本論文探討了支持分布式海上作戰(DMO)的兩種不同通信架構的選項。這兩種架構分別是星形網絡和無線網狀網絡。為本研究開發場景模型的目的是幫助讀者更好地理解緊密結合的數據類型、數據速率和所需網絡功能對網絡設計的影響。本研究針對需要視頻、語音和數據鏈路組合的場景中的各種資產,對每種架構進行了評估。它深入分析了每種設計所固有的信息傳遞延遲,并評估了每種網絡的可靠性。研究發現,利用機載路由功能的低地球軌道衛星星形和網狀網絡可提供最低的定時延遲。研究還發現,通過專用通道提供視頻饋送時,網絡抖動最小。最后,網狀網絡的可靠性略高于傳統的星形網絡,這是因為數據鏈路具有冗余性,而且缺少一個可能易受攻擊的中心樞紐。因此,利用特設無線網狀通信網絡將支持在分布式海上作戰進行有限的進攻性聯合火力打擊期間部署自適應部隊包。
圖 1. 星形網絡拓撲(左)和全網狀拓撲(右)。
在任何戰斗環境中,良好的通信都是取得勝利的關鍵。即使是在擁有堅實通信基礎設施的地理位置,如果戰地指揮官不能及時收到來自戰地資產的正確信息報告,也會造成混亂。在海戰中,尤其是在近海,通信基礎設施充其量也是微乎其微。
為響應美國防部長關于改進聯合火力(JF)行動的號召,本畢業設計探討了支持分布式海上行動(DMO)的兩種不同通信架構的選項。這兩種架構分別是星形網絡和無線網狀網絡。
為本研究開發情景模式的目的是幫助讀者更好地理解緊密耦合的數據類型、數據速率和所需網絡功能對網絡設計的影響。這有助于突出已實施網絡的設計限制。模擬結果用于定義基準參考和可追溯數據要求,以支持為 JF DMO 設計的戰術網絡。
A. 戰術通信網絡拓撲結構
網絡設置通常用拓撲結構來描述,拓撲結構是網絡內節點排列和通信的物理方式(美國陸軍工程部,1984 年,7)。本研究評估了圖 1 左側所示的傳統星形網絡和圖 1 右側所示的多層網狀通信網絡,并量化了這些鏈路的排列可能對操作產生的影響。
1.星形網絡
最廣泛使用的無線網絡拓撲結構是星形幾何模式。星形拓撲結構包括一個中心節點,所有信息都通過該節點流動。在星形格式中,所有信息都必須從每個參與資產發送和接收,并通過中心樞紐路由。這種配置中的中心節點是單點故障。如果中央節點離線,整個網絡就會癱瘓。
2.無線網狀網絡
多層戰術無線網狀網絡是指在網絡內共享信息的過程。網狀網絡描述了一種配置,其中每個節點都具有通信能力,可以相互發送和接收信息。在網狀網絡中,節點是自組織的,可根據需要通過路由算法自動建立(Shillington 和 Tong,2011 年)。
B. 結論
本研究的設計要求側重于網絡配置、對信息定時延遲的影響、網絡抖動和可靠性。研究發現,使用具有機載路由功能的低地球軌道(LEO)衛星的星形和網狀網絡可提供最低的定時延遲。研究還發現,在提供視頻饋送專用通道時,網絡抖動最小。最后,網狀網絡的可靠性略高于傳統的星形網絡,這是因為數據鏈路具有冗余性,而且沒有潛在的易受攻擊的中心樞紐。因此,在分布式海上行動的有限進攻性聯合火力打擊中,利用特設無線網狀通信網絡將支持部署自適應部隊包。
在過去的十年中,無人駕駛飛行器(UAV)的使用領域完全爆炸式增長。如今,它們被用于執行監視任務和檢查人們難以到達的地方。為了提高執行這類任務的效率和穩健性,可以使用合作無人機群。然而,這對使用哪些解決方案來定位和導航智能體提出了新的要求。本論文研究、實施和評估了無人機群相對定位和繪圖的解決方案。
報告研究并介紹了通過使用擴展卡爾曼濾波器(EKF)融合智能體之間的速度數據和成對距離測量來估計相對位置的系統。在現有估計相對位置方法的基礎上開發了一種濾波器,并對其進行了修改,以包括星座中所有可用的成對距離,從而使定位精度提高了 47%。此外,還開發了一種多維縮放(MDS)初始化程序,能夠非常準確地確定蜂群內的初始相對位置,幫助 EKF 幾乎瞬間收斂。此外,還開發并測試了另一種使用 MDS 坐標估計值作為輸入的 EKF。
無人機配備了測距探測器,可測量四個方向與墻壁的距離。距離數據被插入一個網格,將環境離散化。在繪制環境地圖時,采用了一種方法來考慮無人機位置的不確定性,從而改進了結果。對蜂群繪制地圖的兩種方法進行了測試,結果表明它們適用于不同的設置。如果蜂群中的無人機具有共同的坐標系,無人機就會更新相同的網格并繪制地圖。如果無人機的坐標系不同,則分別創建地圖,然后合并。一般來說,協作構建地圖的方法性能更好,而且不需要復雜的地圖合并解決方案。要合并地圖,需要一個成本函數來衡量地圖的匹配程度。我們對三種不同的成本函數進行了比較和評估。使用已知的全局位置和相對姿態估計值,對探索環境的蜂群的映射器進行評估。
事實證明,在將相對姿態估計值輸入繪圖系統時,利用已有的定位濾波器所實現的精度足以生成分辨率為十厘米的地圖。在模擬環境中可以實現更高的制圖分辨率,但需要更多的計算時間,因此沒有進行測試。
本論文旨在研究飛行員在不同模擬環境中的表現與認知、情緒、疲勞和生理的關系。本論文拓寬了對飛行員在作戰環境中非技術技能發展的理解并擴大了其可能性。論文在低保真和高保真兩種環境下對這些現象進行了研究。在研究 I 中,使用低保真模擬對商業飛行員的動態決策進行了調查。接下來,在研究二、三和四中,使用高仿真環境,重點調查了軍事背景下長時間飛行任務中的認知、情緒及其生理關聯。
研究 I 表明,低保真模擬有助于了解商業飛行員動態決策中的認知過程。使用此類模擬可幫助飛行員識別可用于不明確問題的有用信息,這對成功的決策過程至關重要。飛行員決策能力的培養可以通過使用低保真模擬來補充。這可能有利于整個決策過程,包括診斷、判斷、選擇、反饋提示和執行。
研究二、研究三和研究四表明,在評估個人心理方面的情況時,需要高保真環境,這就要求對自然環境有較高的再現水平。長時間單人駕駛飛機執行任務時,應考慮到飛行員在執行任務約 7 小時后可能會出現持續注意力下降、積極情緒減少和消極情緒增加的情況。然而,在 11 小時的飛行任務中,更復雜的認知任務的表現可能不會下降。心率變異性與情緒評級之間的關聯可能表明生理喚醒水平。這可能有助于評估飛行員在這種情況下的整體心理狀態。對飛行員在這種環境下的心理狀態進行全面評估,可能有助于飛行員做好準備,并有助于制定長時間飛行任務的計劃。
綜上所述,本論文的結論表明,適當使用低保真和高保真模擬可促進飛行員認識到適應環境變化的必要性。這促進了作為安全基本要素的應變能力。
美軍繼續利用外國伙伴部隊作為美國安全政策的戰略支柱,將采取謹慎、慎重的選擇方法來評估伙伴關系的可行性。歷史表明,須盡早選擇合適的伙伴部隊,以避免浪費時間、精力、資源,甚至生命在毫無結果的伙伴關系上。這一理念對未來同樣重要。
本論文基于這樣一個假設,即通過比較杠桿作用和目標一致性可以確定伙伴關系的可行性,運用了演繹分析法。本研究開發的模型對基礎扎實的委托代理關系理論進行了調整和擴展。該模型通過考察目標一致性和杠桿作用來評估預期伙伴關系的預期可行性,從而解決 "逆向選擇 "的風險問題。
從強化的理論和模型中,可以識別理想和不理想合作伙伴的特征。為了證明該模型的實用性,將其應用于歷史上和最近與各地區地方勢力建立的委托智能體伙伴關系的案例研究。這一演示表明,可以很容易地對合作伙伴部隊進行分類,并從可行性方面進行比較。
最后,研究建議將該模型作為八步驟方法的一部分加以實施,以補充評估和選擇伙伴部隊的現有程序。這樣,它就可以成為決策者的有用工具和更高組織級別的解釋輔助工具。
目前,美國政府內部并不存在同步收集情報和調查的能力,而從整體上減輕無人駕駛航空器系統帶來的新威脅需要這種能力。此外,擁有應對權力、知識和經驗的實體基本上都在獨立的環境中工作。本論文試圖找出最佳方法,匯集各個機構的力量,將情報和調查能力統一到應對無人機系統威脅的巨型行動中。為了解決這個問題,我們選擇了工作組、特遣部隊和單一機構指定作為可能的選擇,特別是考慮到它們的歷史先例和成功的可能性。每種方案都根據其接受兩個決定性特征的能力進行了比較:協作和承諾。分析結果表明,工作隊模式最終是全面應對無人機系統威脅的最有效手段。它通過利用情報和調查行動能力來妥善解決無人機系統殺傷鏈中六個步驟中的每一個步驟,在高度協作和承諾的環境中減輕了與當前技術和法律限制相關的挑戰。本論文概述的結論和相應建議提供了明確的方向和合理的實施計劃。
目前,美國政府內部并不存在同步收集情報和調查的能力,而這種能力是全面緩解無人駕駛航空器系統帶來的新威脅所必需的。此外,擁有應對權力、知識和經驗的實體基本上都在獨立的環境中工作。這其中有一些是現行法律限制所規定的,但也有一股潛在的自私自利的政治潮流在其中彌漫。
本論文試圖找出最佳方法,將各個機構的優勢集合起來,將情報和調查能力統一到一個巨無霸級別的響應中,以應對無人機系統的威脅。本研究揭示的三個主要問題包括:當前技術的局限性、法律障礙,以及對無人機系統 "殺傷鏈 "中一個方面的短視。工作組、特別工作組和單一機構指定是根據其歷史先例和成功可能性而特別選擇的方案。每種方案都根據其是否具備兩個決定性特征進行了比較:協作和承諾。
首先對工作組進行了審查,并最終將其排除在外。雖然工作組具有較高的協作水平,但在無人機系統威脅環境下,有效的承諾水平要求極低。此外,工作組在聯邦、州和地方政府中已經非常普遍,這使它們看起來更像是現狀而非創新選擇。
特遣部隊是第二個被審查的對象,不容忽視。與工作組不同,特遣部隊具有高度的協作性和承諾性。特遣部隊模式在整合情報和調查行動以應對恐怖主義、有組織犯罪和毒品等其他重大威脅方面也有成功的歷史。
最后分析的方案是指定單一機構。就承諾而言,這一選擇的評分極高,因為它要對其行動的成敗負全部責任。遺憾的是,單一機構指定在協作方面的排名相應很低。
分析結果表明,特遣部隊模式最終是全面應對無人機系統威脅的最有效手段。它通過利用情報和調查行動能力來妥善解決無人機系統 "殺傷鏈 "中六個步驟中的每一個步驟,在高度協作和承諾的環境中減輕了與當前技術和法律限制相關的挑戰。
本論文中概述的建議提供了實施的方向和合理計劃。該計劃首先由國家行政工作組制定政策,并在州一級進行復制,以確保連續性。在考慮了行政和政策要求后,將建立一個與行政部門平等合作的國家行動工作組,通過制定包含任務導向目標和可實現的里程碑的戰略來履行這些政策義務。這也將在州一級得到體現。
本論文研究如何將無人水面航行器整合到分布式海上作戰的戰斗序列中。目的是設計一種成本效益高、作戰效率高的無人系統,能夠在 2030-2035 年期間為 DMO 概念做出貢獻。本論文確定了在常規航母打擊群、遠征打擊群和/或水面行動群中既具有作戰影響力又具有成本效益的 USV 任務集和組合,以及無人系統是否有可能取代或補充當前有人系統的一些任務集。主要發現是,在以下兩個任務領域,無人潛航器可以極大地補充有人資產:(1)情報、監視和偵察任務集,以及(2)反導彈防御任務集。次要發現是,要達到本論文中描述的效果衡量標準,必須投資 5 億美元建造約 10 個 USV 平臺,并執行上述任務集。作者對美國海軍的建議是采用標準化的 USV 設計,重點關注 AMD 和 ISR 任務包。其次,投資約 5 億美元建造 10 艘這樣的平臺,并將其集成到目前的 CSG、ESG 或 SAG 之一,這將是過渡到在未來艦隊中實施 USV 的墊腳石。
本論文通過開發系統架構和相關離散事件模擬,研究如何將無人水面航行器(USV)融入分布式海上作戰(DMO)概念。目的是研究 DMO 概念中無人水面兵力的潛在任務領域,然后構建標準化 USV 的功能和物理架構。作者采用了與瀕海戰斗艦(LCS)類似的概念,為已確定的任務領域提供可安裝在標準化 USV 上的外部任務模塊包。結構定義完成后,使用離散事件仿真軟件開發了一個模型。該模型的場景被定義為在 2030-2035 年期間與近鄰對手的艦隊對艦隊交戰。在整個模擬過程中,使用了有效性衡量標準來分析擬議 USV 提供的作戰影響。在完成模型分析后,作者最后分析了擬議 USV 平臺的成本與其對艦隊對艦隊交戰結果的總體作戰影響。
A. DMO 和 USV 概述
2017 年,海軍作戰發展司令部創造了 "分布式海上作戰 "一詞,該詞源自 ADM Rowden(2017 年)的 "分布式致命性"(DL)。DMO 更多地以全方位的艦隊為中心的戰斗力來看待分布式兵力,而不是 DL 定義中描述的小兵力組合。DMO 概念的最高目標是讓指揮官有更多的選擇或傳感器/平臺/武器組合,并有足夠的時間超越對手。DMO 考慮到了資源、信息和技術與組織各級關鍵決策者的融合。當美國海軍將一個系統視為一個分布式網絡時,這就很好地概括了 DMO 的概念。分布式網絡具有跨所有作戰領域的所有可用平臺的集成能力,將增強美國海軍的進攻和防御能力。本論文的重點是設計和采購這種分布式網絡中的無人水面飛行器,這不僅將為載人資產提供一種具有成本效益的替代方案,而且由于人工干預有限,還將提供一種更低的風險管理場景。
無人系統有可能成為美國海軍未來兵力結構中的關鍵兵力倍增器。海軍作戰部長理查德森(ADM Richardson,2016 年)在其海軍戰略愿景中列出了四條關鍵的 "努力方向"。其中一條是 "加強海上海軍力量",鼓勵探索 "替代艦隊設計,包括動能和非動能有效載荷以及有人和無人系統"(6)。本論文介紹了無人水面運載工具的基本原理,包括目前可用的等級、類別和任務類型。論文還論述了無人水面飛行器在未來艦隊兵力建設中對 DMO 概念的潛在貢獻,以及對無人水面飛行器未來研發至關重要的關鍵使能技術。
為撰寫本論文,通過建模和仿真分析了三種可供選擇的 USV 及其三種適用的任務包。所選擇的調查平臺是 USV ISR 任務平臺、USV 水面戰任務平臺和 USV 反導彈防御任務平臺,因為它們被認為與 DMO 最為相關。作者指出,按照本論文的規定,這三種備選方案在當前市場上并不容易獲得,但提出功能和物理架構的目的是使未來工作的發展具有可行性,并符合美國海軍有關無人系統的愿景和目標。
表 1 總結了作者利用建模和仿真分析的三種備選 USV,并注釋了其適用的級別類型和有效載荷。
B. 模型定義
為便于分析備選 USV,作者開發了一個模擬模型。為確保在現實場景和作戰環境中分析 DMO 概念,重點放在了南海沿岸沖突上。該模型分為四個主要階段:威脅產生階段、發現階段、目標定位階段和交戰階段。模型中采用了表 1 所示的三種備選 USV。USV AMD 分成兩個獨特的平臺: 這些配置分別用于防御空中平臺和來襲導彈。所有可供選擇的 USV 都為友軍戰斗序列帶來了額外的反制措施,包括箔條、主動和被動誘餌、照明彈以及紅外和可視煙霧。如表 1 所示,攜帶導彈的 USV 還攜帶了特定的有效載荷,為友軍的分布式資源庫提供了額外的軍械。USV ISR 具有其他 USV 備選方案所不具備的能力。該平臺的能力是在對方目標定位和交戰階段增加的,使每一枚潛在的友軍導彈都能在更大范圍內擊中來襲的對方平臺或導彈。
C. 作戰效能分析
數據分析顯示,就多種不同的效能衡量標準(MOEs)而言,一些概念化 USV 不僅在統計上有意義,而且在作戰上也有意義。在分析 USV 如何為 DMO 概念做出貢獻時,有三項效果衡量指標值得關注,它們是 (1) MOE #2:幸存的兵力;(2) MOE #4:10 海里內對方導彈的百分比;(3) MOE #6:防御措施成功率(注意,編號慣例與論文全文一致)。在整個分析過程中,對作戰影響最大的備選 USV 是 USV ISR 平臺、USV AMD AIR 平臺和 USV AMD MISSILE 平臺,而 USV SUW 平臺被證明對作戰沒有影響。分析結果并無定論:在 DMO 概念的范圍內,無人水面航行器在兩個主要任務集中補充有人海軍資產最為有效:(1) 情報、監視和偵察任務集,以及 (2) 反導彈防御任務集(防空和反導彈防御)。這就為 USV 的實施設想了更多的防御態勢方法,即在縱深防御分層戰略中反擊對方平臺或導彈。
D. 成本分析
為了加強作戰效能分析,作者選擇使用參數方法來推導成本模型,預測本論文中描述的備選 USV 的成本。作者確定了 40 個具有歷史采購成本的平臺,并研究了它們的設計規格,以便采用參數方法。生成了等值線圖,以便于對多種投資場景下的運行效果和成本進行權衡分析。分析表明,至少需要投資 5 億美元,才能購置約 10 艘有能力的 USV,從而實現顯著的作戰效能。追加投資 1.000 億美元(總計 1.5 億美元)后,USV 總數有可能增加到 35 艘,與基線投資場景相比,友軍 10 海里范圍內對方導彈的比例提高了 31.2%(MOE #4),成功反制的比例提高了 9.9%(MOE #6)。
E. 結論
與美國海軍 CSG、ESG 和 SAG 的常規兵力結構相比,將 USV 納入 DMO 提供了一種既經濟又有效的作戰命令。事實證明,情報、監視和偵察任務以及反導彈防御任務在本摘要 C 部分所注釋的規定有效性措施方面具有最大的統計意義和作戰影響。以下要點解釋了 USV 在作戰影響方面最值得關注的三項指標:
MOE2:對方兵力存活率。USV ISR 平臺的存在與否對這一 MOE 有重大影響。如果 USV ISR 平臺存在,預計對方兵力存活率最多可降低約 5.9%。
MOE 4:10 NM 范圍內對方導彈的百分比。模型中 USV AMD MISSILE 和 USV AMD AIR 平臺的數量對該 MOE 有很大影響。如果 USV AMD 平臺的組成正確,預計到達 10 海里的對方導彈數量最多可減少約 8.5%。
MOE6:防御措施成功。模型中 USV AMD MISSILE 和 USV AMD AIR 平臺的數量對該 MOE 有重大影響。如果 USV AMD 平臺的構成正確,預計防御措施成功率最多可提高約 4%。
就本摘要 D 部分所述的成本效益而言,值得投資的 USV 只有 USV ISR、USV AMD AIR 和 USV AMD MISSILE 平臺。對于具體的作戰概念和固定的戰斗序列,筆者認為,在戰斗序列中實施 USV 的特定組合是一種具有成本效益的方法,可實現所需的有效性措施。
本報告記錄了通過利用深度學習(DL)和模糊邏輯在空間和光譜領域之間整合信息,來加強多模態傳感器融合的研究成果。總的來說,這種方法通過融合不同的傳感器數據豐富了信息獲取,這對情報收集、數據傳輸和遙感信息的可視化產生了積極的影響。總體方法是利用最先進的數據融合數據集,為并發的多模態傳感器數據實施DL架構,然后通過整合模糊邏輯和模糊聚合來擴展這些DL能力,以擴大可攝入信息的范圍。這項研究取得的幾項進展包括:
出版物[1, 2, 3, 4, 5]進一步詳細介紹了取得的進展。
美國政府面臨著保持作為世界上空間物體編目數據提供者的步伐挑戰。用非傳統的傳感器來增強能力,是一種快速和低成本的改進。然而,巨大的交易空間和未開發的系統性能要求給成功的資本化帶來了挑戰。本文旨在通過一個多學科的研究,更好地定義和評估增強功能的效用。
假設的望遠鏡架構在不同的時間里被建模和模擬,然后在啟發式算法中使用多目標優化對性能措施和約束進行評估。決策分析和帕累托優化確定了一套高性能的架構,同時保留了決策者設計的靈活性。
建議將容量、覆蓋率和未觀察到的最大時間作為關鍵性能指標。在1017個架構中,共有187個被確定為最佳表現者。總共有29%的傳感器被發現在80%以上的頂級架構中。其他考慮因素進一步將交易空間減少到19個最佳選擇,這些選擇為每個空間物體平均收集49-51個觀測數據,平均最大未觀測時間為595-630分鐘,提供地球同步軌道帶的冗余覆蓋。這意味著與模擬的僅有政府的基線結構相比,能力和覆蓋面增加了三倍,未觀察到的最大時間減少了2小時(16%)。
這項研究利用基于物理學的模型和現代分析技術,驗證了增強型網絡概念的效用。它客觀地回應了要求改進編目工作的政策,而不是僅僅依靠專家得出的點解決方案。
本論文探討了區塊鏈與互聯網協議第六版(IPv6)數據包信息的使用,以支持與無人駕駛飛行器(UAVs)智能蜂群的安全、高性能和可擴展的通信。在這篇論文中,我們研究了三種情況下的加密數據包的交換,即點對點、點對多和多對點。我們模擬了每個場景下的蜂群行為,并在模擬運行中改變了蜂群中無人機的數量。基于仿真的結果顯示,對于點對點場景和多對多場景,即使在多對多場景中,交互節點的數量增加,延遲也沒有明顯增加。相反,在點對多的情況下,延遲會增加。需要進行更多的研究來評估本論文中提出的區塊鏈-IPv6方法的安全性和可擴展性。
圖. 使用區塊鏈技術的無人機群智能中的塊生成概念
越來越多的無人機被用于軍事目的,再加上自動化方面的進步,如為無人駕駛飛行器(UAV)配備不同程度的自主權和群集智能,使得這些飛行器成為敵對勢力的誘人目標。為了獲得競爭優勢,對手將試圖找到無人機的飛行控制器、接收器或發射器的可利用的物理和網絡漏洞,然后應用動能、網絡或某種動能和網絡攻擊機制的組合來操縱無人機的行為,例如使無人機墜毀或泄露敏感數據。
攻擊軍用無人機的一個途徑是操縱無人機使用的通信機制,無論是無人機與無人機之間的通信還是無人機與人類操作員之間的通信。例如,對手可以修改或阻止無人機群之間的數據交換,以降低無人機群的行動效率。重要的是,為軍事單位提供的無人機已經過動能和網絡脆弱性評估,與這些脆弱性相關的風險在無人機的操作使用之前就已經得到緩解,并且在無人機的使用壽命內對無人機系統進行修改時,也要進行風險評估和緩解。
安全風險管理也要在一個框架中進行規范,美國國家標準與技術研究所(NIST)就是這樣做的,它發布了一個風險管理框架。多種技術可用于實施降低安全風險的措施。例如,Vikas Hassija和Vinay Chamola[1]斷言。"當務之急是保持無人機和其他用戶之間交易的安全性、成本效益和隱私保護。區塊鏈技術是一個非常有前途的解決方案,可用于部署實時無人機應用"。
科學技術的創新和進步之間存在著一種共生關系。諸如自動駕駛汽車、自主無人駕駛飛行器(UAV)和智能家用電器等能力,一度被認為是科幻小說的范疇,或者在技術上太難實現,現在已經很普遍了。
無人機的概念最早出現在1783年,當時約瑟夫-米歇爾和他的伙伴雅克-艾蒂安-蒙戈爾費埃公開展示了一種當時可以說是無人機或無人駕駛飛機的交通工具[2],其形式是1849年在法國一個叫安諾奈的地方的熱氣球,在那次戰爭中,由奧地利中尉弗朗茨-馮-烏沙提斯創造的氣球炸彈被用來攻擊威尼斯市。雖然這次攻擊只造成了輕微的損失,但它可以被稱為成功,因為兩天后威尼斯就投降了[3]。尼古拉斯-特斯拉在1898年獲得了遙控(RC)的專利,大約20年后,一家名為拉斯頓-普羅克特空中目標的公司在特斯拉之前獲得專利的遙控技術基礎上發明了第一架無翼飛機[4]。
從那時起,無人機技術和它的應用已經穩步增長。它們已被用于科學研究,如收集有關火山活動的數據,在這些地方使用駕駛飛機會太危險或太昂貴。在20世紀90年代,亞伯拉罕-卡雷姆推出了 "捕食者",這是一種配備了攝像頭和其他傳感器的無人機,用于監視。國防界為 "捕食者 "配備了武器裝備,包括導彈[5]。掠奪者本身已被用于一些沖突,如在阿富汗、巴基斯坦、波斯尼亞、前南斯拉夫、伊拉克、也門、利比亞、敘利亞和索馬里的沖突[6]。在2022年,它們也被烏克蘭和俄羅斯武裝部隊廣泛用于戰斗。
無人機技術的一個重大進步是應用了蜂群智能,一群無人機模仿大量同質動物的智能行為,如蟻群、鳥群和蜜蜂群。蜂群通過蜂群成員之間的協調表現出集體行為。蜂群的行為可以被編碼為算法,而這些算法又可以通過軟件實現,在計算機上執行,比如無人機中使用的嵌入式計算機[7]。蜂群行為甚至被用來進行基于無人機的燈光表演,例如在2020年東京奧運會的開幕式上。
在蜂群中,蜂后是控制器,同樣地,在蜂群智能無人機中,系統中有一個控制中心,典型的控制器名為地面控制站(GCS)。無人機的工作方式很直接,這涉及到無人機和GCS之間的數據交換,然后GCS可以連接到衛星,或者衛星可以直接連接到無人機,一切都在實時發生。圖1說明了無人機和其基礎設施的一種通信方式。至少,通信需要是低延遲和安全的[8]。
有兩種技術可以在GCS和無人機之間進行通信。第一種技術是基于蜂群基礎設施的GCS,第二種是飛行Ad-Hoc網絡(FANET)。基于蜂群基礎設施的GCS本身有一個GCS,用于集中式通信。所有的無人機群都將與GCS進行通信,以便群組能夠運作。然而,這種技術的一個缺點是,它依賴于GCS的可用性和正確運作。如果GCS受到干擾,整個無人機群也會受到干擾。相比之下,FANET使用一個發射器向某個無人機發送命令,然后該無人機將這些命令轉發給第二個無人機。然后這些命令將以串行或并發的方式分發給其他無人機。所有的無人機將進行通信,并擁有發射器給出的命令列表,這樣,如果這個發射器發生故障,所有的無人機仍然可以執行命令,因為每個無人機都有一個有效的命令列表。最后,通過使用這種FANET技術,每個無人機將具有冗余性,而不完全依賴通信基礎設施。然而,這種技術也有缺點。例如,一個入侵者或一個未知的無人機可以進入并破壞無人機群。再比如,無人機群的授權成員無法檢測到,所以入侵者(即未經授權的參與者)的無人機,從而可以獲得將由授權無人機執行的命令列表[9]。
為了克服入侵者無人機的問題,也許可以應用區塊鏈來防止未經授權的無人機使用無人機群命令來獲取列表。區塊鏈本身已被廣泛用于金融領域,目的是在每筆交易的驗證過程中消除第三方。
在區塊鏈中,當數據被分發時,將很難被黑客攻擊并獲得完整的數據,因為它是由一個使用加密手段的網絡驗證的。每個區塊由前一個區塊的哈希值,驗證哈希值的隨機數,或稱nonce,以及時間戳組成。完整性的保證是由區塊鏈為第一個區塊的形成提供的,這個區塊是由一個經過驗證的交易形成的結果,稱為創世區塊。由于哈希值是不可預測的或唯一的,欺詐或復制行為將被發現。每個經過驗證的區塊都有其哈希值,對該區塊的任何改變都會對其他區塊產生影響。如果所有或大多數節點給予許可或同意,該區塊就會被添加到鏈上,因為共識機制安排交易的有效性在某個區塊的有效性。
區塊鏈上的這種共識機制可以通過三種方式進行,那就是工作證明、股權證明和投票,實用拜占庭容錯。在加密貨幣的世界里,工作證明被用于采礦。它的工作原理是在每個節點上進行數學方程的計算,然后每個首先完成計算的節點將有權將最新的區塊輸入區塊鏈。使用權益證明,只有合法的節點可以進行計算以達成共識。另一方面,實用拜占庭容錯是基于投票的,要求至少有三分之一的授權節點是拜占庭的。
認證過程是通過生成具有偽隨機函數的一次性密碼(OTP)來進行的。無人機在區塊鏈中注冊,每架無人機根據存儲在區塊鏈節點中的關系,確定它能夠認證的最近的無人機。認證請求從無人機發送至相關的無人機,后者在區塊鏈中觀察并檢查該無人機是否有關系,并能對其進行認證。這個方案能夠挫敗外部惡意無人機的攻擊或第三方攻擊,即使對手知道第一個令牌。
在本論文中,我們研究了使用IPv6(互聯網協議版本6)在無人機之間進行通信的方式。與IPv4(互聯網協議版本4)相比,IPv6有很多優點,即速度更快,更有效,因為它的路由表比IPv4少,所以路由過程將更有組織和有效,而且更安全,因為它配備了交換數據的加密功能。帶寬更有效,因為IPv6支持組播。配置更容易,因為它自動運行。總的來說,IPv6更適合無人機等移動設備,因為不需要通過網絡地址表(NAT),因此延遲低。IPv6將使用區塊鏈與權益證明共識相結合。
與加密貨幣一樣,區塊鏈上的每個節點都必須進行支付。在這項研究中,支付被替換成OTP。每個節點產生相同或同步的OTP。區塊鏈和OTP在這里的使用是為了檢測未經授權的無人機,并防止他們讀取或更新無人機群使用的命令列表。此外,我們探索了區塊鏈、智能合約共識(SCC)和分布式賬本技術在蜂群通信方面的能力。此外,還根據提出的無人機群智能通信架構的概念進行了模擬。
本論文的范圍僅限于探索區塊鏈技術和OTP的聯合使用,這兩種技術在IPv6數據包中都有填充。
在進行了模擬物理無人機在點對點、點對多、多對點場景下的運行,并使用1-10000次迭代或交易的實驗后,得到了各場景的延遲比較結果。從這些結果可以得出結論,對于點對點方案和多對多方案,即使在多對多方案中,交互節點的數量增加,延遲也沒有顯著增加。而在點對多的情況下,一個節點以廣播信息的形式同時向幾個節點進行交易,這導致了延遲的增加。第四章和第五章解釋了仿真結果和這些結論的總結。此外,第五章還討論了與本論文中的事項有關的未來工作的可能性和建議。
第二章介紹了無人機群智能通信區塊鏈功能的背景,并利用它作為無人機群智能的通信手段。它還對IPv6結構格式進行了概述。第三章討論了基于IPv6區塊鏈的通信數據傳輸的分析。具體而言,分析了IPv6區塊鏈數據包的場景、保密性、完整性和可用性。第四章闡述了IPv6區塊鏈在無人機蜂群智能中實現的可能性和挑戰的研究成果。第五章提供了結論和對未來研究的建議。
這篇論文提出了在自動化制造背景下的多智能體機器人裝配規劃的算法。我們的工作涉及到 "工廠自主權堆棧 "的許多部分。本論文的第一個貢獻是引入了一個離散工廠問題的表述,其中包括時間延長的多機器人任務分配、任務間的優先權約束和避免碰撞的約束。我們提出了一種解決此類問題的有效方法。我們算法效率的兩個關鍵是它將任務分配和路線規劃解耦,以及它能夠利用一些機器人在自己的時間表中被推遲而不對工廠的整體性能造成任何負面影響的情況。
本論文的下一個主要貢獻是針對我們的離散工廠問題的在線版本的重新規劃算法系列。在在線設置中,工廠指揮中心定期收到新的制造工作量,這些工作量必須被迅速納入整體計劃中。我們通過大量的實驗表明,我們的重新規劃方法適用于廣泛的問題。此外,我們提出的方法在應用時可以使工廠在等待收到更新的計劃時永遠不必凍結。
我們最后的貢獻是一個概念驗證系統,用于大規模的多機器人裝配計劃,包括任意形狀和尺寸的裝配體和原材料。我們的系統從原材料和一套關于這些材料如何組合的基本指令開始。然后,規劃器合成一個施工計劃,其中定義了每個有效載荷將如何攜帶(由一個或多個機器人攜帶),每個組件和子組件將在哪里建造,以及哪些特定的機器人將被分配到每個單獨和協作的運輸任務。最后,一個反應式防撞控制策略使機器人能夠以分布式方式執行建造計劃。我們在模擬中證明,我們的系統可以在幾分鐘內合成具有數百個部件的裝配體的施工計劃。雖然我們沒有解決圍繞多機器人制造的所有相關的 "現實世界 "的考慮,但我們的工作是向使用移動機器人的大規模自動化施工邁出的一小步。
太空一直是一個需要高度自主的領域。所需的自主性帶來的挑戰使其難以在短時間內完成復雜的任務和操作。隨著越來越多地使用多Agent系統來增強空中領域的傳統能力和展示新能力,在軌道上和近距離多Agent操作的發展需求從未如此強烈。本文提出了一個分布式的、合作的多Agent優化控制框架,為在近距離操作環境中執行多Agent任務相關的分配和控制問題提供解決方案。然而,所開發的框架可以應用于各種領域,如空中、太空和海上。所提出的解決方案利用第二價格拍賣分配算法來優化每個衛星的任務,同時實施模型預測控制來優化控制Agent,同時遵守安全和任務約束。該解決方案與直接正交配位法進行了比較,并包括了對調整參數的研究。結果表明,所提出的技術允許用戶用模型預測控制來優化超越相位的控制,并以三個調諧參數實現編隊交會。與傳統的多相MPC相比,這更好地接近了配位技術中的相變。