決于可獲得的和可靠的信息。美國陸軍正在起草一份新的陸軍學說出版物3-13,標題為 "信息","將信息的軍事應用與所有作戰功能、部門和戰爭形式聯系起來"(美國陸軍聯合武器中心2022,2)。陸軍如何在戰場上保持優勢的這些轉變,強調了數據和信息作為戰爭工具的關鍵作用。
這個頂點項目的主要目標是探索區塊鏈在與國防部相關的各種情況下的使用。首先,該團隊研究了目前關于區塊鏈和相鄰主題的工作,如物聯網(IoT)、大數據、人工智能(AI)和機器學習(ML)。研究揭示了一個名為 "戰場物聯網"(IoBT)的新興概念。Tosh等人(2018)寫道,IoBT可以滿足 "對分散框架的強烈需求......以服務于戰場環境的目的"(2)。Kott、Ananthram和West(2016)強調了與IoBT可用性、保密性和完整性相關的幾個網絡安全挑戰,而Tosh等人(2018)討論了區塊鏈技術如何有利于IoBT架構。
除了網絡上的無數設備(如IoBT),數據存儲是管理數據的另一個關鍵方面,無論是現在還是未來以去中心化信息為標志的環境。區塊鏈,當與數據存儲機制的使用相結合時,可以幫助IoBT設備及其數據的可用性、保密性和完整性。該團隊研究了使用戰術數據結構作為 "鏈外 "數據存儲機制的潛力。數據結構使數據的發現、治理和消費自動化,使用戶能夠在他們需要的時候和地點訪問數據,而不需要對數據的存放地點有任何了解。數據結構是一種機制,可以將眾多的數據管理源連接在一起,以促進數據的可訪問性--無論其位于何處。這些數據管理源可以是傳統的數據庫、數據湖(IBM 2018),或數據倉庫(IBM 2021)。因此,戰術數據結構可能是一個可行的解決方案,以促進跨作戰人員功能和任務指揮系統的數據訪問(Patel等人,2021)。
這項研究的洞察力與現有的概念重疊,如數據生命周期和國防部的共同決策框架:觀察-定向-決定-行動(OODA)循環。數據生命周期一般有四個階段:數據創建(或生成)、數據閱讀(或消費)、數據更新(或修改)和數據刪除(或歸檔)。這些階段幾乎適用于任何類型系統中的每一種數據。了解在生命周期的每個階段與數據的互動如何影響數據的固有可靠性是很重要的。追蹤數據在這個數據生命周期中的運動提供了數據來源,這使得潛在的數據消費者能夠確定數據的可靠性和有效性。隨著決策者在實施OODA循環框架中使用數據(以及對該數據的下游分析,例如在人工智能的協助下),數據出處的關鍵性變得很明顯。區塊鏈的使用可以提供數據可靠性的內在保證,這反過來又減少了OODA循環的時間,改善了決策。
接下來,該團隊開發了一些通用的系統工程架構,以說明區塊鏈如何解決數據出處并確保這些數據的信任。這個過程確定了從各種用戶(例如,如數據所有者和消費者)到需要的軟件系統,以及數據結構,和Hyperledger Fabric(HLF)網絡(即區塊鏈組件)的各種行為者。此外,可能需要幾個應用編程接口(API):一個訪問API,一個數據出處API,和一個企業API。利用區塊鏈提供可靠的數據出處的總體重點是提供一種新的方法,運營商可以跟蹤設備和數據的編輯者。
然后通過開發三個用例來擴展這個架構,每個用例都有其特定的架構,這進一步說明了區塊鏈的實施可以如何運作,并評估其效用和局限性。這些用例使團隊能夠探索區塊鏈在驗證用戶、驗證輸入人工智能模型的傳感器數據、限制對數據的訪問以及提供整個數據生命周期的審計跟蹤方面的潛力。
在第一個用例中,我們探討了區塊鏈如何在戰術邊緣促進安全和可信的數據傳輸,以利用遠程火力。第二個用例在更多的操作背景下提供了一個例子,區塊鏈提供了一個審計跟蹤,以實現一個強大的電子健康記錄(EHR),可以在醫療服務的連續過程中的任何點進行訪問。最后,該團隊的第三個用例是管理來自現場傳感器的數據流,并進入人工智能模型,以支持特定類型的情報(例如,用于化學防御工作的測量和簽名情報(MASINT))。這個用例既有業務背景,也有戰略背景,并展示了區塊鏈如何確保輸入人工智能模型的數據是有效和可靠的。
雖然這些用例利用了一個簡化的架構來促進區塊鏈的名義應用,但它還是展示了這項技術在解決或至少緩解當前和未來管理和保護大量數據的挑戰方面的真正潛力。該團隊能夠探索在區塊鏈上和區塊鏈外存儲數據的選項。這些選擇表明,區塊鏈技術如何能夠適應具體情況--不僅是在戰略、作戰和戰術背景下,而且是在各軍種之間,以滿足其獨特的任務需求。未來的聯合部隊在生成和消費數據方面需要精明,這些數據對于確保戰場上的優勢是必不可少的,但在武裝沖突之間的和平時期也是至關重要的,但競爭激烈。
在談論網絡系統時,研究人員和決策者都廣泛使用 "可防御性(defensibility)"一詞,但沒有一個普遍的定義,也沒有觀察和衡量它的方法。本研究探討了在防御性網絡戰背景下如何定義可防御性,哪些關鍵因素構成了可防御性,以及如何衡量這些因素。為此,首先研究了學說和研究,為可防御性建立了一個意義框架。其次,該研究提出了防御者在防御性網絡戰中需要具備的七種基本能力,以及一套影響這些能力的系統屬性。最后,提出了一套對這些屬性的測量方法,以使可防御性得到觀察和測量。這項研究的結果是對防御性網絡戰背景下的防御性的定義,構成其防御性的系統屬性列表,以及對這些屬性的一套相關測量。利用這些,可以分析一個系統的可防御性,以表明防御者在系統中進行操作時可能有哪些限制,以及系統需要改進的地方。這項工作是將可防御性建設成一個有用的工具的第一步,它強調了在系統中進行動態防御行動的防御者的需求,而不是實施靜態措施以提高網絡安全的行為者的需求。
根據美國陸軍理論,成功的防御行動的特點是 "破壞、靈活、機動、大規模和集中、深度作戰、準備和安全"(Department of the Army, 2019a, p. 4-1)。這些原則也可以適用于防御性網絡行動,但其在實踐中的應用還沒有得到廣泛研究。在討論信息技術(IT)系統和網絡能力時,可防御系統和可防御網絡這兩個術語經常被高級管理層用作戰略目標或要求(Cyber Operations,2015;Gorminsky,2014;Shachtman,2012;U.S. Strategic Command,2015;King & Gallagher,2020)。一個系統的可防御性通常包括的部分是與網絡安全領域相關的靜態措施,這個領域獲得了大量的研究。然而,第二部分則不太發達,是由與戰斗空間的準備有關的因素組成的,以實現或支持一個積極的網絡防御者。
本文作者作為一名網絡防御者已經度過了7年,在這期間,作者參與了與技術人員、系統利益相關者和高級管理層關于網絡防御性要求的一系列討論,在這些討論中,理論和研究都明顯缺乏對該術語的明確操作定義。只關注根據網絡安全的原則使系統安全,可能不利于成功利用網絡防御者的能力。流量加密是一個例子,它可以增加系統的安全性,同時也使防御者更難。在這個例子中,如果不采取措施讓防御者以可控的方式破解加密,他們檢查和修改網絡流量的能力就會受到限制,降低了他們的操作效率,使系統更難防御。
建立一個普遍的網絡可防御性定義,并將其操作化,以確定在藍色網絡空間開展行動時,哪些系統特征和相關變量對主動防御者有價值,這對于給防御者和系統利益相關者一個更好的機會來共同完成可防御的系統,從而提高防御行動的有效性并降低風險是非常重要的。例如,當被賦予防御系統的任務時,防御者可以使用這個定義來評估該系統在那里可能采用的能力,并將此傳達給利益相關者和決策者。如果系統的任何屬性阻礙了防御者的能力,這些都可以被指出并傳達。
問題是,在防御性網絡行動的背景下,網絡可防御性一詞定義不清,特別是在描述可防御的網絡或系統的特征時。這個詞經常在戰略層面上被用來表示意圖,但網絡防御者對指定系統的要求是什么的知識主要是默示的。此外,網絡防御者本身也缺乏一個共同和既定的詞匯來溝通和衡量這些要求。
這是一個問題,因為如果沒有明確的定義,可防御性就成了網絡安全的同義詞,這最終會阻礙積極網絡防御的全部潛力的實現。如果沒有一個公認的通用詞匯來表達進行防御行動所需的能力,就有可能在防御者在理想條件下的能力與特定指定系統中可能實現的能力之間出現差距。這可能會導致系統無法得到充分的防御,領導層和利益相關者對網絡和系統的狀況產生誤解,以及網絡防御者的利用不足和挫敗感。
本研究的目的是開發一個框架,用于分析和測量網絡領域的系統防御性。這包括定義和操作關鍵因素,因為它們適用于為主動防御者準備戰斗空間。
這項研究的主要好處是,它將為網絡防御性提供一個共同的定義,使領導層、網絡防御者和系統利益相關者之間能夠更好地溝通。隨著關鍵能力的操作化,它也提供了一個可觀察變量的框架,在評估網絡或溝通優先級時開始衡量防御性。
這項研究的其他好處包括:促進對網絡防御者的能力和他們在特定的指定系統中實際能夠實現的能力之間存在的差距的理解;創建一個標準的詞匯,以改善網絡防御者和IT系統利益相關者之間的溝通;給網絡防御者提供一個模型,以便在評估系統和向決策者報告防御狀態時使用;為決策者提供防御性的不同方面和因素的明確操作化定義,使其能夠更清晰地與系統利益相關者溝通意圖和優先事項。
如何在防御性網絡行動的背景下定義網絡防御性?
在一個分析框架內,哪些關鍵因素和相關變量構成了防御性網絡行動背景下的系統防御性?
網絡空間:"信息環境中的一個全球領域,由信息技術基礎設施和駐地數據的相互依賴的網絡組成,包括互聯網、電信網絡、計算機系統以及嵌入式處理器和控制器"(參謀長聯席會議,2021年,第55頁)。
藍色網絡空間:"網絡空間中由美國、其任務伙伴保護的區域,以及國防部可能被命令保護的其他區域"(Joint Chiefs of Staff, 2018a, p. I-4)。請注意,雖然本研究是基于美國的理論和定義,但目的是為了讓更多人能夠使用該定義。在本研究中,藍色網絡空間將被用來表示要防御的整個空間,主要是在討論一般概念和廣泛能力時。指定系統將被用來討論藍色網絡空間中的單個系統,在特定情況下要進行防御。
美國國防部(DOD)參謀長聯席會議(2018a)在聯合出版物3-12:網絡空間行動(JP 3-12)中定義了不同類型的網絡任務和活動,這將被用來為本研究提供行動背景。防御性網絡空間行動(DCO),分為內部防御措施(DCO-IDM)和響應行動(DCO-RA)(參謀長聯席會議,2018a)。本論文的重點是DCO-IDM,它被定義為 "授權的防御行動發生在被防御的網絡或網絡空間的一部分 "的任務(Joint Chiefs of Staff, 2018a, p. II-4)。在JP 3-12中,參謀長聯席會議(2018a)也斷言了防御和安全之間的區別。
由于全球定義需要廣泛傳播才能產生效果,本研究將保持在非保密級別。這限制了在操作網絡防御性時可以解決的深度,因為它必須關注廣泛的能力而不是具體的技術要求。這樣做的原因是,網絡防御者的具體技術要求將勾勒出他們的能力。
這項研究的重點是網絡防御者和主動防御,而忽略了僅以靜態網絡保護為目的的方面。兩者都是全面防御所需要的,主動防御措施往往建立在健全的靜態保護之上(Fanelli,2016)。
為了有效面對大國時代的同行競爭者,美國海軍將需要一個現代化的風險評估模型,以有效完成海上目標,支持聯合部隊在高端戰斗中實現作戰和戰略目標。將目前的風險評估過程中識別危險、確定頻率和影響的工作現代化,使之成為一個更廣泛的可接受的風險水平(ALR)結構,就像美國空軍那樣,將使指揮官能夠更好地傳達風險接受水平和艦隊使用的分布式海上行動(DMO)模式中的意圖。此外,戰術級指揮官在DMO概念下執行任務指揮時,將更好地理解戰術級風險接受的界限或限度。
在海軍作戰出版物(NWP)5-01中,海軍規劃過程(NPP)包含了廣泛的指導,幫助規劃者和工作人員通過詳細的風險矩陣來識別危險、衡量頻率以及這些風險的潛在影響。然而,它并沒有有效地說明指揮官應該如何處理這種風險,也沒有指導規劃者或指揮官應該接受多少風險來實現當前的目標而不影響后續行動。國家行動計劃也很難界定,一旦計劃進入執行階段,指揮官應如何向下屬指揮部傳達風險接受水平。
根據NWP5-01,風險分為兩個不同的類別:對任務的風險和對部隊的風險。在大多數情況下,對任務的風險主要集中在戰爭的操作層面,對部隊的風險主要集中在戰術層面。在海軍的風險評估模式中,謹慎的做法是由作戰參謀部和下級單位為指揮官確定對任務和部隊的風險,這樣指揮官就可以根據直覺、過去的經驗和個人判斷來采取風險緩解措施。此外,目前的風險評估模式希望所有的風險(至少是參謀部知道的那些)都能在作戰和戰術層面上被識別和緩解或管理,并在整個行動過程中持續更新。然而,這個過程可能很耗時,而且不能提供足夠的靈活性,因為風險會根據敵人對友軍的反應不斷變化。使得戰術層面的指揮官在完成目標的過程中能夠利用風險機會所需要的非常靈活。它還可能使參謀和作戰級別的指揮官,如聯合部隊海上部分指揮官(JFMCC),被大量的戰術細節所困擾,使決策周期更加復雜或停滯。
由于自第二次世界大戰(二戰)以來沒有面對過同行的競爭者,再加上海軍目前的風險評估模式缺乏靈活性,評估可能導致各指揮官在什么是和什么不是重大風險之間出現不連續。使這個問題更加復雜的是向DMO的艦隊雇傭概念的過渡。與DMO之前的戰術使用方法相比,艦隊分布在通過復雜的網絡連接的大片區域,這將需要轉變對風險的理解及其對部隊的影響。一個恒定的敵方作戰順序(EOB)將根據艦隊的組成和分布對部隊和任務構成不同的風險因素。例如,當航母受到很好的保護并與驅逐艦和巡洋艦接近時,按照歷史上的做法,評估和管理對航母的風險要容易得多。然而,在DMO內部,情況可能并不總是如此,因為可能有需要或有時間,像航母這樣的高價值資產將需要獨立運作或不時地與護衛隊大大分開。
這樣做的目的不是要削弱指揮官的判斷力或經驗,也不是要否定在戰術層面識別危險的必要性,而是要強調需要更好地量化和溝通整個部隊的風險,減少參謀部和指揮官在戰爭操作層面的風險估計和評估的工作量。同時也賦予戰術層面的指揮官權力,使其能夠在分布式海洋領域的機會出現時做出明智的風險決策。空軍的ALR模式如果能充分適應海上環境,就可以做到這一點。
現代戰術戰爭需要迅速而有效的決策和行動,以便在經常是高度動態和復雜的戰區保持競爭優勢。需要考慮的因素的數量因不確定性、事件的快速發展和人為錯誤的風險而放大。自動化、人工智能和博弈論方法的潛在應用可以為作戰人員提供認知支持。這項研究以自動兵棋推演輔助決策的形式探索了這些應用。該團隊為這個未來的系統開發了一個概念設計,并將其稱為兵棋推演實時人工智能輔助決策(WRAID)能力。
頂點項目的目標是探索自動化、人工智能和博弈論的應用,作為支持未來WRAID能力的方法。該團隊為WRAID能力開發了需求、概念設計和操作概念。該小組確定并探索了可能對未來實施WRAID能力構成障礙的挑戰性領域。該小組調查了與使用人工智能來支持戰爭決策有關的倫理挑戰和影響。
本報告首先對與WRAID能力相關的主題進行文獻回顧。文獻回顧從人工智能的回顧開始,提供了一個關于人工智能如何工作以及它能夠完成什么類型任務的概述。文獻綜述探討了人機協作的方法,以支持未來指揮官和人類用戶與WRAID系統之間的互動。需要翻譯指揮官的意圖,并讓WRAID將有意義的輸出傳達給指揮官,這需要一個強大的界面。審查包括傳統的兵棋推演,以研究目前的模擬兵棋推演是如何進行的,以便深入了解,未來的WRAID能力如何能夠實時復制兵棋推演的各個方面,并認為以前的兵棋推演可以為人工智能和機器學習(ML)算法的發展提供訓練數據。ML算法的訓練需要大量的代表性數據。文獻回顧研究了人類的認知負荷,以深入了解人類大腦的認知技能和上限;并確定人類思維的極限,以顯示人工智能可能提供的支持。文獻綜述中涉及的最后一個主題是,傳統的計劃和決策,以了解目前在軍事上如何制定戰術行動方案。
該小組進行了需求分析和利益相關者分析,探索WRAID能力如何支持作戰人員。該小組在需求分析的基礎上為WRAID系統開發了一套需求。這些要求被歸類為:硬件/軟件,人機界面,和道德規范。第一階段的分析結果包括 (1)戰爭的復雜性需要發展一種未來的WRAID能力,這種能力利用自動化方法,包括人工智能、ML和博弈論,(2)WRAID能力需要大量的計算能力和復雜的軟件算法,(3)實現未來WRAID系統的挑戰將是技術和道德的。
未來WRAID系統的概念設計是基于需求分析的。概念設計被記錄在一套系統模型中,包括背景圖、系統視圖、功能工作流程圖和操作視圖。該團隊開發了一個作戰場景,以支持對WRAID能力如何在作戰中使用。
在開發WRAID的過程中,預計會有一些路障。開發WRAID系統的技術是存在的,然而,研究小組發現數據挑戰、人工智能訓練、程序限制和當前系統工程的局限性將是需要解決的障礙。數據挑戰指的是獲得足夠的數據集的能力,這些數據集代表了訓練ML算法所需的真實世界的戰術行動和兵棋推演分析。程序性挑戰包括國防部實施網絡安全、機密數據、數據庫訪問和信息分配協議的能力。系統工程方面的障礙是需要新的方法來設計安全和可靠的人工智能系統,如WRAID能力。將需要SE方法來處理不可預見的故障模式,并在系統生命周期的早期確定根本原因。
對像WRAID能力這樣的人工智能系統的倫理考慮是系統發展的一個重要因素。開發系統以取代倫理學,將使系統更有可能被部署。有幾個有道德問題的自主武器系統被拉出來作為WRAID能力的道德對話的基礎。通過一個示例場景,對道德狀況進行定性分析,以了解在部署WRAID能力時可能出現的道德問題。倫理學在未來的技術中發揮著巨大的作用;從一開始就考慮到倫理學,建立技術是很重要的。
未來的重點需要放在繼續對想象中的WRAID系統采取正規的系統工程方法。WRAID系統需要一個強大的數據集,需要收集和注釋;收集的定性兵棋推演數據越多,WRAID系統的可行性和準確性就越高。與軍事部門的合作對于最大化WRAID的利益至關重要,例如情報和偵察組織。WRAID的模擬將是完善系統要求和創建現實模型的關鍵。關于如何使用WRAID的培訓和文檔應該同時開發,所以利益相關者,特別是指揮官已經準備好,知道如何使用這個新工具。未來的研究領域包括認知工程、基于正式模型的系統工程和人機協作。
隨著目前技術進步的速度和外國的目標,人工智能將在未來的沖突和戰爭中發揮作用。自上而下的指令將需要設計和實施WRAID能力:提供大量的資源,解決操作和文化變化,重組系統工程,并確保網絡安全和收購變化。實現未來的WRAID能力并不是一個微不足道的任務。然而,它對確保現在和未來的戰斗空間優勢至關重要。
前沿作戰基地(FOB)防御是一項人力密集型任務,需要占用作戰任務的寶貴資源。雖然能力越來越強的無人駕駛飛行器(UAV)具備執行許多任務的能力,但目前的理論并沒有充分考慮將其納入。特別是,如果操作人員與飛行器的比例為一比一時,并沒有考慮提高無人機的自主性。本論文描述了使用先進機器人系統工程實驗室(ARSENL)蜂群系統開發和測試自主FOB防御能力。開發工作利用了基于任務的蜂群可組合性結構(MASC),以任務為中心、自上而下的方式開發復雜的蜂群行為。這種方法使我們能夠開發出一種基于理論的基地防御戰術,在這種戰術中,固定翼和四旋翼無人機的任意組合能夠自主分配并執行所有必要的FOB防御角色:周邊監視、關鍵區域搜索、接觸調查和威脅響應。該戰術在軟件模擬環境中進行了廣泛的測試,并在現場飛行演習中進行了演示。實驗結果將使用本研究過程中制定的有效性措施和性能措施進行討論。
2019年,美國海軍陸戰隊司令大衛-H-伯杰將軍發布了他的規劃指南,作為塑造未來四年的部隊的一種方式。他在其中指出:"我們今天做得很好,我們明天將需要做得更好,以保持我們的作戰優勢"[1]。這句話摘自海軍陸戰隊司令大衛-H-伯杰將軍的《2019年司令員規劃指南》(CPG),呼吁采取集中行動,以應對海軍陸戰隊在未來戰爭中預計將面臨的不斷變化的挑戰。在為海軍陸戰隊確定未來四年的優先事項和方向的CPG中的其他指導,呼吁建立一個 "適合偵察、監視和提供致命和非致命效果的強大的無人駕駛系統系列"[1]。伯杰將軍進一步呼吁利用新技術來支持遠征前沿基地作戰(EABO)。EABO將需要靈活的系統,既能進行有效的進攻行動,又能進行獨立和可持續的防御行動。簡而言之,實現EABO將需要最大限度地利用每個系統和海軍陸戰隊。
從本質上講,伯杰將軍正在呼吁改變無人駕駛飛行器的使用方式。通過使用大型的合作自主無人飛行器系統,或稱蜂群,將有助于實現這一目標。無人飛行器蜂群提供了在人力需求和后勤負擔增加最少的情況下成倍提高戰場能力的機會。正如伯杰將軍所提到的 "下一個戰場",海軍陸戰隊將必須利用各種技術,最大限度地利用自主性和每個作戰人員在戰場上的影響。
目前的無人系統使用理論是以很少或沒有自主性的系統為中心。另外,目前的系統依賴于單個飛行器的遠程駕駛;也就是說,每輛飛行器有一個操作員。部隊中缺乏自主系統,這在監視和直接行動的作戰能力方面造成了差距。此外,側重于一對一操作員-飛行器管理的無人系統理論要求操作員的數量與車輛的數量成線性比例。這對于 "下一個戰場 "來說是不夠的。相反,海軍陸戰隊將需要能夠讓操作員擺脫束縛或提高他們同時控制多個飛行器的能力系統[2]。
考慮到這些目標,美國海軍研究生院(NPS)的先進機器人系統工程實驗室(ARSENL)已經開發并演示了一個用于控制大型、自主、多飛行器的系統,該系統利用了分布式計算的優勢,并將駕駛的認知要求降到最低。ARSENL在現場實驗中證明了其系統的功效,在該實驗中,50個自主無人駕駛飛行器(UAV)被成功發射,同時由一個操作員控制,并安全回收[3]。
這項研究的主要目標是證明使用無人機蜂群來支持前沿作戰基地(FOB)的防御。特別是,這需要自主生成、分配和執行有效的、符合理論的基地防御所需的子任務。這部分研究的重點是開發基于狀態的監視、調查和威脅響應任務的描述;實施支持多飛行器任務分配的決策機制;以及任務執行期間的多飛行器控制。
輔助研究目標包括展示基于任務的蜂群可組合性結構(MASC)過程,以自上而下、以任務為中心的方式開發復雜的蜂群行為,探索自主蜂群控制和決策的分布式方法,以及實施一般的蜂群算法,并證明了對廣泛的潛在蜂群戰術有用。總的來說,這些目標是主要目標的一部分,是實現主要目標的手段。
基地防御戰術的制定始于對現有基地防御理論的審查。這一審查是確定該行為所要完成的基本任務和子任務的基礎。然后,我們審查了目前海軍陸戰隊使用無人機的理論,以確定這些系統在基地防御任務中的使用情況。
在確定了任務要求的特征后,我們為基地防御的整體任務制定了一個高層次的狀態圖。子任務級別的狀態圖等同于MASC層次結構中的角色。
ARSENL代碼庫中現有的算法和游戲以及在研究過程中開發的新算法和游戲被用來在ARSENL系統中實現子任務級的狀態圖。最后,根據高層次的狀態圖將這些游戲組合起來,完成基地防御戰術的實施。
在游戲和戰術開發之后,設計了基于理論的有效性措施(MOE)和性能措施(MOPs)。通過在循環軟件(SITL)模擬環境中的廣泛實驗,這些措施被用來評估基地防御戰術。在加利福尼亞州羅伯茨營進行的實戰飛行實驗中,也展示了該戰術和游戲。
最終,本研究成功地實現了其主要目標,并展示了一種包含周邊監視、關鍵區域搜索、接觸調查和威脅響應的基地防御戰術。此外,開發工作在很大程度上依賴于MASC層次結構,以此來制定任務要求,并將這些要求分解成可在ARSENL蜂群系統上實施的可管理任務。這一戰術在實戰飛行和模擬環境中進行了測試,并使用以任務為中心的MOP和MOE進行了評估。最后的結果是令人滿意的,在本研究過程中開發的戰術被評估為有效的概念證明。
本論文共分六章。第1章提供了這項研究的動機,描述了這個概念驗證所要彌補的能力差距,并提供了ARSENL的簡短背景和所追求的研究目標。
第2章討論了海軍陸戰隊和聯合出版物中描述的當前海軍陸戰隊后方作戰的理論。還概述了目前海軍陸戰隊內無人機的使用情況,并描述了目前各種系統所能達到的自主性水平。
第3章概述了以前自主系統基于行為的架構工作,ARSENL多車輛無人駕駛航空系統(UAS)和MASC層次結構。
第4章對基地防御戰術的整體設計以及高層戰術所依賴的游戲進行了基于狀態的描述。本章還詳細介紹了用于創建、測試和評估這一概念驗證的方法。在此過程中,重點是對每一戰術和戰術所針對的MOP和MOE進行評估。
第5章詳細介紹了所進行的實戰飛行和模擬實驗,并討論了與相關MOPs和MOEs有關的測試結果。
最后,第6章介紹了這個概念驗證的結論。本章還提供了與基地防御戰術本身以及更廣泛的自主蜂群能力和控制有關的未來工作建議。
兵棋模擬是一種決策工具,可以為利益相關者分析的場景提供定量數據。它們被廣泛用于制定軍事方面的戰術和理論。最近,無人駕駛飛行器(UAVs)已經成為這些模擬中的一個相關元素,因為它們在當代沖突、監視任務以及搜索和救援任務中發揮了突出的作用。例如,容許戰術編隊中的飛機損失,有利于一個中隊在特定戰斗場景中勝利。考慮到無人機的分布可能是這種情況下的決定性因素,無人機在超視距(BVR)作戰中的位置優化在文獻中引起了關注。這項工作旨在考慮敵人的不確定性,如射擊距離和位置,使用六種元啟發法和高保真模擬器來優化無人機的戰術編隊。為紅軍蜂群選擇了一種空軍經常采用的戰術編隊,稱為line abreast,作為案例研究。優化的目的是獲得一個藍軍蜂群戰術編隊,以贏得對紅軍蜂群的BVR戰斗。采用了一個確認優化的穩健性程序,將紅軍蜂群的每個無人機的位置從其初始配置上改變到8公里,并使用兵棋方法。進行了戰術分析以確認優化中發現的編隊是否適用。
索引詞:優化方法,計算機模擬,無人駕駛飛行器(UAV),自主智能體,決策支持系統,計算智能。
兵棋是在戰術、作戰或戰略層面上模擬戰爭的分析性游戲,用于分析作戰概念,訓練和準備指揮官和下屬,探索情景,并評估規劃如何影響結果。這些模擬對于制定戰術、戰略和理論解決方案非常有用,為參與者提供了對決策過程和壓力管理的洞察力[1]。
最近,無人駕駛飛行器(UAVs)作為一種新的高科技力量出現了。利用它們來實現空中優勢可能會導致深刻的軍事變革[2]。因此,它們的有效性經常在兵棋中被測試和評估。
由于具有一些性能上的優勢,如增加敏捷性、增加過載耐久性和增加隱身能力,無人機已經逐漸發展起來,并在許多空中任務中取代了有人系統[3]。然而,由于戰斗的動態性質,在視覺范圍之外的空戰中用無人系統取代有人平臺是具有挑戰性的。在空戰中,無人機可以被遠程控制,但由于無人機飛行員對形勢的認識有限,它將在與有人平臺的對抗中處于劣勢。然而,這種限制可以通過自動戰斗機動[4]和戰術編隊的優化來克服。此外,使用無人機可以允許一些戰術編隊和戰略,而這些戰術編隊和戰略在有人駕駛的飛機上是不會被考慮的,例如允許中隊的飛機被擊落,如果它有助于團隊贏得戰斗。文獻中最早的一篇旨在優化超視距(BVR)作戰中的飛機戰術編隊的文章[5]表明,空戰戰術是用遺傳算法(GA)進行優化的候選方案。該實施方案采用分層概念,從小型常規作戰單位建立大型編隊戰術,并從兩架飛機的編隊開始,然后是四架飛機,最后是這些飛機的倍數。在模擬中沒有對導彈發射進行建模。當一架飛機將其對手置于武器交戰區(WEZ)的高殺傷概率(Pkill)區域內一段特定時間,簡化的交戰模擬器就宣布傷亡。事實證明,所提出的方法的應用是有效的,它消除了團隊中所有沒有優化編隊的飛機,并為整個優化編隊的飛機團隊提供了生存空間。
Keshi等人[6]使用了與[5]相同的分層概念,從由兩架飛機組成的元素中構建大型戰術編隊。模擬退火遺傳算法(SAGA)被用來優化編隊,使其能夠克服對局部最優解的收斂。對16架飛機的編隊進行了優化,提出的最優解表明SAGA比基本的GA更有效。最后,為了探索一個穩健的SAGA,對不同的馬爾科夫鏈進行了比較,事實證明自調整馬爾科夫電流更適合所提出的問題。
Junior等人[7]提出使用計算機模擬作為一種解決方案,以確定BVR空戰的最佳戰術,使擊落敵機的概率最大化。在低分辨率下使用通用參數對飛機和導彈進行建模,并改編了名為COMPASS的模擬優化算法,模擬了兩架飛機對一架飛機的BVR戰斗。低分辨率模型假定在水平面的二維空間內有一個均勻的直線運動。使用優化的戰術表明,擊落敵機的平均成功率從16.69%提高到76.85%。 Yang等人[8]提出了一種方法來優化飛機對一組目標的最佳攻擊位置和最佳路徑。該工作考慮到飛機能夠同時為每個目標發射導彈,并將飛機與目標有關的攻擊性和脆弱性因素作為評價攻擊位置的指標。一個高保真模擬被用來模擬每個導彈的飛機、雷達、導彈和WEZ的動態特性。這項工作并沒有解決在BVR戰斗場景中優化一組飛機對另一組飛機的編隊問題。
Li等人[9]提出了一種基于指揮員主觀認識的編隊優化方法,即在空戰中目標設備信息不確定的情況下選擇飛機編隊的問題。首先,計算戰斗機的戰斗力,這是通過指揮員的主觀認識評估目標戰斗力的基礎。戰斗機的戰斗力以能力的形式表現出來,包括攻擊、探測、生存能力、通信、電子戰、預警系統等。因此,通過采用前景理論和綜合模糊評估來優化空戰訓練。最后,一個應用實例證明了該方法在小規模空戰中的可行性。作者聲稱,利用戰斗力評估戰斗情況的能力為優化空戰訓練提供了一種新的方法。
?zpala等人[10]提出了一種在兩個對立小組中使用多個無人駕駛戰斗飛行器(UCAVs)進行空戰的決策方法。首先,確定兩隊中每個智能體的優勢地位。優勢狀態包括角度、距離和速度優勢的加權和。在一個團隊中的每個智能體與對方團隊中的每個智能體進行比較后,每個航空飛行器被分配到一個目標,以獲得其團隊的優勢而不是自己的優勢。為一對對立的團隊實施了一個零和博弈。對許多智能體參與時的混合納什均衡策略提出了一種還原方法。該解決方案基于博弈論方法;因此,該方法在一個數字案例上進行了測試,并證明了其有效性。
Huang等人[11]開發了新的方法來處理UCAV編隊對抗多目標的合作目標分配和路徑規劃(CTAPPP)問題。UCAV的編隊是基于合作決策和控制的。在完成目標偵察后,訓練指揮中心根據戰場環境和作戰任務向每架UCAV快速傳輸任務分配指令。UCAV機動到由其火控系統計算出的最佳位置,發射武器裝備。合作目標分配(CTAP)問題通過增強型粒子群優化(IPSO)、蟻群算法(ACA)和遺傳算法(GA)來解決,并在歸因、精度和搜索速度等方面進行了比較分析。在進化算法的基礎上發展了UCAV多目標編隊的合作路徑規劃(CPPP)問題,其中提供并重新定義了獨特的染色體編碼方法、交叉算子和突變算子,并考慮燃料成本、威脅成本、風險成本和剩余時間成本來規劃合作路徑。
Ma等人[12]開展的工作解決了在BVR作戰場景中優化兩組(R和B)無人機對手之間的優勢地位問題。一個無人機ri∈R對一個無人機bj∈B的優勢是通過ri和bj之間的距離、ri的導彈發射距離的下限和上限、ri的高度和bj的高度之差以及ri的最佳發射高度來估計的。決定性的變量是無人機在兩組中的空間分布和每架飛機在這些組中的目標分配。無人機在三維作戰空間BVR中的可能位置被簡化(離散化),通過立方體的中心位置來表示。每個無人機組都有一組立方體。優化問題被建模為一個零和博弈,并被解決以獲得納什均衡。
Ma等人[12]提出的工作沒有使用高保真模擬來分析無人機空間分布的選擇和分配給它們的目標對BVR作戰的影響。高保真模擬對飛機、雷達、導彈及其導彈的WEZ的動態特性進行建模。這些動態特性也影響到BVR作戰時每架飛機的行動觸發,因此也影響到最終的結果。例如,如果在兩組無人機之間第一次沖突后的時間窗口內考慮高保真BVR作戰模擬,新的沖突可能會發生,直到模擬結束。因此,每個在交戰中幸存的無人機將能夠選擇一個新的目標,這取決于可用目標的優勢值。在[12]中沒有考慮與無人機行為有關的不確定性。有關敵方無人機在戰術編隊中的確切位置及其導彈發射距離的信息是行為不確定性的例子。這兩個信息和上面描述的其他信息在BVR戰斗中是相關的:它們直接影響飛機之間的交戰結果。
在這項研究中,我們試圖解決文獻中發現的一些局限性,如低分辨率模擬、與敵人有關的不確定性的處理以及缺乏對優化解決方案的穩健性的確認,旨在提高兵棋結果的質量。我們的目標是驗證哪些藍色蜂群的戰術編隊可以在BVR戰斗中戰勝紅色蜂群。作為一個案例研究,RED蜂群使用了空軍經常采用的戰術編隊,稱為line abreast[13]。為了評估BLUE蜂群解決方案的穩健性,我們解決了新的問題,改變了RED蜂群每架飛機的位置,目的是估計新的RED蜂群編隊對BLUE蜂群的優化戰術編隊的效率的影響。
我們使用自主智能體和高保真計算機模擬來優化BVR戰斗中的無人機戰術編隊,考慮與敵人相關的不確定性,如戰術編隊中的位置誤差和導彈發射距離。統一行為框架(UBF)被采納為創建自主智能體的基礎。飛機和導彈在三維環境中用六個自由度(DoFs)建模。
該程序將在接下來的章節中進一步討論。
作者領導了一項跨學科的基準測試工作:決策分析、運籌學、風險建模、管理科學、沖突和戰斗模擬以及物流和供應鏈模擬。實踐者們自愿描述他們的做法并向其他人學習。雖然不同的實踐者群體對局部實踐達成了共識,但群體之間的互動卻很少。
以前的出版物描述了從基準測試中突出最佳實踐。我們發現了兩個差距:一個是令人不安的高比例的不良實踐,另一個是缺乏執行層面的風險評估。高管們往往缺乏時間或技術背景來對提供給他們的分析結果進行風險評估。
本文為高管們提供了一種新的、簡單的風險評估方法。六個非技術性的問題解決了在基準測試中看到的大部分風險。該方法是基于一個建立在國際基準工作基礎上的檢查表。作者還對具體的風險進行了研究,包括因對分析的依賴程度增加而產生的法律風險。在這些風險中,有一些與人工智能有關的獨特問題。
識別風險的工作表明危險來自幾個方面,并產生了一個不需要深入的建模、仿真和分析(MS&A)知識的風險檢查表。本文介紹了該清單,以及支持該清單的一些更深入的MS&A原則。這對管理人員和從業人員都很有用。
該研究得到了一些專業協會、行業團體和非營利性教育協會的支持,包括國際服務/行業培訓、模擬和教育會議(I/ITSEC)、石油工程師協會、電氣和電子工程師協會和概率管理。
我們之前已經發表了(Roemerman等人)研究的本質和我們的數據收集。回顧一下,在2014年和2015年,作者提出了一個跨領域的基準研究。作為在多個領域工作的從業者,我們注意到一些領域的 "正常 "仿真和建模實踐在其他領域是未知的。我們向幾個組織提出了一個多領域的研究。普遍來說,反饋是積極的,但沒有人愿意領導這項工作。
最終,我們決定自己進行,并開始招募幫助。我們得到了許多我們曾經接觸過的組織的幫助,還有一些組織也加入了我們的行列:
總的來說,這些組織有大約200,000名會員(不包括這兩家公司,他們的雇員可能是我們所接觸的協會的會員)。其中,我們估計只有不到10%的會員是建模、仿真和分析(MS&A)的積極從業者。在這些會員中,我們估計大約有2100人看到了我們的調查和采訪邀請。
除了與這些大型團體合作外,我們最初以40多個個人為目標,因為他們的組織聲譽或他們個人的卓越聲譽而參與我們的數據收集。我們點名征集這些目標,事實證明他們是一個豐富的信息來源。最后,我們接觸了來自65個組織的126名個人,涉及許多領域(見圖1)。