本報告探討了將移動和固定水下傳感器組合成一個連貫、分布式網絡的概念。該項目提出了數據融合系統的基準架構,該架構有助于近乎實時地交換來自不同來源的信息。該架構反過來又為進一步的系統開發提供了基礎,并指導今后對相關數據/信息融合概念和技術的研究,以應用于反潛戰(ASW)和水雷戰。
本研究采用獨特的逆向系統工程方法,根據反潛戰殺傷鏈以及探測、分類和跟蹤水下物體的成功概率設計了一個架構。然后將成功概率與人類反潛戰操作員的相同成功概率進行比較,以確定設計的適當性。研究小組利用 ExtendSim 軟件對架構進行建模和仿真,以驗證其功能能力和優于人類反潛潛航器操作員的性能。
由此產生的架構有助于將被動聲學傳感器信息與情報產品成功整合,并在有人和無人平臺上及時分發融合數據。該架構還允許未來向主動聲源、環境數據源、非傳統反艦導彈源(如雷達和 ESM)發展。
圖 1. 反潛戰數據融合系統背景圖
圖 1 描述了項目的范圍。反潛戰數據融合系統架構封裝在綠色框中。黑框描述的是受架構影響的系統,而架構之外的系統則對架構產生影響。團隊決定,被動聲學傳感器將是此次架構迭代中唯一包含的傳感器。圖中還顯示了灰色標記的非被動傳感器功能。團隊建議在未來的架構迭代中加入這些傳感器。圖中增加的非被動傳感器說明了反潛戰數據融合問題的真正范圍,并影響了系統設計對未來發展的預期(即,不要建立一個限制性太強的系統,以至于只能使用被動聲學傳感器)。
研究小組采用標準的殺傷鏈范式來構思反潛戰數據融合系統的成功。殺傷鏈的串行性質支持盧瑟定律的應用。通常所理解的魯瑟定律指出,串聯系統的可靠性等于其組成子系統可靠性的乘積(邁爾斯,2010 年)。就反潛戰數據融合系統而言,該系統就是使用殺傷鏈表示的反潛戰任務,殺傷鏈的每一步都由反潛戰數據融合系統功能表示。將盧瑟定律應用于殺傷鏈,反潛戰任務的成功概率可以用殺傷鏈中每個環節的成功概率來表征。具體來說,反潛戰數據融合系統的成功概率等于探測(發現)、分類(固定)、定位(跟蹤)、交戰(目標)和殺傷(交戰)概率的乘積。圖 2 描述了反潛戰殺傷鏈的盧瑟定律。
圖 2. 反潛戰殺傷鏈的盧瑟法則
反潛戰的現狀在很大程度上依賴于人類操作員。實質上,人類操作員充當了數據融合系統的角色。由于目前的處理能力有限,操作員無法評估所有接收到的信息,從而丟失了潛在的相關數據。此外,在殺傷鏈流程的每一個步驟中,人為錯誤都可能在不知不覺中注入解決方案。反潛戰數據融合架構力求使融合過程自動化,以提高效率,消除人為主觀因素和相關錯誤,從而提高性能,增強反潛戰任務的有效性。反潛戰數據融合系統的成功取決于該系統的性能至少與人類操作員的性能相當。
本文任務是了解美國國防部(DoD)數字工程的成本和效益,并為武器系統項目中的數字工程活動制定決策支持框架。為做好準備工作,我們查閱了相關文獻,并采訪了利益相關者,以了解數字工程實踐的現狀,以及之前為評估數字工程和基于模型的系統工程(MBSE)的成本和效益所做的努力。然后,我們開發了決策支持框架,其中納入了 (1) 既定的美國防部成本效益分析方法和 (2) 既定的系統工程決策方法。在此過程中,我們注意到了國防部數字工程實踐中的嚴謹性和風險方面的關鍵問題,并將其納入了我們的研究范圍
研究表明,在武器系統項目生命周期的任何階段,如果收集了相應的項目數據,或利用了基于目標的系統工程原則,都有可能為數字工程提供成本效益決策支持。計算數字工程的確切成本和收益并不完美,因為沒有分析師能獲得沒有數字工程開發的相同武器系統項目--反事實場景。
盡管許多作者都聲稱 MBSE 和數字工程有好處,但支持這些說法的實證數據仍然很少。用 "更好 "和 "更容易 "等籠統的術語來表述所聲稱的或期望的益處是無法評估的,但在項目決策中可能已經考慮到了這些因素。大多數已發表的有關數字工程和 MBSE 的研究報告所引用的參考文獻都來自軟件開發實踐。因此,它們與武器系統工程的實際應用相關性有限。盡管國防部長期以來一直表示要采用更多工業類型的開發和創新方法,但工業普遍要求的投資回報理由并未在國防部文化中扎根。
第一個框架以經濟學家和國防部分析人員所熟悉的既定成本效益分析實踐為基礎。根據這些實踐,我們開發了一種專門針對國防部項目中數字工程實施的方法。
第二個框架利用了《聯合能力集成與開發系統》(Joint Capabilities Integration and Development System)中編纂的系統工程目標定義流程,以及與美國防部相關的采購條律。以關鍵性能參數和關鍵系統屬性為重點,為數字工程方法建立了可量化的效益單元:性能指標。利用邏輯模型方法、相應風險的調整和成本類別的成本細分矩陣,提供了一種貿易研究手段,用于從多個數字工程活動方案中進行比較和選擇,因為它們可能會影響已定義的武器系統目標。
接下來,考慮了數字工程的嚴謹性和風險問題--重點政策可通過數字工程改善開發和采購成果的杠桿點。最后,總結了研究結果,提出了處理嚴謹性和風險問題的建議,并介紹了兩個框架。
機器人和人工智能正在改變我們世界的許多方面。本研究將調查這些技術在水下監視領域的潛在影響和應用,更具體地說,是在應對水雷威脅方面的潛在影響和應用。最終目的是測試是否有可能利用人工智能算法使自主水下航行器具備必要的能力,以取代海上掃雷行動中的人類操作員。這項研究的重要性既在于海事部門日益增長的重要性,也在于機器人和人工智能學科的科學價值。
事實上,海事部門在社會和世界經濟中發揮著越來越重要的作用,這就要求加強安全措施,以保證服務的連續性。海上貿易的增長、通過水下管道輸送的數據和原材料的數量以及在海岸線附近或海域建造的基礎設施的重要性都證明了這一點。然而,必須強調的是,目前監測、控制和必要時干預這種環境的能力非常有限。要監測和保護廣闊的海域,需要付出巨大的努力,而這些海域的邊界很難界定,也沒有關于威脅性質的準確信息,以目前在該領域使用的技術很難持續下去。最近發生的幾起破壞其中一些基礎設施的事件就證明了這一點,這些事件對整個地區的穩定造成了嚴重后果(見北溪管道事件)。
機器人技術和人工智能的最新發展也為這一領域開辟了新天地,創造了重要機遇。一方面是所謂的無人海上系統的發展和演變,這種系統能夠在惡劣的環境中工作,配備強大的傳感器,但平均成本要比傳統的海軍資產低得多;另一方面是人工智能,它使機器能夠在沒有人類干預的情況下執行越來越復雜的操作。
本文的研究結構如下。在引言中,概括性地指出了使用海上無人系統(MUS)進行水下監視所面臨的主要挑戰和機遇,并分析了該領域最有前途的戰略和解決方案。
然后,重點轉向本論文開發的主要應用,即研究和實現能夠自主探測和定位海底地雷的系統和相關算法。
第一步是選擇一個符合成本效益和小尺寸要求的合適平臺。然后選擇一個能夠在水下探測水雷等物體的傳感器,并將其集成到平臺上。
接下來,討論了人工智能的發展及其在水下領域的應用。重點是研究應用于水下圖像的自動目標識別的最新技術。
從最有前途的最新技術入手,開始為自主水下航行器上的準實時應用選擇最佳算法。為此,創建了一個水下圖像數據集,用于訓練和測試基于卷積神經網絡的算法。選定用于船上集成的算法是 “只看一次”(YOLO)神經網絡。該算法的集成實現了為自動潛航器提供自主探測海底類雷物體能力的目標。此外,該算法的訓練和測試階段強調了正確選擇不同數據集的數據以及管理不同水下感知傳感器的重要性。然而,這些研究結果凸顯了這些算法的一些局限性,這促使人們開始尋找新的解決方案。特別是,我們提出了一種名為 “顯著性 CNN ”的算法,它將使用顯著性算法檢測圖像中異常的能力與 CNN 對已知物體進行分類的能力相結合。結果,這種兩階段分類器既能區分感興趣的物體,也能區分海底的一般異常現象。
最后,結束語一章為今后的工作留出了空間,提出了擬議算法 Saliency-CNN 的新實施方案,并為數字孿生系統在水下機器人技術中的引入和使用鋪平了道路。
圖 1.1: CSSN 的系統體系示意圖。由網關浮標與指揮和控制站連接的異構無人系統,具有各種傳感和通信方式(水下和無線電)以及高度自動化。
圖 2.2: 基于無人系統的水下監視概念方案。每個無人潛航器都攜帶一個或多個特定有效載荷并執行特定任務,通過網絡進行通信、數據收集和實時監測。水下和空中環境之間的通信基礎設施由作為網關浮標的 USV(即配備聲學和無線電調制解調器)提供保障。北約研究船 “聯盟號”(NRV Alliance)是輔助船,用于開展各種海洋學活動,并可充當 C2S。在草圖中,UUV 配備了矢量傳感器和/或聲學陣列,用于探測入侵者。但有些 UUV 則配備了側掃聲納有效載荷,用于海底探測。
本文探討了自主無人機系統(UAS)的制導和控制。具體而言,研究了基于模型參考自適應控制(MRAC)的尾翼無人機系統,以及用于戰術機動和覆蓋的多旋翼無人機系統的制導和控制。調查了當前和潛在的應用,并找出了現有技術的差距。
為了解決四旋翼無人機這一特殊類別的尾翼無人機系統的控制問題,研究人員開發了兩種方法,以解決建模不確定性、未建模有效載荷、陣風以及執行器故障和失靈等問題。在第一種方法中,尾翼無人機系統的縱向動力學采用 MRAC 法進行調節,以在新穎的控制架構中實現規定性能和輸出跟蹤。用于規定性能和輸出跟蹤的 MRAC 法則結合了線性二次調節器 (LQR) 基線控制器,使用積分反饋互連。利用障礙 Lyapunov 函數對軌跡跟蹤誤差進行約束,并通過采用軌跡跟蹤誤差瞬態動態參考模型來保證用戶定義的軌跡跟蹤誤差收斂速率。在該控制系統中,平移和旋轉動力學分別分為外環和內環,以考慮到四旋翼雙翼飛行器的動力不足問題。在外環中,氣動力的估計值和 MRAC 法則用于穩定平移動力學。此外 此外,還推導出參考俯仰角,使飛行器的總推力永遠不會指向地球,以確保安全,并避免通常用于確定方向的帶符號反正切函數固有的不連續性。在內環中,氣動力矩的估計值和 MRAC 法則用于穩定旋轉動力學。此外,還提出了一種用于確定所需總推力的法則,該法則可確保如果飛行器的方位與所需方位足夠接近,則會施加適當的推力。還提出了一種控制分配方案,以確保始終實現所需的推力力矩,并滿足對執行器產生的推力的非負約束。仿真驗證了針對規定性能和輸出信號跟蹤采用 MRAC 的控制架構,并將規定性能 MRAC 法與經典 MRAC 法進行了比較。
在第二種方法中,提出了一種基于 MRAC 的統一控制架構,該架構沒有將縱向和橫向動力學分開。平移和旋轉動力學分別被分離為外環和內環,以解決尾翼無人機系統的動力不足問題。由于預計飛行器會發生較大的旋轉,因此使用無奇異性的四元數來捕捉尾翼的方向。此外,還通過使用障壁 Lyapunov 函數來解決卷揚現象,以確保跟蹤誤差四元數的第一個分量為正,從而按照最短的旋轉將飛行器的當前方位驅動到參考方位。在外環中,利用對空氣動力的估計和 MRAC 法則確定所需的推力。參考方位是根據正交普羅克斯特問題的解確定的,該問題可找到從當前推力方位到所需推力方位的最小旋轉。由于正交普羅克里斯特問題的不連續性質,角速度和加速度無法通過對正交普羅克里斯特問題解的時間導數來推導。奇異值分解的不連續性。因此,我們使用兩次連續可微分函數--球面線性插值,來尋找連接捕捉車輛當前方位的單元四元數和捕捉參考方位的單元四元數的大地線。一個有趣的結果是,角速度和加速度只取決于參數化球面線性插值函數的標量值函數的一階導數和二階導數;實際函數并不重要。然而,確定該函數的形狀并非易事,因此采用了受模型預測控制啟發的方法。在內環中,使用氣動力矩估計值和 MRAC 法來穩定旋轉動力學,并將推力分配給各個螺旋槳。建議的控制方案的有效性通過仿真得到了驗證。
提出了一種用于自主無人機系統的集成制導和控制系統,可在未知、動態和潛在的敵對環境中,按照用戶規定的不計后果或戰術方式進行機動。在該制導和控制系統中,戰術操縱是通過在飛行器接近目標時利用環境中的障礙物來實現的。不計后果的機動是通過在向目標前進時忽略附近障礙物的存在,同時保持不發生碰撞來實現的。魯莽行為和戰術行為的劃分受到生物啟發,因為動物或地面部隊都會使用這些戰術。制導系統融合了路徑規劃器、避免碰撞算法、基于視覺的導航系統和軌跡規劃器。路徑規劃器以 A? 搜索算法為基礎,并提出了可定制調整的 "到達成本"(cost-to-come)和啟發式函數,通過降低底層圖中捕獲靠近障礙物集的節點的邊的權重,利用障礙物集進行躲避。啟發式的一致性已經確定,因此,搜索算法將返回最優解,而不會多次擴展節點。在現實場景中,需要快速重新規劃,以確保系統實現所需的行為,并且不會與障礙物發生碰撞。軌跡規劃器基于快速模型預測控制(fMPC),因此可以實時執行。此外,還采用了一個自定義的可調成本函數,該函數權衡了與障礙物集的接近程度和與目標的接近程度的重要性,為實現戰術行為提供了另一種機制。新穎的避免碰撞算法是基于解決一類特殊的半有限編程問題,即二次辨別問題。避撞算法通過尋找將無人機系統與障礙物集分隔開來的橢球體,生成無人機系統附近自由空間的凸集。凸集在 fMPC 框架中用作不等式約束。避撞算法的計算負擔是根據經驗確定的,并證明比文獻中的兩種類似算法更快。上述模塊被集成到一個單一的制導系統中,該系統為任意控制系統提供參考軌跡,并在多次模擬和飛行測試中展示了所提方法的有效性。此外,還提出了飛行行為分類法,以了解可調參數如何影響最終軌跡的魯莽性或隱蔽性。
最后,介紹了用于自主無人機系統的綜合制導和控制系統,該系統可在未知、動態和潛在敵對環境中,按照用戶的要求,以不計后果或戰術的方式執行戰術覆蓋。覆蓋的制導問題涉及收集環境信息的策略和路線規劃。收集未知環境信息的目的是幫助服務組織和第一反應人員了解態勢和制定計劃。為解決這一問題,需要綜合考慮目標選擇、路徑規劃、避免碰撞和軌跡規劃。我們提出了一種基于八叉樹數據結構的新型目標選擇算法,用于為路徑規劃器自主確定目標點。在該算法中,由導航系統推導出的體素地圖捕捉了環境中各區域的占用和探索狀態,并被分割成捕捉大面積未探索區域和大面積已探索區域的分區。大面積未探索區域被用作候選目標點。目標點的可行性通過采用貪婪 A? 技術來確定。該算法擁有可調參數,允許用戶在確定目標點序列時指定貪婪或系統行為。這種技術的計算負擔是根據經驗確定的,并證明可在現實場景中實時使用。路徑規劃器基于終身規劃 A?(LP A?)搜索算法,與 A?技術相比,該算法更具優勢。此外,還提出了一種可自定義調整的成本-歸宿和啟發式函數,以實現戰術或魯莽的路徑規劃。提出了一種新的避免碰撞算法,作為上述避免碰撞算法的改進版本,改進了所產生的約束集的體積,從而使更多的自由空間被凸集捕獲,因此,軌跡規劃者可以利用更多的環境進行戰術機動。該算法基于半定量編程和快速近似凸殼算法。軌跡規劃器以 fMPC 為基礎,采用自定義成本函數,通過滑行障礙物表面實現戰術機動,并將所需加速度作為與掩體距離的函數進行調節;采用障礙函數約束飛行器的姿態并確保推力正向性;采用四旋翼無人機系統的輸出反饋線性化運動方程作為微分約束,以實現積極的機動。利用定制的 C++ 模擬器驗證了所提系統的功效。
本論文將探討在海洋環境中運行的自主無人機系統在制導和控制算法方面存在的一些不足。
本報告概述了自適應自主系統以及對這些系統的分析和評估所面臨的挑戰。報告回顧了自適應系統的定義、目前正在開發的系統、早期的分類嘗試以及分析指標定義。為便于分析,對傳感器、融合/邏輯和執行器子系統進行了定義,并提出了一些子系統分析方法。討論了分析面臨的直接和間接挑戰。還討論了與條令相關的重要考慮因素,以及影響分析和評估的戰術、技術和程序。
圖:無人系統的自主性級別(ALFUS)
自主國防系統對美陸軍的重要性與日俱增;國防部副部長已將自主性確定為國防部第三次抵消戰略中的關鍵技術(Ahner 和 Parson,2016 年)。這些系統可以極大地幫助作戰人員,但也給系統開發人員和系統分析人員帶來了挑戰。在開發完整的性能本體和測試方法以定義和評估自主系統的性能方面存在許多挑戰。其中最主要的是自主系統預期運行的動態環境。自主系統環境的變化預計會影響系統性能。測試方法必須包括這種動態環境的所有方面。
表1正在進行的自主性項目
遙控飛機執行的軍事任務類型不斷擴展到包括空對空作戰在內的各個方面。雖然未來的視距內空對空作戰將由人工智能駕駛,但遙控飛機很可能將首先投入實戰。本研究旨在量化延遲對高速和低速交戰中一對一視距內空對空作戰成功率的影響。研究采用了重復測量實驗設計,以檢驗與指揮和控制延遲相關的各種假設。有空對空作戰經驗的參與者在使用虛擬現實模擬器進行的一對一模擬作戰中受到各種延遲輸入的影響,并對每次交戰的作戰成功率進行評分。這項研究是與美國空軍研究實驗室和美國空軍作戰中心合作進行的。
因變量 "戰斗得分 "是通過模擬后分析得出的,并對每次交戰進行評分。自變量包括輸入控制延遲(時間)和交戰起始速度(高速和低速)。輸入延遲包括飛行員輸入和模擬器響應之間的六種不同延遲(0.0、0.25、0.50、0.75、1.0 和 1.25 秒)。每種延遲在高速和低速交戰中重復進行。采用雙向重復測量方差分析來確定不同處理方法對戰斗成功率的影響是否存在顯著的統計學差異,并確定延遲與戰斗速度之間是否存在交互作用。
結果表明,在不同的潛伏期水平和交戰速度下,戰斗成功率之間存在顯著的統計學差異。潛伏期和交戰速度之間存在明顯的交互效應,表明結果取決于這兩個變量。隨著潛伏期的增加,戰斗成功率出現了顯著下降,從無潛伏期時的 0.539 降至高速戰斗中 1.250 秒潛伏期時的 0.133。在低速戰斗中,戰斗成功率從無延遲時的 0.659 降至 1.250 秒延遲時的 0.189。最大的遞增下降發生在高速潛伏期 1.00 至 1.25 秒之間,低速潛伏期 0.75 至 1.00 之間。高速交戰期間戰斗成功率的總體下降幅度小于低速交戰期間。
這項研究的結果量化了視距內空對空作戰中戰斗成功率的下降,并得出結論:當遇到延遲時,希望采用高速(雙圈)交戰,以盡量減少延遲的不利影響。這項研究為飛機和通信設計人員提供了信息,使他們認識到延遲會降低預期作戰成功率。這種模擬配置可用于未來的研究,從而找到減少延遲影響的方法和戰術。
本論文探討了支持分布式海上作戰(DMO)的兩種不同通信架構的選項。這兩種架構分別是星形網絡和無線網狀網絡。為本研究開發場景模型的目的是幫助讀者更好地理解緊密結合的數據類型、數據速率和所需網絡功能對網絡設計的影響。本研究針對需要視頻、語音和數據鏈路組合的場景中的各種資產,對每種架構進行了評估。它深入分析了每種設計所固有的信息傳遞延遲,并評估了每種網絡的可靠性。研究發現,利用機載路由功能的低地球軌道衛星星形和網狀網絡可提供最低的定時延遲。研究還發現,通過專用通道提供視頻饋送時,網絡抖動最小。最后,網狀網絡的可靠性略高于傳統的星形網絡,這是因為數據鏈路具有冗余性,而且缺少一個可能易受攻擊的中心樞紐。因此,利用特設無線網狀通信網絡將支持在分布式海上作戰進行有限的進攻性聯合火力打擊期間部署自適應部隊包。
圖 1. 星形網絡拓撲(左)和全網狀拓撲(右)。
在任何戰斗環境中,良好的通信都是取得勝利的關鍵。即使是在擁有堅實通信基礎設施的地理位置,如果戰地指揮官不能及時收到來自戰地資產的正確信息報告,也會造成混亂。在海戰中,尤其是在近海,通信基礎設施充其量也是微乎其微。
為響應美國防部長關于改進聯合火力(JF)行動的號召,本畢業設計探討了支持分布式海上行動(DMO)的兩種不同通信架構的選項。這兩種架構分別是星形網絡和無線網狀網絡。
為本研究開發情景模式的目的是幫助讀者更好地理解緊密耦合的數據類型、數據速率和所需網絡功能對網絡設計的影響。這有助于突出已實施網絡的設計限制。模擬結果用于定義基準參考和可追溯數據要求,以支持為 JF DMO 設計的戰術網絡。
A. 戰術通信網絡拓撲結構
網絡設置通常用拓撲結構來描述,拓撲結構是網絡內節點排列和通信的物理方式(美國陸軍工程部,1984 年,7)。本研究評估了圖 1 左側所示的傳統星形網絡和圖 1 右側所示的多層網狀通信網絡,并量化了這些鏈路的排列可能對操作產生的影響。
1.星形網絡
最廣泛使用的無線網絡拓撲結構是星形幾何模式。星形拓撲結構包括一個中心節點,所有信息都通過該節點流動。在星形格式中,所有信息都必須從每個參與資產發送和接收,并通過中心樞紐路由。這種配置中的中心節點是單點故障。如果中央節點離線,整個網絡就會癱瘓。
2.無線網狀網絡
多層戰術無線網狀網絡是指在網絡內共享信息的過程。網狀網絡描述了一種配置,其中每個節點都具有通信能力,可以相互發送和接收信息。在網狀網絡中,節點是自組織的,可根據需要通過路由算法自動建立(Shillington 和 Tong,2011 年)。
B. 結論
本研究的設計要求側重于網絡配置、對信息定時延遲的影響、網絡抖動和可靠性。研究發現,使用具有機載路由功能的低地球軌道(LEO)衛星的星形和網狀網絡可提供最低的定時延遲。研究還發現,在提供視頻饋送專用通道時,網絡抖動最小。最后,網狀網絡的可靠性略高于傳統的星形網絡,這是因為數據鏈路具有冗余性,而且沒有潛在的易受攻擊的中心樞紐。因此,在分布式海上行動的有限進攻性聯合火力打擊中,利用特設無線網狀通信網絡將支持部署自適應部隊包。
作為分布式海上作戰(DMO)的一個關鍵原則,盡管有人和無人、水面和空中、作戰人員和傳感器在物理時空上都有分布,但它們需要整合成為一支有凝聚力的網絡化兵力。本研究項目旨在了解如何為 DMO 實現有凝聚力的作戰人員-傳感器集成,并模擬和概述集成實施所需的系統能力和行為類型。作為一個多年期項目,本報告所述的第一項工作重點是建立一個適用于 DMO 建模、模擬和分析的計算環境,尤其側重于有人和無人飛機的情報、監視和偵察 (ISR) 任務。
在半個世紀的建模和仿真研究與實踐(例如,見 Forrester, 1961; Law & Kelton, 1991),特別是四分之一世紀的組織建模和仿真工作(例如,見 Carley & Prietula, 1994)的基礎上,獲得了代表當前技術水平的計算建模和仿真技術(即 VDT [虛擬設計團隊];見 Levitt 等人, 1999)。這種技術利用了人們熟知的組織微觀理論和通過基于代理的互動而產生的行為(例如,見 Jin & Levitt, 1996)。
通過這種技術開發的基于代理的組織模型在大約三十年的時間里也經過了數十次驗證,能夠忠實地反映對應的真實世界組織的結構、行為和績效(例如,參見 Levitt, 2004)。此外,幾年來,已將同樣的計算建模和仿真技術應用到軍事領域(例如,見 Nissen, 2007),以研究聯合特遣部隊、分布式作戰、計算機網絡行動和其他任務,這些任務反映了日益普遍的聯合和聯盟努力。
本報告中描述的研究項目旨在利用計算建模來了解如何為 DMO 實現有凝聚力的戰斗傳感器集成,并建模和概述集成實施所需的系統能力和行為類型。作為一個多年期項目,本報告所述的第一項工作重點是建立一個適用于 DMO 建模、模擬和分析的計算環境。在這第一項工作中,將對當今的海上行動進行建模、模擬和分析,重點是有人駕駛和無人駕駛飛機的情報、監視和偵察(ISR)任務。這為與執行 ISR 任務的一個或多個 DMO 組織進行比較確立了基線。這也為與其他任務(如打擊、防空、水面戰)進行比較建立了基線。第二階段接著對一個或多個備用 DMO 組織進行建模、模擬和分析。
在本技術報告的其余部分,首先概述了 POWer 計算實驗環境,并列舉了一個實例,以幫助界定 DMO 組織和現象的計算建模。依次總結了研究方法。最后,總結了沿著這些方向繼續開展研究的議程。這些成果將極大地提高理解和能力,使能夠為 DMO 實現戰斗員與傳感器的集成,并為集成實施所需的系統能力和行為建模和概述。
監視和通信中繼任務對無人駕駛飛機的可用能源供應提出了要求。自主飛行算法和太陽能光伏系統都提供了一種從環境中(分別從熱上升氣流和太陽輻射中)提取能量的方法,以延長飛機儲存能量極限之外的續航時間。此外,多架飛機可以通過共享信息提高飛行成功率。本報告介紹了一個由多架協調飛行器組成的演示系統,每架飛機都具有自主飛行算法和集成的太陽能光伏發電系統。計劃用兩架飛機進行飛行測試,以量化同時使用自主飛行和太陽能系統時的任務性能。
本報告記錄了通過利用深度學習(DL)和模糊邏輯在空間和光譜領域之間整合信息,來加強多模態傳感器融合的研究成果。總的來說,這種方法通過融合不同的傳感器數據豐富了信息獲取,這對情報收集、數據傳輸和遙感信息的可視化產生了積極的影響。總體方法是利用最先進的數據融合數據集,為并發的多模態傳感器數據實施DL架構,然后通過整合模糊邏輯和模糊聚合來擴展這些DL能力,以擴大可攝入信息的范圍。這項研究取得的幾項進展包括:
出版物[1, 2, 3, 4, 5]進一步詳細介紹了取得的進展。
美國政府面臨著保持作為世界上空間物體編目數據提供者的步伐挑戰。用非傳統的傳感器來增強能力,是一種快速和低成本的改進。然而,巨大的交易空間和未開發的系統性能要求給成功的資本化帶來了挑戰。本文旨在通過一個多學科的研究,更好地定義和評估增強功能的效用。
假設的望遠鏡架構在不同的時間里被建模和模擬,然后在啟發式算法中使用多目標優化對性能措施和約束進行評估。決策分析和帕累托優化確定了一套高性能的架構,同時保留了決策者設計的靈活性。
建議將容量、覆蓋率和未觀察到的最大時間作為關鍵性能指標。在1017個架構中,共有187個被確定為最佳表現者。總共有29%的傳感器被發現在80%以上的頂級架構中。其他考慮因素進一步將交易空間減少到19個最佳選擇,這些選擇為每個空間物體平均收集49-51個觀測數據,平均最大未觀測時間為595-630分鐘,提供地球同步軌道帶的冗余覆蓋。這意味著與模擬的僅有政府的基線結構相比,能力和覆蓋面增加了三倍,未觀察到的最大時間減少了2小時(16%)。
這項研究利用基于物理學的模型和現代分析技術,驗證了增強型網絡概念的效用。它客觀地回應了要求改進編目工作的政策,而不是僅僅依靠專家得出的點解決方案。