在不久的將來,網絡化無人自主系統將越來越多地用于支持地面部隊的行動。協同控制方法可以找到接近最優的位置建議,通過優化傳感和通信等系統參數來提高任務效率。然而,隨著時間的推移,這些建議可能會產生可預測的路徑,從而為部隊的作戰意圖提供領先的指示。本文利用時間序列預測方法和深度神經網絡,對無人移動網絡控制系統進行了對抗性評估。在第一種情況下,模型預測的團隊地面運動路徑遵循最初計劃但未執行的路徑。在第二種情況下,模型的最大路徑誤差率僅為 75 米。在這兩種情況下,該方法都能正確識別隊伍行進的方向和距離,甚至能識別隊伍改變方向的點,從而使自動紅隊分析能夠辨別地面部隊的意圖。這些結果表明,在規劃和執行支持遠征地面部隊的無人移動網絡控制系統時,自動紅隊分析是一個具有潛在價值的組成部分。它能對無人智能體的路徑提供近乎實時的反饋,以確定航線調整是否能降低作戰意圖的可預測性。
由于實彈演習可用性有限、成本高、風險大,空中和地面火力與機動的協調為模擬訓練提供了理想的目標。目前的模擬系統為操作員提供任務導向型訓練,但沒有機會練習與其他機構的溝通和協調。本文采用分布式仿真工程和執行程序來指導仿真環境的創建,通過在一個逼真的聯合武器場景中演示地面觀察員、近距離空中支援、建設性水面火力和通信工具仿真的互操作性,來彌補這一訓練能力上的差距。使用分布式交互仿真(DIS)標準和 ASTi Voisus 通信軟件開發了一個仿真環境,其中包括波希米亞交互仿真公司的 VBS4、洛克希德-馬丁公司的 PREPAR3D 和 Battlespace Simulations 公司的 MACE。雖然有一個研究虛擬專用網絡(VPN),但 VPN 客戶端之間無法支持 DIS 廣播通信。模擬環境在本地網絡上運行,遠距離用戶使用遠程桌面連接。雖然 VBS4 存在性能問題,PREPAR3D 也不是近距離空中支援的理想選擇,但 MACE 和 ASTi Voisus 表現良好,模擬環境取得了成功。對于物理分布式訓練,建議采用高級架構 (HLA) 或多架構聯盟。
本文采用七步分布式仿真工程與執行流程(DSEEP)來指導仿真環境的規劃、開發和執行(IEEE 計算機協會,2010a)。本論文分為以下幾章。第二章--背景。本章討論了火力支援協調訓練所涉及的當前作戰和訓練組織、系統和角色。本章概述了海軍陸戰隊當前的記錄訓練系統計劃以及為實現互操作性所做的努力。最后,本章在概述 DSEEP 之前討論了分布式模擬互操作性標準框架。第三章-方法。本章旨在記錄 DSEEP 第 1-3 步的仿真環境規劃。第 1 步--確定仿真環境目標,包括論文的初步規劃、資源和期望。第 2 步-進行概念分析,涉及情景設計和所需模擬環境的更細化。第 3 步-設計仿真環境涉及仿真系統和集成仿真環境的詳細規劃。第四章--實施。本章包括 DSEEP 第 4-5 步中仿真環境的開發、集成和測試。第 4 步--開發仿真環境包括在每個仿真系統中實施場景,并確認網絡和基礎設施支持仿真環境要求。步驟 5-集成和測試仿真環境包括對每個仿真系統進行系統集成和測試,以確認所需的功能。隨著問題的發現以及解決方案的開發和實施,本章涉及對模擬環境的多次更改。第五章--結果。本章記錄了在 DSEEP 第 6-7 步指導下對模擬環境的執行和分析。步驟 6-執行模擬包括在模擬環境中全面演示培訓場景的執行。第 7 步--分析數據和評估結果包括研究小組對成員應用的適用性、模擬環境的互操作性以及模擬環境在實現既定培訓目標方面的整體有效性進行評估。第六章-結論。本章總結了研究結果,并提出了將該模擬環境應用于培訓的建議和未來研究工作的建議。
在建立國家間軍事聯盟模型時,學者們會做出簡化假設。然而,大多數人都認識到這些經常被引用的假設過于簡單。本文利用監督和非監督機器學習的發展來評估這些假設的有效性,并研究它們如何影響對聯盟政治的理解。報了文發現了一系列有助于更好地理解聯盟的原因和后果的結論。
研究的第一個假設認為,當國家面臨共同的外部安全威脅時,它們會結成聯盟,匯聚軍事實力,以增強自身安全,確保自身生存。外交史和安全研究領域的許多人批評了這一廣為接受的 “能力聚合模型”,指出各國結盟的動機多種多樣。在三篇文章中的第一篇中,介紹了一種無監督機器學習算法,旨在檢測縱向網絡中行為體如何形成關系的變化。這樣,在第二篇文章中評估各國結成聯盟的不同動機。研究發現,國家結成聯盟是為了實現能力聚合之外的外交政策目標,包括鞏固非安全關系和追求國內改革。
學者們在建立聯盟與沖突之間關系的模型時會引用第二個假設,即常規假設聯盟的形成與盟國之一受到攻擊的概率無關。這與能力聚合模型(Capability Aggregation Model)的預期形成了鮮明對比,后者表明外部威脅和盟國對侵略者攻擊的預期會影響結盟的決定。在最后一篇文章中,研究了這一假設以及聯盟與沖突之間的因果關系。具體來說,使用監督機器學習和廣義聯合回歸模型(GJRMs)將沖突因果路徑上的聯盟內生化。結果質疑了對聯盟與沖突關系的傳統理解,即聯盟既不會阻止沖突,也不會引發沖突。
新興的 5G 和低地球軌道 (LEO) 衛星通信商業技術有能力提供低延遲發送大量數據的鏈接。隨著國防部門繼續探索如何最好地利用這些技術,開發軍方內部的潛在用例非常重要。本文描述了傳感器到射手的作戰場景,以及目前用于將數據從海軍傳感器傳輸到陸軍射手的網絡傳輸鏈路。然后將當前傳感器到射擊手的網絡傳輸鏈路與新興的 5G 和低地軌道衛星通信等商業替代方案在吞吐量、延遲和范圍方面進行比較。該分析表明了 5G 和低地軌道技術與當前鏈路相比的優缺點。
本研究探討了一種假想情況,即海軍機載傳感器對敵方特征進行目標捕獲,并將原始數據發送到最近的指揮節點。在這種情況下,最近的指揮節點是一艘 "阿利-伯克 "級驅逐艦,它負責處理目標定位數據,并將其轉發給陸基指揮所的相關聯合指揮官或聯合后勤指揮中心進行分析和確認。一旦目標數據得到確認,就會以可操作目標數據的形式發送到陸軍野戰炮兵數據系統。作戰場景各階段的直觀圖見圖 2。
第 1 階段:傳感器到阿利-伯克級驅逐艦--本研究使用海軍機載傳感器獲取敵方特征目標,并將數據發送到最近的節點進行進一步傳播。雖然傳感器數據類型可能因 ISR 平臺類型而異(海軍信息戰中心,2021 年),但本研究將主要利用目標圖像。在這種情況下,目標圖像將被發送到阿利-伯克級驅逐艦上。
第 2 階段:阿利-伯克級驅逐艦到 JFC 或 JFLCC--一旦阿利-伯克級驅逐艦接收到原始目標數據,就會將其發送到 JFC、JFLCC 或 JFE 進行分析。決定目標數據是否可操作的指揮關系和角色由聯合司令部定義,并可根據戰區要求進行更改(JP 309,2019 年,第 viii 頁)。在特定戰區,聯合指揮官可以駐扎在各種 C2 節點,包括艦載或陸基。然而,在本研究中,陸基 C2 節點被用作分析目標數據并將其轉化為可操作目標數據的節點。見圖 2。
第 3 階段:JFE 至 AFATDS/HIMARS--JFE 或 JFLCC 確定收到的目標數據是可操作的,并將其發送至 FSCOORD 以協調火力。然后,FSCOORD 將可操作的目標數據以可變信息格式 (VMF) 的形式發送到 AFATDS 系統,這是一種基于自由文本的格式。這種基于自由文本的格式允許火力平臺只接收執行火力任務所需的數據(Joslin 等人,2018 年)。一旦通過 AFATDS 接收到可操作的目標定位數據,火力平臺就能進行火力攻擊以消滅目標。
圖9.傳感器到射手情景概述--各階段的網絡傳輸鏈路
美軍在戰術層面的組織、能力和授權方面存在差距,無法在信息環境(OIE)中開展行動。本論文通過分析和應用從空地一體化中汲取的經驗教訓,確定了潛在的解決方案:空地一體化是戰爭的一個層面,曾是可與現代信息、網絡和太空相媲美的新概念。空地一體化從第一次世界大戰中的戰略偵察發展到現代攻擊直升機、手動發射的殺手級無人機和戰術聯合終端攻擊控制員(JTACs)。如今,聯合終端攻擊控制員為地面指揮官提供了一名處于戰術邊緣的空地一體化專家,該專家裝備有致命和非致命能力,其權限因地點和行動類型而異。JTAC 的資格得到了整個聯合部隊和北約的認可,并最大限度地減少了地面單元所需的飛行員數量。本論文認為,建立一個與 JTAC 相當的信息、網絡和空間管制員可使聯合部隊更有效地開展戰術 OIE。這種多域終端效應控制員(MDTEC)將獲得聯合認證、資格和指定,就信息環境向地面指揮官提供建議,使用戰術信息工具,并利用聯合信息、網絡和空間資產創造效應。
本文認為,仿照聯合終端攻擊控制員(JTAC)建立 "多域終端效果控制員(MDTEC)"模型,將使戰術部隊能夠更有效地實施 OIE。MDTEC 將作為戰場戰術邊緣的 OIE 使用專家,為地面指揮官提供建議,規劃信息效果,操作信息能力,并向作戰和國家級 OIE 部隊請求效果。模擬 JTAC 計劃的認證、資格和指定方面,將創建整個聯合部隊和北大西洋公約組織 (NATO) 標準化的 MDTEC,使 MDTEC 和 OIE 部隊之間具有一定程度的信任和互操作性。
MDTEC 的能力和權限也可參照 JTAC 的模式。為 MDTEC 配備自主信息能力將使地面部隊能夠識別信息目標,傳遞準確的位置信息,并實施有限的 OIE 效果。MDTEC 應能隨時操作這些設備,而無需上級指揮部的批準。將任何進一步 OIE 行動的授權保留在較高級別,可為協調和目標審查留出更多時間,而將授權推向較低級別則可加快行動節奏。不過,MDTEC 將接受培訓并配備裝備,以識別敵方目標,并在獲得適當級別指揮官批準后開展 OIE 行動。
本專著既展示了反介入區域拒止(A2AD)問題,也是一個獨特的歷史性解決方案實例。作為分析的一部分,本文提出了一個假設,即美國陸軍地面部隊可能會在沒有空域保護和支持的對抗性環境中作戰,而自第二次世界大戰以來,空域一直是地面機動的主要要求。因此,這本專著探討了陸軍在需要在沒有空中優勢的情況下作戰時可能面臨的問題,以及重新獲得空中優勢的條件。本專著的核心論點是,美國陸軍多域作戰(MDO)中大規模作戰行動(LSCO)的成功,在未來可能會有通過最大限度地利用其他域手段,嘗試通過地面機動消滅敵方防空系統的要求。本研究分析并比較了兩個歷史案例:贖罪日戰爭和二戰時期德國的莫爾坦攻勢。這些案例研究提供了作戰指揮官如何在沒有空中優勢的情況下嘗試使用地面部隊的背景。它們是現代戰爭中面對無法通過空中支援地面機動時成功和失敗的范例。在這兩種情況下,縱深機動、火力和空中優勢的標準提供了一種手段,用于分析和解釋戰區指揮官如何在缺乏現代戰爭所必需的空中支援的條件下成功或失敗地尋求聯合兵種機動。
作為一個負責執行大規模作戰行動(LSCO)的軍事組織,美國陸軍的競爭對手是不斷發展以與美國軍事實力相匹敵的同行對手。這些對手開發的技術能力可以阻止多領域行動的融合。為了在未來的沖突中與這些對手競爭、滲透和瓦解,美國陸軍要不斷發展,適應戰場上的挑戰。俄羅斯是一個嚴重的同級威脅,可以挑戰美軍在大規模作戰行動中的主導地位。自 "沙漠風暴 "行動以來,俄羅斯一直密切關注著美國的戰爭方式。正如馬克-A-米利將軍所說,俄羅斯領導人知道,"我們擅長的戰爭方式強調聯合和聯合作戰;技術優勢;全球力量投送;戰略、作戰和戰術機動"。"因此,善于觀察的俄羅斯學會了利用作戰環境,開發能夠造成作戰對峙和阻止常規部隊有效使用的武器。
目前,俄羅斯對歐洲國家的侵略行為--她試圖恢復蘇聯時期的突出地位--增加了歐洲未來發生武裝沖突的可能性。由于俄羅斯研究了美軍的部署和作戰方式,美軍將不得不尋找適應性的方法來實現戰場上的領域融合。修正主義的俄羅斯實現了能力的現代化和發展,以對抗美軍執行空地一體化運動、機動和火力的能力。俄羅斯先進的遠程防空系統將使美國喪失空中優勢。其便攜式系統和先進的無人空中和地面系統的擴散對美軍編隊和關鍵節點構成重大威脅。美軍陸軍可能在沒有空域保護和支持的情況下在有爭議的環境中作戰,這是本文及其分析的一個關鍵假設。
根據聯合出版物(JP)3-01《反擊空中和導彈威脅》,"反擊空中和導彈威脅 "的最佳方法是 "在發射前利用進攻行動摧毀或瓦解空中和導彈威脅"。然而,面對像俄羅斯這樣的同行威脅,執行這樣的任務并非易事。俄羅斯目前擁有一套綜合防空系統(IADS),由遠程、中程和短程地對空導彈組成的分層結構,可在不同高度擊落作戰飛機。S-400 "凱旋 "地對空導彈系統(SAMS)是俄羅斯高度復雜的防空保護傘的基石。
俄羅斯 S-400 是一種高度機動的系統,能夠在四百公里范圍內攔截敵機。該系統不僅覆蓋了加里寧格勒州的波羅的海國家,還覆蓋了波蘭的廣大地區。這意味著在蘇瓦維缺口和波羅的海沿岸國家附近行動的俄羅斯地面部隊將受到機動靈活的 IADS 的保護。膽敢侵入俄羅斯領空的敵軍戰機將在俄羅斯西部邊境遭遇由 S-400 炮兵連和營組成的致命空中雷區。到 2020 年底,俄羅斯將增加 56 個 S-400 營,這只會提高俄羅斯 IADS 的殺傷力和能力。
俄羅斯最近舉行的 "東方 2018 "軍事演習展示了由 S-400、中程 "布克"、短程 "托爾 "和 "潘齊爾-S1 "系統組成的分層防空系統如何遏制大規模空襲。演習展示了訓練有素的機組人員如何最大限度地發揮 S-400 的能力,對試圖侵入俄羅斯領空的北約飛機造成重大損失。S-400 的射程使其能夠瞄準空中加油機和機載預警與控制飛機等敵方輔助飛機。此外,該系統靈活的瞄準能力可防范不同的威脅和攻擊,其反隱身能力可探測并擊落 F-35 等具有隱身能力的戰斗機。
據專家稱,擊敗俄羅斯先進防空系統的方法包括電子戰、空對地反輻射導彈、戰斧巡航導彈和隱形技術等壓制戰術。然而,這些方法的問題在于成本、可靠性和目標定位。俄羅斯龐大的 SAMS 機群使得壓制任務十分艱巨,而且無法保證成功。壓制俄羅斯的 IADS 需要大量使用反 SAMS 導彈和飛機,而且極有可能造成重大損失。此外,由于 S-400 的發射和機動速度快,因此很難定位和瞄準。同時,針對 S-400 地面雷達系統的隱形技術尚未得到驗證。盡管 B-2 轟炸機、F-22 和 F-35 等飛機的雷達信號很低,但它們也并非無法抵擋不斷發展的雷達技術和攻擊機。F-22 和 F-35 戰斗機的斜角外形和設計使這些飛機很容易受到發展中雷達系統的攻擊。
以色列人慘痛地發現,面對層層疊疊、精密復雜的地面防空系統困難重重。中央情報局關于 1973 年阿以戰爭的解密文件顯示了蘇聯 SAMS 對以色列空軍(IAF)的巨大威力。特別是埃及的 SAMS 網絡,在干擾以色列打擊任務和保護埃及地面部隊方面取得了巨大成功。埃及人在保護罩內行動,直到以色列設計出一種獨特的方法來擊潰他們的防空保護傘。
贖罪日戰爭中埃及的情況代表了與俄羅斯沖突中可能出現的結果。與埃及人一樣,俄羅斯軍隊也將在其防空保護傘下行動,在這種情況下,針對俄羅斯 IADS 的標準壓制戰術可能無法奏效,從而迫使作戰指揮官尋找其他替代方案。1973 年以色列解決這一問題的方法雖然不典型,但也是可以做到這一點的范例。以色列指揮官依靠地面部隊,將縱深滲透、地面炮火和空中優勢結合起來,擊潰了埃及的防空系統。
本文認為,多域作戰(MDO)中 LSCO 的成功可能取決于地面機動部隊能否消滅敵方的防空系統。由地面機動部隊實施并支持地面機動部隊的縱深機動、火力和空中優勢是本文研究作戰指揮官如何利用地面部隊刺破防空泡沫并重建制空權的評估標準。按照我們今天的理解,地面聯合作戰由空地一體化機動組成,因此 IADS 的先進性可能會抵消成功的地面聯合作戰所需的空中支援。在當今的作戰環境中,許多對手在陸基雷達和電子攔截能力方面也擁有類似的先進技術,以防止成功的 LSCO。解決這一問題的一個可能辦法是,戰區指揮官利用地面機動部隊深入敵方領土,解除敵方的空中防御,重新奪回空中優勢,并重建空地會合。
贖罪日戰爭和二戰中的莫爾坦攻勢是對比案例研究,為作戰指揮官如何在沒有相應空中優勢的情況下嘗試使用地面部隊提供了背景資料。這些對比鮮明的案例是現代戰爭中面對無法通過空中支援地面機動時成功與失敗的范例。在這兩個案例中,縱深機動、火力和空中優勢的標準為分析和解釋戰區指揮官如何成功或失敗地用地面機動部隊摧毀防空系統提供了一種手段。兩個案例都說明了縱深機動、火力和空中優勢對防空系統復雜性的重要作用。此外,案例比較還展示了在有爭議和不允許空中行動的環境下,運用縱深機動和火力重新獲得空地一體機動優勢所面臨的差異和挑戰。
美國陸軍將縱深機動描述為軍事行動在時間、空間和目的上的延伸,以便在高度競爭的環境中獲得對敵優勢。縱深機動部隊采用移動和火力相結合的方式,獲取優勢地位,以擊敗敵方部隊。因此,縱深機動在作戰中發揮著至關重要的作用。同樣,火力通過間接火力武器系統對目標產生致命和非致命影響,幫助機動單元奪取、保持和利用主動權。這樣,火力就能完成瞄準、投送和整合各種形式的炮火打擊對方部隊的關鍵任務。同樣,空中優勢通過 "一支部隊對空中的控制,使其在特定時間和地點開展行動時不受空中和導彈威脅的干擾",從而實現地面作戰行動。
在贖罪日戰爭中,埃及整合了反坦克武器和蘇聯先進的防空系統,使以色列國防軍(IDF)無法應用其裝甲機動和近距離空中支援的概念。以色列國防軍指揮官利用地面機動部隊恢復空地會合,擊敗埃及防空部隊,從而解決了這一作戰難題。以色列作戰指揮官使用了縱深機動和火力,通過摧毀埃及的地面防空系統來實現空中優勢。
在莫爾坦反擊戰中,德軍的表現與以色列人在贖罪日戰爭中的表現形成了鮮明的對比。D-Day 之后,德軍第七陸軍在法國小鎮莫爾坦附近發動了一次名為 "盧蒂奇行動 "的反擊,目的是在沒有適當的空中掩護和火力的情況下切斷美軍從諾曼底橋頭堡的滲透和突圍。德軍無法整合空地機動,降低了陸軍的戰績,阻礙了作戰的成功。由于盟軍在諾曼底上空擁有壓倒性的空中優勢,德軍無法對美軍防御發起成功的縱深機動,其火力也缺乏有效性。德軍地面機動部隊在進攻過程中沒有空中組成部分,也沒有能力攔截英國的空軍基地,因未能取得聯合武器優勢而遭受了災難性的失敗。
本研究參考了包括美國軍事條令和第一手資料在內的原始資料,這些資料為本項目分析歷史案例研究提供了一個視角。在贖罪日戰爭案例研究中,以色列和埃及方面參戰人員的自傳提供了大部分原始資料。這里值得關注的是 Saad El Shazly 將軍的《跨越蘇伊士運河》和 Avraham Adan 將軍的《蘇伊士運河畔:一位以色列將軍對贖罪日戰爭的親身經歷》。這兩本書提供了戰爭發生時的第一手資料。其他主要資料來源有美軍條令出版物和野戰手冊,如《野戰手冊》(FM)3-0《作戰》和《陸軍條令參考出版物》(ADRP)3-09《火力》。在二手資料方面,學術書籍和研究專著也提供了有關該主題的詳細信息。
薩阿德-沙茲利(Saad El Shazly)將軍的自傳體作品《跨越蘇伊士運河》代表了埃及對 1973 年以色列戰爭的看法。沙茲利的作品展示了埃及軍方如何將軍事手段與政治目的相結合。作為戰爭的戰略家和主要策劃者,沙茲利對埃及戰爭計劃的不同階段提出了寶貴的見解,并詳細介紹了埃及軍方如何建立綜合防空系統以遏制以色列的空中優勢。他從資源有限的埃及軍方角度描述了這場沖突,并詳細介紹了為克服這些挑戰所采取的措施。盡管沙茲利的軍事回憶錄并非對沖突的公正描述,但其價值在于對埃及作戰計劃的坦誠評估。
另一方面,阿夫拉罕-阿丹的戰爭回憶錄《蘇伊士運河畔》代表了以色列人對 1973 年戰爭的看法和描述。阿丹將軍講述了他作為師長的經歷,是對阿以最新戰爭史學的重要貢獻。本研究感興趣的是阿丹對關鍵事件的描述,尤其是在德韋爾蘇伊士攻勢中,以色列地面部隊采用了獨特的縱深機動、火力和空中支援組合,擊敗了埃及先進的防空系統,重新奪回了西奈天空的制空權。
亞伯拉罕-拉賓諾維奇(Abraham Rabinovich)的《贖罪日戰爭》等二手資料對贖罪日戰爭案例研究至關重要,因為它們通過證實關鍵事實和事件,補充了一手資料。拉比諾維奇的著作從以色列、埃及和敘利亞的角度對戰爭進行了平衡的敘述。書中的 "實地 "細節為本文的分析提供了依據。拉比諾維奇對戰爭的研究依賴于對退伍軍人的 130 多次采訪,以及他在沖突期間作為記者的工作。
對于莫爾坦攻勢的案例研究,現有原始歷史手稿的深度和廣度都很有限。不過,《第二次世界大戰中的美國陸軍,歐洲戰區》(The U.S. Army in World War II, The Europe Theater of Operations: 突圍與追擊》提供了大量信息。艾克-斯凱爾頓聯合武器研究圖書館(Ike Skelton Combined Arms Research Library)的檔案也對這次行動進行了詳細描述。德懷特-艾森豪威爾(Dwight D. Eisenhower)的《最高指揮官就盟軍遠征軍 1944 年 6 月 6 日至 1945 年 5 月 8 日在歐洲的行動向參謀長聯席會議提交的報告》和美國第 30 步兵師的《行動后報告》尤其值得關注。在二手資料方面,《拯救突圍: 25F 26 在二手資料方面,《拯救突圍:1944 年 8 月 7 日至 12 日第 30 師在莫爾坦的英勇戰斗》和《莫爾坦的勝利》是本研究中使用的其他學術著作。
馬克-里爾登(Mark Reardon)的《莫爾坦的勝利》(Victory at Mortain)一書為莫爾坦攻勢案例研究分析提供了參考,因為該書記錄了德國在 D-Day 入侵后試圖決定性地影響西歐戰爭進程的嘗試。通過研究多個裝甲師攻擊防守法國小鎮莫爾坦的一個美軍師的原因,Reardon 對戰術層面的戰斗、作戰演習和高級戰地指揮官的決策之間的關系提供了至關重要的見解。與此同時,阿爾溫-費瑟斯頓(Alwyn Featherston)的著作《拯救突圍》(Saving the Breakout)試圖將莫爾坦戰役從被遺忘的歷史中重新喚醒。在研究中,費瑟斯頓指出了缺乏空中支援和無法攔截英國空軍基地是如何阻礙德國地面機動部隊取得對美軍的聯合優勢的。
本研究的以下部分包括兩個案例研究--贖罪日戰爭和德國莫爾坦攻勢--以及一個結論,以證明 LSCO 的成功可能取決于地面機動部隊摧毀對方部隊的防空系統。第二節和第三節對這兩個歷史案例進行了比較和對比,以說明反介入區域拒止(A2AD)問題和獨特的解決方案。第二節通過強調以色列指揮官利用地面部隊的縱深機動和地面火力支援重新奪回制空權并擊敗埃及 SAMS 保護傘的獨特性,探討了以色列在面對埃及多層次、復雜的防空系統時取得成功的獨特性。
相反,第三節說明了面對在防空系統下作戰的敵軍的困難。它將德國的莫爾坦攻勢視為當今作戰指揮官在面對俄羅斯這樣的同級威脅時可能面臨的結果。該部分強調了德軍在沒有足夠空中支援的情況下,面對在其防空系統下作戰的盟軍所面臨的挑戰。最后,結論部分對兩個案例研究進行了總結,并強化了本項目的中心論點。
世界大國都在研發高超音速武器,以擊敗現有的反介入/區域拒止系統,從而獲得戰勝對手的戰略優勢。美國正在研發高超音速導彈,以繼續與對手競爭。在美國發展這些武器的同時,國家必須利用有限的資源高效、有效地運用這些武器。本論文研究了美國陸軍可能采用的高超音速導彈對美國海軍和美國空軍的影響。該分析通過對 20 世紀 80 年代 Pershing II導彈群的歷史對比,評估了美國陸軍使用高超音速武器所需的能力。將美國陸軍所需的能力與美國海軍和美國空軍的使用能力進行比較,以確定美國陸軍使用高超音速武器的優勢和劣勢。這些比較確定了美國陸軍在軍事行動范圍內的各種情況下在其武器庫中使用高超音速武器的必要性。該評估有助于確定國防部是否繼續為美國陸軍發展高超音速導彈發射能力。
高超音速技術結合了燃燒和等離子空氣動力學的進步,將使未來的導彈比以前的武器飛得更快(達到 5 馬赫或更高)、更遠(超過 1000 英里)。隨著制導系統和干擾屏蔽技術的進步,這些武器對當前反介入/區域拒止(A2/AD)系統的擬制效能對美國及其盟國的國家安全和海外利益構成了嚴重威脅。大國在高超音速技術的研發方面取得了長足進步,提高了遠程火力的射程和殺傷力。更重要的是,我們的對手打算利用這些武器提供攜帶核有效載荷的能力,這對美國及其盟國構成了更大的威脅。這項技術有能力將未來戰場延伸數百英里。這些武器在投入使用后,有可能將戰場擴大到全球范圍。美國必須投資、開發和使用高超音速武器,以應對對手在新一輪高超音速軍備競賽中保持戰略對峙態勢的挑戰。
美國國防部(DoD)已與國防工業簽訂合同,為美國武器庫開發和測試這些高超音速武器。美國海軍和美國空軍目前擁有指揮結構,可以改裝現有發射平臺,在戰場上使用高超音速武器。美國海軍和美國空軍計劃利用現有的指揮結構(全球打擊司令部和潛艇部隊司令部)和改造現有的發射平臺(驅逐艦、潛艇和轟炸機)來使用這些武器。美國陸軍將不得不開發新的發射平臺來使用這些武器,因為原型武器的體積超過了現有發射平臺的承受能力。美國陸軍承認在遠程精確射擊方面存在關鍵的能力差距,并將其作為陸軍現代化的重中之重。陸軍明白,隨著我們的對手在其武器庫中開發和采用高超音速技術,有必要對武器系統進行投資,以趕上和超過這些需求。
高超音速武器的發展將繼續實現對我們對手的 A2/AD 系統的戰略優勢。美國必須評估在未來沖突的戰場上有效使用這些武器的最佳方法。由于美國海軍和美國空軍采用高超音速武器的計劃已經開始實施,本論文將評估美國陸軍采用的方法與美國海軍和美國空軍采用高超音速武器的方法之間的差異。本論文研究了美國陸軍是否應該采用高超音速武器,具體來說就是采用高超音速武器的必要性和能力。
本論文的主要研究問題是:美國陸軍是否應該使用高超音速武器?美國陸軍是否應該使用高超音速武器?為回答這一問題,本文將討論以下輔助問題:
1.) 美國陸軍將如何采用高超音速武器?
a.) 美國陸軍是否會采用類似 "Pershing II "導彈系統的高超音速武器?
b.) 美國陸軍是否會采用與美國海軍和美國空軍類似的高超音速武器?
2.) 美國陸軍采用高超音速武器的必要性是什么?
a.) 如果美國海軍和美國空軍將采用高超音速武器,那么美國陸軍是否需要高超音速武器?
b.) 美國陸軍將如何在軍事行動范圍內使用高超音速武器?
對于許多國家和聯盟來說,A2/AD 系統一直保持著一種對峙態勢,以抵御敵對勢力的入侵。高超音速技術在武器系統中的應用威脅到了這一現狀,因為這些武器的技術能力可能會打敗目前的 A2/AD 系統。如果這成為現實,那么那些已經開發出能夠執行任務的高超音速武器的國家將在擊敗這些 A2/AD 系統和打擊戰略級目標的能力方面比對手更具戰略優勢。
大國一直在利用高超音速技術繼續研發生產武器系統原型,在研發方面比美國更具戰略優勢。在此期間,美國集中資源和力量,在全球反恐戰爭中開展了 "伊拉克自由行動"、"持久自由行動 "和 "堅定決心行動"。隨著美國縮減在中東的重大行動,國防部認識到,在經歷了近二十年的沖突之后,有必要對部隊的現代化進行投資。這種現代化投資是保持對峙態勢以維護全球穩定所必需的。隨著大國在新的高超音速武器軍備競賽中取得同樣的進步,高超音速武器方面的相互能力可能是保持這種態勢的一種方法。
隨著高超音速武器的發展,美國必須集中精力切實有效地利用這些武器。美國國防部已與國防工業公司簽訂了開發高超音速導彈的合同。為了使用這些武器,國防部已認識到需要改造現有發射平臺或開發新的發射平臺,以便在戰場上使用這些武器。在美國軍隊,特別是美國陸軍的現代化進程中,這項高超音速工作需要大量資源。由于資源有限,美國必須有效地集中這些資源,并確定在美國武庫中使用這些武器的最佳行動方案。
本報告探討了將移動和固定水下傳感器組合成一個連貫、分布式網絡的概念。該項目提出了數據融合系統的基準架構,該架構有助于近乎實時地交換來自不同來源的信息。該架構反過來又為進一步的系統開發提供了基礎,并指導今后對相關數據/信息融合概念和技術的研究,以應用于反潛戰(ASW)和水雷戰。
本研究采用獨特的逆向系統工程方法,根據反潛戰殺傷鏈以及探測、分類和跟蹤水下物體的成功概率設計了一個架構。然后將成功概率與人類反潛戰操作員的相同成功概率進行比較,以確定設計的適當性。研究小組利用 ExtendSim 軟件對架構進行建模和仿真,以驗證其功能能力和優于人類反潛潛航器操作員的性能。
由此產生的架構有助于將被動聲學傳感器信息與情報產品成功整合,并在有人和無人平臺上及時分發融合數據。該架構還允許未來向主動聲源、環境數據源、非傳統反艦導彈源(如雷達和 ESM)發展。
圖 1. 反潛戰數據融合系統背景圖
圖 1 描述了項目的范圍。反潛戰數據融合系統架構封裝在綠色框中。黑框描述的是受架構影響的系統,而架構之外的系統則對架構產生影響。團隊決定,被動聲學傳感器將是此次架構迭代中唯一包含的傳感器。圖中還顯示了灰色標記的非被動傳感器功能。團隊建議在未來的架構迭代中加入這些傳感器。圖中增加的非被動傳感器說明了反潛戰數據融合問題的真正范圍,并影響了系統設計對未來發展的預期(即,不要建立一個限制性太強的系統,以至于只能使用被動聲學傳感器)。
研究小組采用標準的殺傷鏈范式來構思反潛戰數據融合系統的成功。殺傷鏈的串行性質支持盧瑟定律的應用。通常所理解的魯瑟定律指出,串聯系統的可靠性等于其組成子系統可靠性的乘積(邁爾斯,2010 年)。就反潛戰數據融合系統而言,該系統就是使用殺傷鏈表示的反潛戰任務,殺傷鏈的每一步都由反潛戰數據融合系統功能表示。將盧瑟定律應用于殺傷鏈,反潛戰任務的成功概率可以用殺傷鏈中每個環節的成功概率來表征。具體來說,反潛戰數據融合系統的成功概率等于探測(發現)、分類(固定)、定位(跟蹤)、交戰(目標)和殺傷(交戰)概率的乘積。圖 2 描述了反潛戰殺傷鏈的盧瑟定律。
圖 2. 反潛戰殺傷鏈的盧瑟法則
反潛戰的現狀在很大程度上依賴于人類操作員。實質上,人類操作員充當了數據融合系統的角色。由于目前的處理能力有限,操作員無法評估所有接收到的信息,從而丟失了潛在的相關數據。此外,在殺傷鏈流程的每一個步驟中,人為錯誤都可能在不知不覺中注入解決方案。反潛戰數據融合架構力求使融合過程自動化,以提高效率,消除人為主觀因素和相關錯誤,從而提高性能,增強反潛戰任務的有效性。反潛戰數據融合系統的成功取決于該系統的性能至少與人類操作員的性能相當。
遙控飛機執行的軍事任務類型不斷擴展到包括空對空作戰在內的各個方面。雖然未來的視距內空對空作戰將由人工智能駕駛,但遙控飛機很可能將首先投入實戰。本研究旨在量化延遲對高速和低速交戰中一對一視距內空對空作戰成功率的影響。研究采用了重復測量實驗設計,以檢驗與指揮和控制延遲相關的各種假設。有空對空作戰經驗的參與者在使用虛擬現實模擬器進行的一對一模擬作戰中受到各種延遲輸入的影響,并對每次交戰的作戰成功率進行評分。這項研究是與美國空軍研究實驗室和美國空軍作戰中心合作進行的。
因變量 "戰斗得分 "是通過模擬后分析得出的,并對每次交戰進行評分。自變量包括輸入控制延遲(時間)和交戰起始速度(高速和低速)。輸入延遲包括飛行員輸入和模擬器響應之間的六種不同延遲(0.0、0.25、0.50、0.75、1.0 和 1.25 秒)。每種延遲在高速和低速交戰中重復進行。采用雙向重復測量方差分析來確定不同處理方法對戰斗成功率的影響是否存在顯著的統計學差異,并確定延遲與戰斗速度之間是否存在交互作用。
結果表明,在不同的潛伏期水平和交戰速度下,戰斗成功率之間存在顯著的統計學差異。潛伏期和交戰速度之間存在明顯的交互效應,表明結果取決于這兩個變量。隨著潛伏期的增加,戰斗成功率出現了顯著下降,從無潛伏期時的 0.539 降至高速戰斗中 1.250 秒潛伏期時的 0.133。在低速戰斗中,戰斗成功率從無延遲時的 0.659 降至 1.250 秒延遲時的 0.189。最大的遞增下降發生在高速潛伏期 1.00 至 1.25 秒之間,低速潛伏期 0.75 至 1.00 之間。高速交戰期間戰斗成功率的總體下降幅度小于低速交戰期間。
這項研究的結果量化了視距內空對空作戰中戰斗成功率的下降,并得出結論:當遇到延遲時,希望采用高速(雙圈)交戰,以盡量減少延遲的不利影響。這項研究為飛機和通信設計人員提供了信息,使他們認識到延遲會降低預期作戰成功率。這種模擬配置可用于未來的研究,從而找到減少延遲影響的方法和戰術。
本論文利用強化學習(RL)來解決空戰機動模擬中的動態對抗博弈問題。空戰機動模擬是運籌學領域常見的一種順序決策問題,傳統上依賴于智能體編程方法,需要將大量領域知識手動編碼到模擬環境中。這些方法適用于確定現有戰術在不同模擬場景中的有效性。然而,為了最大限度地發揮新技術(如自動駕駛飛機)的優勢,需要發現新的戰術。作為解決連續決策問題的成熟技術,RL 有可能發現這些新戰術。
本論文探討了四種 RL 方法--表式、深度、離散到深度和多目標--作為在空戰機動模擬中發現新行為的機制。它實現并測試了每種方法的幾種方法,并從學習時間、基準和比較性能以及實現復雜性等方面對這些方法進行了比較。除了評估現有方法對空戰機動這一特定任務的實用性外,本論文還提出并研究了兩種新型方法,即離散到深度監督策略學習(D2D-SPL)和離散到深度監督 Q 值學習(D2D-SQL),這兩種方法可以更廣泛地應用。D2D-SPL 和 D2D-SQL 以更接近表格方法的成本提供了深度 RL 的通用性。
本文有助于以下研究領域:
本文將介紹在美國海軍水面艦隊中使用自主無人水面艦艇的戰術建議。將評估目前由私人和美國防部項目開發的幾種現有技術,以分析在已制定的作戰概念方案中設定的參數范圍內使用這些技術的可行性。這項研究的目標是通過將自主和無人水面技術應用于近期海軍作戰的戰術中,最大限度地提高水面部隊的戰備狀態。這一作戰概念針對的是決策者、作戰規劃人員以及負責制造、采購、交付和使用艦隊自主無人水面系統的人員。海軍在很大程度上依賴有人水面平臺的戰備狀態來執行各種復雜任務。由于海軍繼續在部隊的維護、訓練和戰備之間平衡部隊需求,自主無人系統提供了額外的能力,有助于維持健康和物質戰備狀態。這項研究旨在通過自主和無人系統的任務性能以及在不久的將來可以整合的能力進行比較分析。這將最終為海軍部隊的持續戰備狀態可能出現的下降提供一個權宜之計。
美軍對無人平臺的使用已大幅改善。在過去 10 年中,無人平臺在航空領域的戰時和穩態使用極大地改善了軍事行動。無人機(UAV)為海外作戰部隊的作戰能力做出了重大貢獻。它們大大提高了關鍵信息流的及時性,同時降低了軍事人員在情報監視和偵察(ISR)領域的風險。無人機還通過增加駐扎時間、增加打擊行動次數來提高航空部隊的進攻打擊能力,并降低了現有載人航空平臺的總體成本、生命周期維護和多功能性。近代以來,自主無人技術的應用和作戰使用在水面艦艇部隊中受到的關注較少,投資也有限。最近,美國國防部對開發和使用無人水面系統執行 ISR 和獵雷任務產生了濃厚的興趣。自主模式技術的應用和使用主要是在學術和科學領域進行研究。隨著海軍繼續將目標無人水面飛行器(無人機)用于水面炮擊和導彈系統目標評估和模擬,技術應用和更復雜的作戰能力變得可行。
開發自主無人水面系統所需的技術已經成熟并可用。然而,對自主無人系統技術的信任仍然是海軍領導人之間最具爭議的話題。自主無人系統可用于執行有人駕駛平臺認為過于危險和平凡,人類無法有效或高效執行的任務。隨著自動無人系統能力的提高,它可以比有人系統更有效地執行這些常規任務,如情報監視偵察、海域感知和導航。