目前,美國政府內部并不存在同步收集情報和調查的能力,而從整體上減輕無人駕駛航空器系統帶來的新威脅需要這種能力。此外,擁有應對權力、知識和經驗的實體基本上都在獨立的環境中工作。本論文試圖找出最佳方法,匯集各個機構的力量,將情報和調查能力統一到應對無人機系統威脅的巨型行動中。為了解決這個問題,我們選擇了工作組、特遣部隊和單一機構指定作為可能的選擇,特別是考慮到它們的歷史先例和成功的可能性。每種方案都根據其接受兩個決定性特征的能力進行了比較:協作和承諾。分析結果表明,工作隊模式最終是全面應對無人機系統威脅的最有效手段。它通過利用情報和調查行動能力來妥善解決無人機系統殺傷鏈中六個步驟中的每一個步驟,在高度協作和承諾的環境中減輕了與當前技術和法律限制相關的挑戰。本論文概述的結論和相應建議提供了明確的方向和合理的實施計劃。
目前,美國政府內部并不存在同步收集情報和調查的能力,而這種能力是全面緩解無人駕駛航空器系統帶來的新威脅所必需的。此外,擁有應對權力、知識和經驗的實體基本上都在獨立的環境中工作。這其中有一些是現行法律限制所規定的,但也有一股潛在的自私自利的政治潮流在其中彌漫。
本論文試圖找出最佳方法,將各個機構的優勢集合起來,將情報和調查能力統一到一個巨無霸級別的響應中,以應對無人機系統的威脅。本研究揭示的三個主要問題包括:當前技術的局限性、法律障礙,以及對無人機系統 "殺傷鏈 "中一個方面的短視。工作組、特別工作組和單一機構指定是根據其歷史先例和成功可能性而特別選擇的方案。每種方案都根據其是否具備兩個決定性特征進行了比較:協作和承諾。
首先對工作組進行了審查,并最終將其排除在外。雖然工作組具有較高的協作水平,但在無人機系統威脅環境下,有效的承諾水平要求極低。此外,工作組在聯邦、州和地方政府中已經非常普遍,這使它們看起來更像是現狀而非創新選擇。
特遣部隊是第二個被審查的對象,不容忽視。與工作組不同,特遣部隊具有高度的協作性和承諾性。特遣部隊模式在整合情報和調查行動以應對恐怖主義、有組織犯罪和毒品等其他重大威脅方面也有成功的歷史。
最后分析的方案是指定單一機構。就承諾而言,這一選擇的評分極高,因為它要對其行動的成敗負全部責任。遺憾的是,單一機構指定在協作方面的排名相應很低。
分析結果表明,特遣部隊模式最終是全面應對無人機系統威脅的最有效手段。它通過利用情報和調查行動能力來妥善解決無人機系統 "殺傷鏈 "中六個步驟中的每一個步驟,在高度協作和承諾的環境中減輕了與當前技術和法律限制相關的挑戰。
本論文中概述的建議提供了實施的方向和合理計劃。該計劃首先由國家行政工作組制定政策,并在州一級進行復制,以確保連續性。在考慮了行政和政策要求后,將建立一個與行政部門平等合作的國家行動工作組,通過制定包含任務導向目標和可實現的里程碑的戰略來履行這些政策義務。這也將在州一級得到體現。
在過去的十年中,無人駕駛飛行器(UAV)的使用領域完全爆炸式增長。如今,它們被用于執行監視任務和檢查人們難以到達的地方。為了提高執行這類任務的效率和穩健性,可以使用合作無人機群。然而,這對使用哪些解決方案來定位和導航智能體提出了新的要求。本論文研究、實施和評估了無人機群相對定位和繪圖的解決方案。
報告研究并介紹了通過使用擴展卡爾曼濾波器(EKF)融合智能體之間的速度數據和成對距離測量來估計相對位置的系統。在現有估計相對位置方法的基礎上開發了一種濾波器,并對其進行了修改,以包括星座中所有可用的成對距離,從而使定位精度提高了 47%。此外,還開發了一種多維縮放(MDS)初始化程序,能夠非常準確地確定蜂群內的初始相對位置,幫助 EKF 幾乎瞬間收斂。此外,還開發并測試了另一種使用 MDS 坐標估計值作為輸入的 EKF。
無人機配備了測距探測器,可測量四個方向與墻壁的距離。距離數據被插入一個網格,將環境離散化。在繪制環境地圖時,采用了一種方法來考慮無人機位置的不確定性,從而改進了結果。對蜂群繪制地圖的兩種方法進行了測試,結果表明它們適用于不同的設置。如果蜂群中的無人機具有共同的坐標系,無人機就會更新相同的網格并繪制地圖。如果無人機的坐標系不同,則分別創建地圖,然后合并。一般來說,協作構建地圖的方法性能更好,而且不需要復雜的地圖合并解決方案。要合并地圖,需要一個成本函數來衡量地圖的匹配程度。我們對三種不同的成本函數進行了比較和評估。使用已知的全局位置和相對姿態估計值,對探索環境的蜂群的映射器進行評估。
事實證明,在將相對姿態估計值輸入繪圖系統時,利用已有的定位濾波器所實現的精度足以生成分辨率為十厘米的地圖。在模擬環境中可以實現更高的制圖分辨率,但需要更多的計算時間,因此沒有進行測試。
美軍繼續利用外國伙伴部隊作為美國安全政策的戰略支柱,將采取謹慎、慎重的選擇方法來評估伙伴關系的可行性。歷史表明,須盡早選擇合適的伙伴部隊,以避免浪費時間、精力、資源,甚至生命在毫無結果的伙伴關系上。這一理念對未來同樣重要。
本論文基于這樣一個假設,即通過比較杠桿作用和目標一致性可以確定伙伴關系的可行性,運用了演繹分析法。本研究開發的模型對基礎扎實的委托代理關系理論進行了調整和擴展。該模型通過考察目標一致性和杠桿作用來評估預期伙伴關系的預期可行性,從而解決 "逆向選擇 "的風險問題。
從強化的理論和模型中,可以識別理想和不理想合作伙伴的特征。為了證明該模型的實用性,將其應用于歷史上和最近與各地區地方勢力建立的委托智能體伙伴關系的案例研究。這一演示表明,可以很容易地對合作伙伴部隊進行分類,并從可行性方面進行比較。
最后,研究建議將該模型作為八步驟方法的一部分加以實施,以補充評估和選擇伙伴部隊的現有程序。這樣,它就可以成為決策者的有用工具和更高組織級別的解釋輔助工具。
本論文探討了支持分布式海上作戰(DMO)的兩種不同通信架構的選項。這兩種架構分別是星形網絡和無線網狀網絡。為本研究開發場景模型的目的是幫助讀者更好地理解緊密結合的數據類型、數據速率和所需網絡功能對網絡設計的影響。本研究針對需要視頻、語音和數據鏈路組合的場景中的各種資產,對每種架構進行了評估。它深入分析了每種設計所固有的信息傳遞延遲,并評估了每種網絡的可靠性。研究發現,利用機載路由功能的低地球軌道衛星星形和網狀網絡可提供最低的定時延遲。研究還發現,通過專用通道提供視頻饋送時,網絡抖動最小。最后,網狀網絡的可靠性略高于傳統的星形網絡,這是因為數據鏈路具有冗余性,而且缺少一個可能易受攻擊的中心樞紐。因此,利用特設無線網狀通信網絡將支持在分布式海上作戰進行有限的進攻性聯合火力打擊期間部署自適應部隊包。
圖 1. 星形網絡拓撲(左)和全網狀拓撲(右)。
在任何戰斗環境中,良好的通信都是取得勝利的關鍵。即使是在擁有堅實通信基礎設施的地理位置,如果戰地指揮官不能及時收到來自戰地資產的正確信息報告,也會造成混亂。在海戰中,尤其是在近海,通信基礎設施充其量也是微乎其微。
為響應美國防部長關于改進聯合火力(JF)行動的號召,本畢業設計探討了支持分布式海上行動(DMO)的兩種不同通信架構的選項。這兩種架構分別是星形網絡和無線網狀網絡。
為本研究開發情景模式的目的是幫助讀者更好地理解緊密耦合的數據類型、數據速率和所需網絡功能對網絡設計的影響。這有助于突出已實施網絡的設計限制。模擬結果用于定義基準參考和可追溯數據要求,以支持為 JF DMO 設計的戰術網絡。
A. 戰術通信網絡拓撲結構
網絡設置通常用拓撲結構來描述,拓撲結構是網絡內節點排列和通信的物理方式(美國陸軍工程部,1984 年,7)。本研究評估了圖 1 左側所示的傳統星形網絡和圖 1 右側所示的多層網狀通信網絡,并量化了這些鏈路的排列可能對操作產生的影響。
1.星形網絡
最廣泛使用的無線網絡拓撲結構是星形幾何模式。星形拓撲結構包括一個中心節點,所有信息都通過該節點流動。在星形格式中,所有信息都必須從每個參與資產發送和接收,并通過中心樞紐路由。這種配置中的中心節點是單點故障。如果中央節點離線,整個網絡就會癱瘓。
2.無線網狀網絡
多層戰術無線網狀網絡是指在網絡內共享信息的過程。網狀網絡描述了一種配置,其中每個節點都具有通信能力,可以相互發送和接收信息。在網狀網絡中,節點是自組織的,可根據需要通過路由算法自動建立(Shillington 和 Tong,2011 年)。
B. 結論
本研究的設計要求側重于網絡配置、對信息定時延遲的影響、網絡抖動和可靠性。研究發現,使用具有機載路由功能的低地球軌道(LEO)衛星的星形和網狀網絡可提供最低的定時延遲。研究還發現,在提供視頻饋送專用通道時,網絡抖動最小。最后,網狀網絡的可靠性略高于傳統的星形網絡,這是因為數據鏈路具有冗余性,而且沒有潛在的易受攻擊的中心樞紐。因此,在分布式海上行動的有限進攻性聯合火力打擊中,利用特設無線網狀通信網絡將支持部署自適應部隊包。
近年來,反無人機系統(CUAS)在應對無人機系統(UAS)帶來的各種威脅方面的技術能力急劇增長。有必要通過開發系統的 CUAS 方法來利用 CUAS 技術。在本研究中,文獻綜述探討了 (1) 當前的無人機系統技術和應用;以及 (2) CUAS 的能力及其有效性分析。利用這些信息,通過基于模型的系統工程(MBSE)工具(ExtendSim)對假設的作戰環境進行測試,以評估幾種假設的 SoS CUAS 配置的有效性。開發了一種方法來分析 SoS CUAS 任務成功的不同因素及其影響,并將其用于權衡分析。從在 MBSE 工具中進行的每個 SoS CUAS 仿真中,可以得出進一步迭代和改進 SoS CUAS 配置的見解,從而在對 SoS CUAS 成本進行定性分析的基礎上優化參數。這項研究的成果是一個完善的模型和方法,今后可用于代表實際運行環境,以進行進一步分析。這項研究表明,將各種不同的 CUAS 平臺集成到一個 SoS CUAS 中,以應對無人機系統所構成的復雜威脅,是大有可為的。
本研究探討了對反無人駕駛航空系統(CUAS)系統(SoS)的需求,以應對無人駕駛航空系統(UAS)對國家經濟、安保和安全造成的日益嚴重的威脅。近年來,無人機系統的使用激增,導致 CUAS 行業迅速發展,并開發出了應對特定威脅的解決方案。然而,隨著 CUAS 技術的成熟,現在需要將這些單獨的 CUAS 工作整合到一個同步統一的 SoS 中,以更好地防御無人機系統的威脅。
文獻綜述包括對無人機系統和 CUAS 能力的研究,為本研究提供了清晰的信息。通過了解 (1) 群組分類;(2) 有效載荷能力;(3) 通信能力;以及 (4) 所采用的戰術,對無人機系統的類型和威脅情景進行了研究。通過了解 (1) 處理鏈;(2) 市場上可用的傳感器;(3) 指揮與控制 (C2) 能力;以及 (4) 緩解技術,可以使用 CUAS。以文獻綜述中形成的認識為基礎,提出了進一步分析 SoS CUAS 的方法和模型。
建議的方法使用基于模型的系統工程(MBSE)工具 ExtendSim 來模擬無人機系統飛入 SoS CUAS 作戰區時的作戰環境。該模型基于攻擊型無人機系統的特點,通過一套傳感器和射手來觀察場景的最終結果。作為名義基線模型的首次迭代,根據公開文獻假定了許多未知條件,同時控制了初始參數,以觀察這些參數值如何影響情景結果。在軍事背景下,攔截敵方無人機系統成功的置信度為 95%,失敗的可能性為 5%,這是一個保守的閾值。根據基線模型模擬了三種情景,得出測試結果,然后對結果進行進一步分析。
通過對結果的分析,得出進一步改進模型的見解。基于初始條件和假設,得出的經驗教訓有 (1) 指定 SoS CUAS 的置信度有助于確定后續模擬的范圍和錨點;(2) 在指定目標下,過多的資源投入(如更多的傳感器-射手組)不會產生最具成本效益的組合;(3) 在指定目標下,改變傳感器和射手參數有助于優化整個系統,為完善模型提供整體方法。通過在 Excel 中復制模型,對 MBSE 模型進行了驗證,并在第二次迭代中對模型進行了優化,從而進一步改進了模型。
這項研究表明,使用 ExtendSim 模型(如作為本研究一部分開發的模型)將單個 CUAS 集成和優化為一個統一的 SoS 具有很大的潛力。隨著無人機系統威脅的不斷發展,發展當前的 CUAS 能力并跟上新出現的無人機系統威脅是至關重要的。未來可擴展本研究的工作包括 (1) 改變無人機系統及其使用的參數,以模擬動態威脅場景;(2) 改變 CUAS 規格,以模擬當今和未來多種系統的不同能力;(3) 建立一個 C2 系統模型,同步 SoS CUAS 中各種傳感器和射手系統的所有鏈接,以便在統一戰線中有效、高效地消除無人機系統的威脅。
本論文研究如何將無人水面航行器整合到分布式海上作戰的戰斗序列中。目的是設計一種成本效益高、作戰效率高的無人系統,能夠在 2030-2035 年期間為 DMO 概念做出貢獻。本論文確定了在常規航母打擊群、遠征打擊群和/或水面行動群中既具有作戰影響力又具有成本效益的 USV 任務集和組合,以及無人系統是否有可能取代或補充當前有人系統的一些任務集。主要發現是,在以下兩個任務領域,無人潛航器可以極大地補充有人資產:(1)情報、監視和偵察任務集,以及(2)反導彈防御任務集。次要發現是,要達到本論文中描述的效果衡量標準,必須投資 5 億美元建造約 10 個 USV 平臺,并執行上述任務集。作者對美國海軍的建議是采用標準化的 USV 設計,重點關注 AMD 和 ISR 任務包。其次,投資約 5 億美元建造 10 艘這樣的平臺,并將其集成到目前的 CSG、ESG 或 SAG 之一,這將是過渡到在未來艦隊中實施 USV 的墊腳石。
本論文通過開發系統架構和相關離散事件模擬,研究如何將無人水面航行器(USV)融入分布式海上作戰(DMO)概念。目的是研究 DMO 概念中無人水面兵力的潛在任務領域,然后構建標準化 USV 的功能和物理架構。作者采用了與瀕海戰斗艦(LCS)類似的概念,為已確定的任務領域提供可安裝在標準化 USV 上的外部任務模塊包。結構定義完成后,使用離散事件仿真軟件開發了一個模型。該模型的場景被定義為在 2030-2035 年期間與近鄰對手的艦隊對艦隊交戰。在整個模擬過程中,使用了有效性衡量標準來分析擬議 USV 提供的作戰影響。在完成模型分析后,作者最后分析了擬議 USV 平臺的成本與其對艦隊對艦隊交戰結果的總體作戰影響。
A. DMO 和 USV 概述
2017 年,海軍作戰發展司令部創造了 "分布式海上作戰 "一詞,該詞源自 ADM Rowden(2017 年)的 "分布式致命性"(DL)。DMO 更多地以全方位的艦隊為中心的戰斗力來看待分布式兵力,而不是 DL 定義中描述的小兵力組合。DMO 概念的最高目標是讓指揮官有更多的選擇或傳感器/平臺/武器組合,并有足夠的時間超越對手。DMO 考慮到了資源、信息和技術與組織各級關鍵決策者的融合。當美國海軍將一個系統視為一個分布式網絡時,這就很好地概括了 DMO 的概念。分布式網絡具有跨所有作戰領域的所有可用平臺的集成能力,將增強美國海軍的進攻和防御能力。本論文的重點是設計和采購這種分布式網絡中的無人水面飛行器,這不僅將為載人資產提供一種具有成本效益的替代方案,而且由于人工干預有限,還將提供一種更低的風險管理場景。
無人系統有可能成為美國海軍未來兵力結構中的關鍵兵力倍增器。海軍作戰部長理查德森(ADM Richardson,2016 年)在其海軍戰略愿景中列出了四條關鍵的 "努力方向"。其中一條是 "加強海上海軍力量",鼓勵探索 "替代艦隊設計,包括動能和非動能有效載荷以及有人和無人系統"(6)。本論文介紹了無人水面運載工具的基本原理,包括目前可用的等級、類別和任務類型。論文還論述了無人水面飛行器在未來艦隊兵力建設中對 DMO 概念的潛在貢獻,以及對無人水面飛行器未來研發至關重要的關鍵使能技術。
為撰寫本論文,通過建模和仿真分析了三種可供選擇的 USV 及其三種適用的任務包。所選擇的調查平臺是 USV ISR 任務平臺、USV 水面戰任務平臺和 USV 反導彈防御任務平臺,因為它們被認為與 DMO 最為相關。作者指出,按照本論文的規定,這三種備選方案在當前市場上并不容易獲得,但提出功能和物理架構的目的是使未來工作的發展具有可行性,并符合美國海軍有關無人系統的愿景和目標。
表 1 總結了作者利用建模和仿真分析的三種備選 USV,并注釋了其適用的級別類型和有效載荷。
B. 模型定義
為便于分析備選 USV,作者開發了一個模擬模型。為確保在現實場景和作戰環境中分析 DMO 概念,重點放在了南海沿岸沖突上。該模型分為四個主要階段:威脅產生階段、發現階段、目標定位階段和交戰階段。模型中采用了表 1 所示的三種備選 USV。USV AMD 分成兩個獨特的平臺: 這些配置分別用于防御空中平臺和來襲導彈。所有可供選擇的 USV 都為友軍戰斗序列帶來了額外的反制措施,包括箔條、主動和被動誘餌、照明彈以及紅外和可視煙霧。如表 1 所示,攜帶導彈的 USV 還攜帶了特定的有效載荷,為友軍的分布式資源庫提供了額外的軍械。USV ISR 具有其他 USV 備選方案所不具備的能力。該平臺的能力是在對方目標定位和交戰階段增加的,使每一枚潛在的友軍導彈都能在更大范圍內擊中來襲的對方平臺或導彈。
C. 作戰效能分析
數據分析顯示,就多種不同的效能衡量標準(MOEs)而言,一些概念化 USV 不僅在統計上有意義,而且在作戰上也有意義。在分析 USV 如何為 DMO 概念做出貢獻時,有三項效果衡量指標值得關注,它們是 (1) MOE #2:幸存的兵力;(2) MOE #4:10 海里內對方導彈的百分比;(3) MOE #6:防御措施成功率(注意,編號慣例與論文全文一致)。在整個分析過程中,對作戰影響最大的備選 USV 是 USV ISR 平臺、USV AMD AIR 平臺和 USV AMD MISSILE 平臺,而 USV SUW 平臺被證明對作戰沒有影響。分析結果并無定論:在 DMO 概念的范圍內,無人水面航行器在兩個主要任務集中補充有人海軍資產最為有效:(1) 情報、監視和偵察任務集,以及 (2) 反導彈防御任務集(防空和反導彈防御)。這就為 USV 的實施設想了更多的防御態勢方法,即在縱深防御分層戰略中反擊對方平臺或導彈。
D. 成本分析
為了加強作戰效能分析,作者選擇使用參數方法來推導成本模型,預測本論文中描述的備選 USV 的成本。作者確定了 40 個具有歷史采購成本的平臺,并研究了它們的設計規格,以便采用參數方法。生成了等值線圖,以便于對多種投資場景下的運行效果和成本進行權衡分析。分析表明,至少需要投資 5 億美元,才能購置約 10 艘有能力的 USV,從而實現顯著的作戰效能。追加投資 1.000 億美元(總計 1.5 億美元)后,USV 總數有可能增加到 35 艘,與基線投資場景相比,友軍 10 海里范圍內對方導彈的比例提高了 31.2%(MOE #4),成功反制的比例提高了 9.9%(MOE #6)。
E. 結論
與美國海軍 CSG、ESG 和 SAG 的常規兵力結構相比,將 USV 納入 DMO 提供了一種既經濟又有效的作戰命令。事實證明,情報、監視和偵察任務以及反導彈防御任務在本摘要 C 部分所注釋的規定有效性措施方面具有最大的統計意義和作戰影響。以下要點解釋了 USV 在作戰影響方面最值得關注的三項指標:
MOE2:對方兵力存活率。USV ISR 平臺的存在與否對這一 MOE 有重大影響。如果 USV ISR 平臺存在,預計對方兵力存活率最多可降低約 5.9%。
MOE 4:10 NM 范圍內對方導彈的百分比。模型中 USV AMD MISSILE 和 USV AMD AIR 平臺的數量對該 MOE 有很大影響。如果 USV AMD 平臺的組成正確,預計到達 10 海里的對方導彈數量最多可減少約 8.5%。
MOE6:防御措施成功。模型中 USV AMD MISSILE 和 USV AMD AIR 平臺的數量對該 MOE 有重大影響。如果 USV AMD 平臺的構成正確,預計防御措施成功率最多可提高約 4%。
就本摘要 D 部分所述的成本效益而言,值得投資的 USV 只有 USV ISR、USV AMD AIR 和 USV AMD MISSILE 平臺。對于具體的作戰概念和固定的戰斗序列,筆者認為,在戰斗序列中實施 USV 的特定組合是一種具有成本效益的方法,可實現所需的有效性措施。
探測無人機系統(UAS)非常復雜。在多個領域(空中、陸地和海洋)整合和共享雷達信息是一個難題。目前有關無人機系統探測的研究主要集中在探測地面兵力和國家關鍵基礎設施上空的無人機系統,但當無人機系統開始挑戰港口或公海上的軍艦時會發生什么?在多機構危機事件中,如何通過無線方式收集和共享信息?探測到的無人機傳感器數據能否通過無線網格網絡(WMN)與其他機構共享?研究表明,在一次小規模的多機構危機響應演習中,可以將 SAAB 的 G1X 雷達系統的模擬數據與戰術突擊套件(TAK)態勢感知應用程序集成在一起。該技術運行完美;但是,注意到,必須進一步檢查和改進反無人機系統戰術技術和程序(TTP)、國際無人機系統法律法規以及提示和自動化,以適應當今的戰斗和機構間響應。此外,發現在演習期間,手機信號無法有效覆蓋舊金山灣。為了縮小這一差距,使用 Persistent Systems 公司的 MPU-5 無線電設備成功擴展了 WMN,從而在非網絡環境中創造了更廣泛的維護網絡功能的能力。
許多武裝部隊正變得以網絡為中心并高度互聯。數字化戰場的技術進步促成了這一轉變和分散決策。隨著戰場的演變,任務要求部隊具有機動性并支持多種戰術能力,目前部署靜態無線電中繼節點以擴大通信范圍的概念可能不再適用。因此,本論文旨在設計一種使用無人機系統(如航空浮空器和戰術無人機)的作戰概念,為戰術部隊提供視距外通信,同時克服全球定位系統失效環境下的限制。鑒于聯邦通信委員會規定工業、科學和醫療頻段的最大有效各向同性輻射功率為 36 dBm,擬議的概念分為三個階段,以評估操作和通信系統需求。兩個節點之間的最大通信距離可使用 Friis 傳播方程進行研究。此外,還使用 Simulink 軟件研究了有效應用吞吐量與距離的關系。分析結果表明,IEEE 802.11ax 可提供更高的數據吞吐量,并支持 2.4 GHz 和 5.0 GHz 兩個頻段。通過模擬環境和運行場景,確定了在 50 千米乘 50 千米的區域內提供通信覆蓋所需的航空系統估計數量。
隨著數字化戰場的擴展,以及對可進行多域作戰的高度互聯部隊的需求日益增長,目前在戰區采用靜態中繼節點的通信概念可能不再可行。因此,本論文旨在設計一種作戰概念,利用無人機作為戰術部隊的通信中繼節點,同時克服全球定位系統(GPS)封閉環境的限制。具體來說,這項研究的主要重點是確定這一作戰概念的最大通信范圍,并研究兩個空中中繼節點之間的有效數據吞吐量。此外,研究還試圖確定提供 50 千米乘 50 千米或同等通信覆蓋所需的空中中繼節點數量。最終,本論文的研究結果旨在進一步提高作戰行動環境中的通信效率。
擬議的作戰通信框架將采用一種混合通信系統,同時使用航空浮空器系統和戰術無人機作為通信中繼節點。利用戰術無人機的靈活性,在需要時可以方便地增加網絡數據帶寬。為分析行動需求和可部署的通信系統類型,擬議的行動構想分為三個不同階段。
為了研究擬議概念的可行性,采用了 IEEE 802.11ax 和 IEEE 802.11n Wi-Fi 標準來檢查網絡性能,并確定估計的有效通信范圍。之所以采用這些 IEEE 標準,是因為它們可以在 2.4 GHz 和 5.0 GHz 頻段上運行。
根據美國聯邦通信委員會 (FCC) 的規定,在 2.4 GHz 頻段工作時,工業、科學和醫療 (ISM) 頻段的最大有效各向同性輻射功率 (EIRP) 規定為 36 dBm。通過限制輸出功率和有效輻射功率,可以確定在 2.4 GHz 和 5 GHz 頻段工作時的理論有效通信范圍。利用弗里斯傳播方程,計算出的范圍分別約為 5.5 千米和 2.6 千米。
通過修改 MATLAB Simulink 軟件中現有的 IEEE 802.11 MAC 和應用吞吐量測量模型,確定了使用 IEEE 802.11ax 和 IEEE 802.11n 標準的有效應用吞吐量。從仿真結果可以看出,隨著距離的增加,兩種工作頻率的應用吞吐量都會下降,這是由延遲和數據包丟失數量增加等因素造成的。此外,與 2.4 GHz 相比,5 GHz 頻段的傳輸距離較短。因此,為了彌補傳輸距離的限制并優化在 5 GHz 頻段工作時的數據吞吐量,建議使用比在 2.4 GHz 頻段工作時更高的信道帶寬。
從模擬結果來看,IEEE 802.11ax Wi-Fi 標準的數據吞吐量高于 IEEE 802.11n。這是因為 IEEE 802.11ax 采用了比 IEEE 802.11n 更有效的調制和編碼方案。因此,以 IEEE 802.11ax 作為推薦的 Wi-Fi 標準,在 2.4 GHz 和 5 GHz 上運行時的最大應用吞吐量分別約為 4.403 Mbps 和 4.488 Mbps。
為了估算在 50 千米乘 50 千米的作戰區域內提供通信覆蓋所需的空中中繼節點數量,使用了地圖規劃工具軟件 ArcGIS Pro 來模擬作戰區域并規劃通信網絡。根據計算得出的有效通信距離和地圖規劃,估計總共需要 23 個航空浮空器系統才能在 2.4 GHz 頻段上提供網絡覆蓋,另外還需要 24 架戰術無人機才能支持在 5 GHz 頻段上運行的更高數據帶寬網絡。
值得注意的是,本論文僅限于分析兩個空中中繼節點之間的性能,并使用了仿真模型。在現實世界中,有多種因素可能會影響室外環境中的網絡性能,例如地形影響造成的衰減。因此,為了更好地了解系統的性能,建議在實地進行深入的開發測試,并考慮環境造成的衰減和干擾。在這種情況下,提供通信覆蓋所需的空中中繼節點的估計數量可能會有所不同。此外,性能和有效通信距離也可能下降。
除中繼通信外,空中中繼節點的高度優勢還可提供額外服務,如執行監視和偵察任務。因此,為了最大限度地提高系統性能,建議未來的研究人員研究不同傳感器系統可能造成的干擾影響。為了最大限度地降低干擾幾率,可能有必要制定詳細的頻率分配計劃,以確保不同系統之間有足夠的頻率間隔。
目前和即將出臺的美國軍事概念強調,需要整合和同步所有領域的效果,以實現跨領域的協同作用。本論文研究了三個案例,以確定軍隊在同行競爭者之間的大規模戰斗中同步使用空中力量和陸地力量的有效性和手段。由于美國和英國在第二次世界大戰和 "沙漠風暴 "中的經驗已經在美國學術界得到了很好的研究,研究的重點是第二次世界大戰期間的德國和蘇聯,以及1973年阿以戰爭中的以色列國防軍。對于每個案例研究,作者都介紹了支撐所研究軍隊行為的作戰條令、戰役背景、關于整體有效性的結論,以及對所使用的指揮和控制機制的深入討論。最后一章提出了美國在為多域或全域作戰開發系統和觀念時應考慮的六個明顯的教訓。
在分析了這些歷史上有爭議的環境中用于整合空中力量和陸地力量的結構和方法后,不同的例子之間的相似程度是驚人的。雖然每個系統都有長處和短處--有些比其他系統更重要--但它們都在幾個基本概念下運作。在很大程度上,這些原則在現存的美國聯合部隊系統中也很普遍。美國軍隊應該從這項研究中得出的結論是漸進式的變化,更多的是采用更有利于大規模作戰行動和MDO的思維方式。在歷史先例中,有六條與空中力量和陸地力量整合有關的基本原則是可以確認的:
(1) 信任是任何C2系統的先決條件;
(2) 對共同作戰目標的理解對信任至關重要;
(3) 作戰和戰術C2結構是成功整合的根源;
(4) 在大規模作戰中,空中力量應被視為機動部隊;
(5) 空中力量和陸地力量是相互促進和相互支持的;
(6)有爭議的空中環境需要良好整合的跨領域戰術推進器(護航、SEAD等)來執行反陸地或任何其他任務。
雖然本論文從空地角度提出了這些原則,但它們似乎適用于整合所有領域。為了便于閱讀和確保理解,下面的表十列出了這些原則
克里斯-福塞爾(斯坦利-麥克里斯特爾在領導聯合特種作戰司令部期間的親密助手之一)強調,有四個關鍵因素促使一個大型組織能夠以小團隊的速度和效率運作:信任、共同目標、對形勢的共同理解以及授權執行。福塞爾的因素與上述原則清單之間有許多相似之處,這一事實支持了它們的有效性。有很多 當前美國的理論在很多方面促進了這些原則。但是,由于21世紀的行動,許多軍官的心態并不總是遵循歷史所建議的戒律或聯合學說所規定的意圖。因此,美國陸軍在空地一體化方面最大的發展重點是培訓、領導力和教育。在深入研究這些原則之前,有必要對這些原則所要實現的目標進行簡短的討論。
美國陸軍和美國空軍都認識到當代和未來作戰環境的日益復雜性。美國陸軍解決這一問題的核心理念是MDO(在訓練與理論司令部小冊子525-3-1《2028年多域作戰中的美國陸軍》中討論)。美國空軍的中心思想是作戰敏捷性(在其2015年9月的未來作戰概念中提出)。在這兩種情況下,各種信條和層面都描述了美國空軍在沖突期間實現戰略目標的手段:在所有領域向對手提出多種困境,共同努力匯聚到作戰目標上,從而取得戰略勝利。為了實現這一總體概念,各領域之間的有效整合是至關重要的。
行動整合應該通過根據歷史經驗開發的系統來實現,在這些歷史經驗中,空中和陸地機動在有爭議的環境中被有效整合。有效的整合是一個系統,在這個系統中,每個領域的部隊都有最大的行動自由,可以行使主動權,從而在特定的環境中建立最快速的節奏。在明確的聯合目標指導下,通過相互支持和扶持的領域部隊在每個領域創造的快速節奏,大大增加了美國聯合部隊的成功幾率。關于這一概念的說明,請參見下面的圖26。
為了便于討論,下面的表8列出了每項原則以及作者認為美國司法部應該調查改進的領域。如前所述,這些需要改進的領域大多不涉及條令、組織或材料等。相反,它們主要集中在心態和觀念上,這些問題主要應通過培訓、領導和教育來解決。這些概念建立在一個核心思想上,即在每個領域運作的人都相互信任,為一個共同的目標而努力。
自主和半自主系統在一個系統的框架內運行,利用其自身的感知、認知、分析和執行行動的能力來實現其目標。無人系統對美國國防部(DoD)的采購程序提出了重大挑戰,該程序是為開發和部署人在環型能力而建立的。本論文的目的是對通過軍事采購程序開發半自主和自主系統的挑戰進行分析,以確定增加項目成功的可能性所需的最佳做法和趨勢。
分析的第二個目標是比較和對比具有自主能力的系統的測試和評估方法。測試和評估過程的目的是使決策者能夠管理技術風險,并在做出實戰決定之前評估能力的強大和成熟程度。自主系統需要嚴格的測試/制造策略,對大多數項目來說,這將導致成本超支和進度違反。此外,試圖跟上快速變化的技術步伐超過了美國防部使用尖端技術的成熟系統的能力。
圖12。DoDI 5000.02自適應采購框架。
美國政府面臨著保持作為世界上空間物體編目數據提供者的步伐挑戰。用非傳統的傳感器來增強能力,是一種快速和低成本的改進。然而,巨大的交易空間和未開發的系統性能要求給成功的資本化帶來了挑戰。本文旨在通過一個多學科的研究,更好地定義和評估增強功能的效用。
假設的望遠鏡架構在不同的時間里被建模和模擬,然后在啟發式算法中使用多目標優化對性能措施和約束進行評估。決策分析和帕累托優化確定了一套高性能的架構,同時保留了決策者設計的靈活性。
建議將容量、覆蓋率和未觀察到的最大時間作為關鍵性能指標。在1017個架構中,共有187個被確定為最佳表現者。總共有29%的傳感器被發現在80%以上的頂級架構中。其他考慮因素進一步將交易空間減少到19個最佳選擇,這些選擇為每個空間物體平均收集49-51個觀測數據,平均最大未觀測時間為595-630分鐘,提供地球同步軌道帶的冗余覆蓋。這意味著與模擬的僅有政府的基線結構相比,能力和覆蓋面增加了三倍,未觀察到的最大時間減少了2小時(16%)。
這項研究利用基于物理學的模型和現代分析技術,驗證了增強型網絡概念的效用。它客觀地回應了要求改進編目工作的政策,而不是僅僅依靠專家得出的點解決方案。