作為分布式海上作戰(DMO)的一個關鍵原則,盡管有人和無人、水面和空中、作戰人員和傳感器在物理時空上都有分布,但它們需要整合成為一支有凝聚力的網絡化兵力。本研究項目旨在了解如何為 DMO 實現有凝聚力的作戰人員-傳感器集成,并模擬和概述集成實施所需的系統能力和行為類型。作為一個多年期項目,本報告所述的第一項工作重點是建立一個適用于 DMO 建模、模擬和分析的計算環境,尤其側重于有人和無人飛機的情報、監視和偵察 (ISR) 任務。
在半個世紀的建模和仿真研究與實踐(例如,見 Forrester, 1961; Law & Kelton, 1991),特別是四分之一世紀的組織建模和仿真工作(例如,見 Carley & Prietula, 1994)的基礎上,獲得了代表當前技術水平的計算建模和仿真技術(即 VDT [虛擬設計團隊];見 Levitt 等人, 1999)。這種技術利用了人們熟知的組織微觀理論和通過基于代理的互動而產生的行為(例如,見 Jin & Levitt, 1996)。
通過這種技術開發的基于代理的組織模型在大約三十年的時間里也經過了數十次驗證,能夠忠實地反映對應的真實世界組織的結構、行為和績效(例如,參見 Levitt, 2004)。此外,幾年來,已將同樣的計算建模和仿真技術應用到軍事領域(例如,見 Nissen, 2007),以研究聯合特遣部隊、分布式作戰、計算機網絡行動和其他任務,這些任務反映了日益普遍的聯合和聯盟努力。
本報告中描述的研究項目旨在利用計算建模來了解如何為 DMO 實現有凝聚力的戰斗傳感器集成,并建模和概述集成實施所需的系統能力和行為類型。作為一個多年期項目,本報告所述的第一項工作重點是建立一個適用于 DMO 建模、模擬和分析的計算環境。在這第一項工作中,將對當今的海上行動進行建模、模擬和分析,重點是有人駕駛和無人駕駛飛機的情報、監視和偵察(ISR)任務。這為與執行 ISR 任務的一個或多個 DMO 組織進行比較確立了基線。這也為與其他任務(如打擊、防空、水面戰)進行比較建立了基線。第二階段接著對一個或多個備用 DMO 組織進行建模、模擬和分析。
在本技術報告的其余部分,首先概述了 POWer 計算實驗環境,并列舉了一個實例,以幫助界定 DMO 組織和現象的計算建模。依次總結了研究方法。最后,總結了沿著這些方向繼續開展研究的議程。這些成果將極大地提高理解和能力,使能夠為 DMO 實現戰斗員與傳感器的集成,并為集成實施所需的系統能力和行為建模和概述。
在本技術說明中,報告了有關傳感器技術和避讓方法的最新研究與開發文獻綜述,這些技術和方法可用于未來在有人-無人協同(MUM-T)行動中在小型無人系統上實施感知與避讓(SAA)能力。
在傳感器技術方面,研究了協作和非協作傳感器,其中非協作傳感器又分為主動和被動傳感器。我們認為:(1) 被動非協作傳感器在尺寸、重量和功率(SWAP)方面比其他傳感器更有優勢。被動工作可確保無人平臺在惡劣環境中的安全。為了補充單個傳感器能力的約束和限制,我們還認為,(2) 傳感器和數據融合的趨勢和未來需求前景廣闊,能夠在動態、不確定的環境中進行連續和彈性測量。此外,我們還認為應關注無人系統領域正在開發的 (3) 新型傳感器套件。
在探測和規避方法方面,我們按照 SAA 流程進行了全面研究,從探測沖突、危險或潛在威脅,到跟蹤目標(物體)的運動;評估風險和可信度;根據評估參數確定沖突的優先級;然后宣布或確認沖突以及沖突的程度;確定正確的沖突解決方法;隨后下達命令并最終執行。為了支持這一過程,我們審查了各種 SAA 算法,包括探測算法、跟蹤算法和規避策略。我們認為,(4)基于學習的智能算法需要列入未來 SAA 的要求中,因為它們具有支持任務的自適應能力。
最后,從不同的使用案例中回顧了支持 MUM-T 行動的 SAA。我們認為,(5) 與蜂群式小型 UxV 的人機系統接口可提供半自主的 SAA 能力,而人的參與程度有限。這種集成的人機交互提供了智能決策支持工具。該系統旨在使單個人類操作員能夠有效地指揮、監控和監督一個 UxV 系統。根據技術重點的發展趨勢,我們的最終觀點是:(6) 就研發進展而言,現階段實現無士兵參與的完全自主還為時過早,但我們將積極關注該領域的最新發展。
該項目為與使用無人系統支持分布式海戰(DMO)有關的作戰概念和系統設計決策提供信息。研究通過系統地改變仿真模型中的系統設計特征和作戰活動,支持對無人系統(UVC)進行能力級分析。分析結果表明,UVC 可提高各種無人系統的作戰可用性(Ao)和使用時間(TOS),因為它可隨時進入維護、加油和重新武裝設施,而無需長時間前往岸基設施或分布式支援艦艇。在比較使用 UVC 的配置與在自適應兵力包 (AFP) 中分配無人系統支持的配置時,單個無人系統的 Ao 提高了 6% 到 31%。仿真模型分析確定了 UVC 架構,其中包括至少 8 個無人機發射回收站、至少 3 個船舷托架和至少 5 個甲板井托架,以最大限度地提高 Ao。
在支持分布式海上作戰(DMO)時,無人系統有可能發揮兵力倍增器的作用,在提高殺傷力的同時降低有人系統的風險。然而,無人系統到岸基維護、加油和重新武裝設施的轉運時間減少了可用于支持執行 DMO 的自適應兵力包(AFP)的總體駐扎時間(TOS)。本項目研究了無人水面艦艇 (USV)、無人水下航行器 (UUV) 和無人機 (UAV) 在美國海軍現有艦艇上的集成問題,該艦艇已被重新改裝為無人載具 (UVC)。在本報告中,"UxV "一詞用于描述無人系統這一類別。
如 Van Bossuyt 等人(2019 年)所述,項目團隊采用了系統定義、系統建模和系統分析的通用系統工程流程序列。在系統定義過程中,項目團隊重點開發了作戰概念(CONOPS),并定義了 UVC 的系統要求。系統建模活動的重點是構建 UVC 的離散事件仿真模型。在系統分析階段,團隊利用所開發的模型來評估 UVC 的各種設計參數對每種無人系統類型的運行可用性(Ao)的影響。
A. 系統定義
在系統定義階段,從自上而下和自下而上的角度開發和考慮了 UVC 要求。從自上而下的角度來看,團隊分析并確定了滿足總體任務有效性目標所需的能力,而與任何現有的候選平臺無關。從自下而上的角度來看,團隊評估了一艘登陸直升機船塢(LHD)艦,以確定該平臺可實現的最大 UVC 能力。通過查閱文獻和分析利益相關者的需求,項目團隊確定了 UVC 的以下關鍵能力:指揮與控制 (C2)、UxV 發射、UxV 維護和 UxV 回收。根據設想,UVC 將包括著陸甲板無人機發射和回收站、無人機維護/布防/燃料艙、用于大型 USV/UUV 操作的船舷艙或站,以及用于小型 USV/UUV 操作的井甲板艙。
B. 系統建模
項目構想將 UVC 視為針對地面和岸上敵對兵力實施 DMO 的 AFP 的一部分。UVC 的作用是支持 UxV 對敵方岸基導彈基地進行偵察和打擊。在打擊階段之前、期間和之后,UxV 提供全天候的情報、監視和偵察(ISR)、目標定位和戰損評估服務。UVC 的總體目標是通過消除到岸基支持設施的較長運輸時間來增加 UxV 的全時服務時間。為實現這一總體目標,研究小組選擇 "航程 "和 "持續停留時間 "作為性能指標(MOP),并選擇 "UxV 任務時間"、"UxV 停機時間 "和 "維護灣利用率 "作為效果指標(MOE)。
設計并開發了一個離散事件仿真模型,用于分析 UVC 設計參數對 MOP 和 MOE 的影響。該模型是通過 ExtendSim10 建模程序開發的。該模型包括 UxV 發射和回收、UxV 維護活動以及 UxV 重新武裝和加油活動。UxV 的發射時間表和總模擬運行時間是根據擬議的 UVC CONOPS 制定的。目前,該模型并未考慮 UxV 的損失或故障;這是未來可能開展工作的一個領域。模型的主要輸出是每種 UxV 的 Ao。
C. 系統分析
為了廣泛探索實驗空間,同時減少試驗總數和模型運行時間,我們專門設計了一個填充空間的拉丁超立方設計。每次試驗重復模擬 30 次并收集結果。合并所得的 Ao 值,得出每個試驗的統計平均值。
分析結果表明,UVC 可隨時提供維護、加油和重新武裝設施,而無需在岸基設施或分布式支援艦艇之間進行長時間的轉運,從而改善了每種 UxV 的 Ao 值和 TOS 值。對于任何特定的 UxV,通過增加 UVC 發射、回收和維護站的數量,從而消除或減少這些服務的排隊時間,可獲得最大的 Ao。分析表明,UVC 在設計時應至少配備 8 個無人機發射/回收站、至少 3 個船舷托架和至少 5 個焊接甲板托架。這些參數沒有確定上限,這也是未來研究的一個潛在領域。
有趣的是,雖然 UVC 的存在改善了大型無人水面艦艇(LUSV)的航速,但 UVC 的實際設計似乎對 LUSV 的航速沒有影響。這可能是由于 LUSV 的假定任務持續時間長,假定維護間隔長,因此不可能出現任何排隊現象。單個船側停泊區似乎足以為多艘 LUSV 提供服務,但即使是單個船側停泊區,也可通過消除到岸基設施的轉運時間來改善 Ao。
通過分析低當量戰場核武器的影響,本專著對一個陸軍軍團在發生核打擊時的指揮與控制(C2)復原力進行了評估。特別是,它研究了在核效應使C2系統的組成部分(人員、指揮所、網絡和程序)退化后,進行多域作戰(MDO)的能力。分析表明,由于指揮節點的冗余性和分散性,單一的低當量戰場核武器無法摧毀一個軍團的全部C2系統。C2退化的嚴重程度取決于使用的核武器數量、被摧毀的C2節點,以及對手是否愿意打擊美國大陸或太空中的節點。盡管針對陸地部隊的低當量戰場核武器可能不是拒絕網絡連接的最佳選擇,但它們的使用對C2系統的設計有影響,因為機動部隊可能會為了生存能力而增加分散性。
隨著冷戰的結束,核戰爭的隱性威脅減弱,陸軍不得不在核戰場上作戰的可能性似乎越來越小。隨著常規部隊參與對非核國家的反叛亂,美國陸軍的核知識和技術經驗逐漸萎縮。與此同時,俄羅斯和中國將其核力量現代化,朝鮮明確威脅要使用核力量。盡管全面的核交換仍然不太可能,但安全分析家們開始承認有限核戰爭的可能性。
美國陸軍新公布的多域作戰(MDO)概念明確假定不會使用核武器。該文件指出,核武器將 "極大地改變戰略環境,以至于需要不同的作戰方法"。這一假設在當代作戰思想中并非沒有先例,在當代作戰思想中,有限核戰爭的概念 "幾乎已經從戰略詞匯中被驅逐,特別是在西方"。考慮到即使使用核武器,美國陸軍也要在戰場上作戰,那么使用低當量的戰場核武器將如何影響陸軍在MDO中指揮和控制(C2)地面部隊的能力?
本專著首先回顧了MDO概念、聯合全域指揮與控制,以及陸軍C2系統的四個組成部分:人員、指揮所、網絡和流程。然后,該專著將描述核危險,并按照聯邦應急管理署(FEMA)使用的災害風險評估方法的修改版評估其對C2系統的影響。它的結論是對陸軍軍團在核戰場上C2 MDO能力的影響。
目前,由于軍團指揮節點的冗余性和分散性,單一的低當量戰場核武器無法摧毀整個軍團的C2系統。軍團C2系統退化的嚴重程度取決于使用的核武器數量、被摧毀的指揮節點數量,以及對手是否愿意打擊美國大陸或太空中的網絡節點。打擊太空和美國境內的目標,除了針對戰場上的陸地部隊外,還具有重大的戰略后果。盡管核武器可能不是拒絕網絡連接的最佳選擇,但它們的使用促使機動部隊為了生存能力而增加分散性,這對C2系統的設計有影響。未來的C2系統必須能夠支持核戰場上次級單位的擴散,因為機動部隊可能會分散成多個較小的滲透或類似滲透的突擊。
陸軍理論將指揮和控制定義為 "由適當指定的指揮官對分配的和附屬的部隊行使權力和指導,以完成任務"。根據陸軍條令出版物(ADP)6-0,指揮與控制體系由人員、程序、網絡和指揮所組成。這些組成部分相輔相成,能夠對部隊進行有效的指揮和控制(圖1)。一個組成部分的失敗會降低系統的整體效力。
圖1. 戰斗力模型。美國陸軍部,陸軍條令出版物(ADP)6-0,任務指揮(華盛頓特區:政府印刷局,2019),1-20。
ADP 6-0指出,人是C2系統中最重要的部分。事實上,陸軍說,未來的MDO戰爭仍將 "從根本上說是人的工作"。具有技術專長的士兵對于管理和維護復雜的跨域行動和網絡是必要的。MDO概念設想了使用人工智能的人機界面,以提高人類決策的 "速度和準確性"。即使人工智能在新的JADC2系統中變得突出,軍方也致力于將人類留在決策圈中,特別是在動能打擊方面。新的JADC2系統將協助人們執行多領域的行動,而不是取代他們。
ADP 6-0將流程定義為一系列的行動,以達到驅動行動過程的最終狀態。在MDO中,C2流程必須支持 "seestrike "或 "刺激-see-strike "的強化瞄準周期。例如,無人機可以激起敵人啟動防空雷達,從而可以用遠距離火力進行攻擊。由于對手的A2/AD泡沫有數以百計的集成系統,MDO瞄準程序需要不斷同步打擊,以首先穿透敵人的系統,然后保持通道暢通。空軍綜合任務指令(ITO)是MDO瞄準的概念模型。就像目前按72小時節奏運行的空中任務指令(ATO)一樣,ITO將是一個人工智能增強的過程,持續地實時同步所有領域的能力。
網絡使指揮官能夠溝通信息,控制部隊,并且是成功行動的關鍵因素。考慮網絡的兩個組成部分是很重要的。首先,網絡需要物理設備,如計算機和服務器。軍事服務器存儲數據,任何用戶都可以通過區域或戰術網絡節點獲得適當的權限。在未來,JADC2和MDO將依賴于存儲在服務器上的信息 "數據湖",戰場上的任何傳感器或射擊者都可以訪問。
第二,網絡需要系統之間的鏈接,以提供連接和數據的傳輸。陸軍學說將此稱為網絡傳輸。一個軍團總部有三種連接C2節點的方式;光纖或電線等物理連接、衛星和視線無線電通信。JADC2需要近乎即時的共享和從 "數據湖 "中提取數據,以實現MDO中要求的速度。與衛星的全球覆蓋相比,通過視線系統發送的數字數據的范圍有限。這使得全球JADC2網絡高度依賴不間斷的衛星通信,以避免將機動裝置與光纖或電線連接進行物理捆綁。然而,新的地面傳輸視線(TRILOS)系統具有良好的帶寬和較低的延遲,這可以幫助在局部的地理區域建立有彈性的C2網絡。
ADP6-0指出,指揮官將C2系統組織成指揮所,以促進工作人員之間的同步和信息共享。指揮所可以是一個建筑物、帳篷、車輛或任何其他工作人員組織的物理空間。指揮官將C2系統的其他三個組成部分安排在指揮所。隨著C2界面和流程的變化,為其設計的指揮所也會發生變化。目前軍事總部使用的技術是將參謀人員放在彼此相近的地方,這樣他們就可以從空軍系統中提取數據,例如,走到陸軍系統中操作的參謀人員面前。這個過程被諷刺為 "球鞋網",它太慢了,無法實現MDO的快速融合。在未來,算法和數據轉換軟件將綜合各種系統之間的信息,以達到MDO所需的速度。美國空軍已經預計這將使更小、更分散的作戰中心提高生存能力和冗余度,以應對敵人的遠距離精確攻擊。同樣,未來的美國陸軍指揮所可以減少人員配置要求,成為一套移動指揮車,而不是大規模的帳篷組合。
Martin van Creveld在他的開創性著作《戰爭中的指揮》中警告說,沒有任何C2系統是為所有情況而優化的。一個為后勤或進攻而設計的系統可能對目標定位或防御的效果較差。安德魯-巴切維奇指出,1950年的五角大樓(Pentomic Division)是專門為核戰場設計的,其繁瑣的C2和組織結構對于核戰爭以外的任何情況都是不可行的。相反,為支持MDO而設計的C2系統可能不適合于核戰場。
早期的核戰略家們設想,核武器會撕開防御和部隊集結。五角大樓師的邏輯是使用營級規模的戰斗群,這些戰斗群足夠強大,可以獨立作戰,但又足夠小,在核打擊中的損失不會對該師的生存造成損害。五角大樓師取消了中間的旅部,將五個戰斗群直接置于師部的控制之下,以此來增加核戰場上的冗余度和靈活性。新的師將沿著27公里的戰線分散作戰。相比之下,二戰時期一個師的規劃因素是7公里的戰線。
其結果是控制范圍對一個師部來說太大。如果考慮到所有的支持組織,各師要對多達16個下屬單位負責。戰斗小組缺乏足夠的后勤能力,依靠師部的援助,這使師部的工作人員更加不堪重負。此外,現有的無線電技術沒有足夠的范圍,無法在五原子理論中設想的距離內實際行使指揮控制權。陸軍需要對新的C2技術進行現代化改造和應用。相反,陸軍仍然人手不足,裝備不良,并且在短短幾年后就放棄了這一條令。
短暫的Pentomic師級實驗說明了將C2技術與新興概念相結合的挑戰。今天,地面部隊仍然像20世紀50年代那樣容易受到核武器的攻擊。如果指揮官保持部隊整合以方便C2,他們就有可能在核戰場上被摧毀。隨著編隊分散以提高生存能力,C2結構也承擔著更大的負擔。就像過去的五角大樓師一樣,MDO正指望著未開發的C2技術。如果在開發時沒有考慮到核戰場,那么JADC2在MDO中會有多大效果?
通過了解核武器的效應,人們可以評估低當量戰場核武器(LYBNW)對C2系統組件的影響。低當量戰場核武器是一種當量小于15千噸的核武器,用于對特定戰區內的軍事目標,主要是地面部隊,產生戰術或作戰效果。爆炸當量相當于TNT的磅數。1千噸的爆炸當量相當于1,000噸TNT。1百萬噸的爆炸當量相當于100萬噸TNT炸藥,比千噸級強一千倍。使用這種武器也有戰略意義。
LYBNW可以通過使用巡航導彈、炮彈、彈道導彈、重力炸彈或任何其他適當的方法進行投放。美國核武庫中過去的例子包括小男孩重力炸彈、Davy Crocket炮彈和Genie火箭。目前,美國的核武庫包括可變當量武器,如B-61重力炸彈和空中發射的巡航導彈。W 76-2潛射洲際彈道導彈是美國核武庫中最新的低當量選項。俄羅斯、中國、印度、巴基斯坦、以色列和朝鮮的核武庫也包括低當量戰場核武器。
本評估假設對手以地面突擊或低空突擊的方式對戰場上的一個軍團使用一枚10千噸的LYBNW。空中突發是指核火球不接觸地球表面。空中突擊對人口中心和露天無保護的部隊更有利。地面爆裂可以摧毀掩體、跑道和加固的軍事結構。高空爆裂可以對陸地部隊產生間接影響,但其致命性要小得多。
考察一次爆炸的效應有助于消除對核影響的任何夸大的成見。此外,核戰略家赫爾曼-卡恩認為,首次使用核武器更有可能發出政治信息而不是摧毀軍事力量。使用的核武器越多,升級控制的影響就越大,這不在本討論范圍之內。
如圖2所示,核武器釋放的巨大能量被劃分為三種主要效應:爆炸波、熱量和電離輻射。電磁脈沖(EMP)和大氣電離是次要效應,對人類無害,但會使C2退化。
圖2. 核效應。改編自國防部負責核事務的副助理部長辦公室,《核事務手冊》(華盛頓特區:2020),225。
作者正在研究分布式雷達在穿墻感應中的應用。這項技術的預期操作場景是在建筑物外的(安全)遠程距離內探測和識別建筑物內的人員和武器裝備。本研究使用的雷達結構和信號處理算法類似于美國陸軍作戰能力發展司令部(DEVCOM)陸軍研究實驗室(ARL)實施的埋藏和隱蔽表面目標探測的設計;目前的雷達發射和接收頻率更高。
在這項研究中,實驗是在ARL的阿德爾菲實驗中心(ALC)507號樓("沙盒 "區域)進行的,使用的是室內低金屬兩層夾板結構。用來測試分布式雷達的受控環境與用來測試ARL針對電子目標的諧波雷達的低金屬環境相同。
圖1 步進頻率雷達收發器:(a)賽靈思的RFSoC與Alion/HII的雷達固件,以及(b)定制的發射器/接收器(Tx/Rx)濾波器和放大器PCB,由28VDC供電
本研究中收集的數據表明,在低矮的金屬建筑中,相互成直角的天線對能夠探測到多個移動目標,而這些目標從建筑外是看不到的。隨時間變化的距離圖顯示了目標所遵循的路徑;在一個頻道中跟蹤的目標路徑的模糊性可以通過在另一個頻道中跟蹤同一目標來緩解。仍需努力將同時收集的數據的IQ振幅一致地結合起來,以解決多個目標。一個目標是在二維(下行和上行)圖像上繪制目標位置,也許是以視頻動畫的形式疊加在場景的俯視圖上(即被成像的建筑物的典型平面圖)。在對移動目標進行成像時,發射器和接收器天線的雙穩態配對是否具有優勢(與標準的單穩態發射器天線配對相比)還有待確定。
這篇論文試圖研究能夠改善復雜軍事戰術環境中決策的人工智能(AI)技術。戰術環境在威脅、事件的節奏、突發或意外事件的因素、戰斗空間意識的限制以及潛在的致命后果方面可能變得非常復雜。這種類型的環境對戰術作戰人員來說是一個極具挑戰性的決策空間。戰術決策任務在識別決策選項、權衡眾多選項的相對價值、計算選項的預測成功率以及在極短的時間內執行這些任務方面迅速超越了人類的認知能力。海軍已經確定需要開發自動戰斗管理輔助工具(ABMA)來支持人類決策者。這個概念是讓ABMA處理大量的數據來發展戰斗空間知識和意識,并確定戰爭資源和行動方案的優先次序。人工智能方法的最新發展表明,它有望成為ABMAs支持戰術決策的重要推動者。本論文研究人工智能的方法,目的是確定在戰術決策領域的具體應用。
本論文分為五章。第一章概述了本課題的背景,描述了本論文所探討的問題,本論文的目的,以及研究的方法和范圍。第二章對論文中討論的定義和概念進行了全面的背景回顧,包括自動戰斗管理輔助工具、決策復雜性和人工智能及自主系統的概念。第三章描述了用于協調數據采集和理解檢索數據要求的研究方法。第四章提供了分析的結果,并探討了從分析結果中得出的潛在好處和局限。本論文的最后一章包含最后的結論和對未來工作的建議。
自拿破侖于 1805 年建立軍團以來,世界各地的軍隊都在尋求提高組織的同步性和整合性。從這個角度來看,融合也不例外。然而,在戰場上實現這一目標取決于開發一個知情、協作和有目的的聯合部隊 C2 系統。為開發具有這些特征的 C2 系統設定條件,首先要重新構想聯合部隊的組織、訓練方式以及領導者培養方式。通過這些努力,聯合部隊可以實現全域的統一努力——通過一個知情、協作和有目的的 C2 系統實現——這將使其能夠在當今和未來的復雜作戰環境中有效地競爭、威懾和取勝。
在這個大國競爭的時代,美國的對手尋求在低于戰爭門檻的情況下實現其目的。然而,如果與近鄰對手的武裝沖突確實發生,他們將尋求在所有領域--陸地、海洋、空中、太空和網絡空間--以及作戰環境(OE)的電磁頻譜(EMS)中對聯合部隊的行動提出競爭,以創造條件實現既成的攻擊。一個有爭議的作戰環境將包括多個對峙層,由許多敵方的反介入和區域拒止(A2/AD)能力來實現。這些旨在造成不可接受的損失的能力,也將尋求在 "時間、空間和功能上分離聯合部隊的要素",從而防止統一的努力,并迫使其能力的偶發承諾。
為了克服這些挑戰,聯合部隊正在發展 "聯合全域作戰"(JADO)的聯合作戰概念,該概念旨在通過整合各軍種及其任務伙伴的能力,在決定性的空間內迅速運用動能和非動能效應。這些融合效應將穿透敵人的對峙層,并使他們的A2/AD能力失去整合,從而使聯合部隊得以利用(見圖1)。然而,實現融合需要有效的指揮和控制(C2),它跨越所有領域,并能夠獲得各軍種及其任務伙伴的統一努力。本研究探討了C2滿足這一要求所需的那些特征。
圖 1. MDO 解決方案。改編自美國陸軍訓練和條令司令部 (TRADOC),TRADOC 小冊子 525-3-1,美國陸軍 2028 年多域作戰(弗吉尼亞州尤斯蒂斯堡:TRADOC,2018 年),26。
自2012年發表《聯合行動的頂點概念:2020年聯合部隊》(CCJO 2020)以來,聯合部隊已經逐步向JADO的概念過渡。雖然 "聯合 "的概念已經存在了幾十年,但美國防部(DoD)和各軍種只是在最近才將目光投向偶發的跨域同步和能力整合。自2012年以來,各軍種在與其他軍種不同程度的合作下,制定了通過跨域能力作戰的概念性作戰方法。然而,正如美國陸軍未來和概念中心前主任埃里克-韋斯利中將所說,"你就是不能讓不同的軍種擁有自己的MDO[多域作戰]概念并將它們聯合起來......這必須是一項自上而下的努力"。在這一點上,出現了一個不可分割的緊迫問題:如何有效地C2跨領域和跨梯隊的能力融合,以確保聯合部隊在有爭議的OE中的優勢。
盡管幾十年來,聯合部隊以服務為導向的C2方法成功地實現了能力的同步和整合,但為了實現跨域能力的融合,有必要采用涵蓋所有領域的聯合C2方法。這項研究評估了有效的聯合部隊C2的特點,這些特點能夠在JADO期間實現融合。這項評估首先回顧了導致JADO概念的概念性框架。然后概述了兩個歷史案例研究--1982年英國福克蘭群島戰役和1989年美軍執行的 "正義事業 "行動--其中C2有效地實現了跨領域和跨梯隊的能力運用。然后,本研究通過系統理論的視角來評估這些案例研究,以回答研究問題,并得出組織、培訓和領導者發展對聯合部隊的影響,因為它在JADO期間完善了其C2融合的能力。
本專著分析部分所采用的系統理論透鏡,采用了賈姆希德-加拉吉達吉(Jamshid Gharajedaghi)在其作品《系統思考》中概述的迭代調查過程。Gharajedaghi認為,當試圖理解一個系統內復雜的相互作用時,這個過程能夠實現 "令人滿意的整體視野",就像那些在戰斗行動中實現C2的系統。這一理論的核心是,通過評估一個系統的結構、功能和過程以及它所處的環境,"對整體的理解是可能的"。每個案例研究以及文獻綜述中概述的信息都涵蓋了這些領域,為評估C2的特點提供了一個整體的視角。
由于持續的旅行和檔案訪問限制,本專著中進行充分評估所需的研究主要來自于數字資源。然而,與陸軍未來司令部(AFC)和聯合武器理論局(CADD)的密切和日常協調促進了關于C2理論和未來操作概念的主要和次要來源研究。此外,聯合武器研究圖書館(CARL)提供了對執行這兩個案例研究至關重要的歷史學和理論研究的機會。為了集中研究,本研究通過定義一個研究問題來設定參數,以解決之前確定的問題。
隨著聯合部隊為JADO開發支持性概念和系統,解決以下問題很重要。在穿透和瓦解對手的A2/AD陣列時,有效的C2有什么特點,能使多個領域和梯隊的能力融合在一起?正如每個軍種的未來作戰概念中所概述的那樣,目前的文獻從每個軍種的角度提供了一個基礎性的理解,但對過去跨域作戰的C2的歷史分析對此進行了補充。這一歷史分析通過兩個互補的案例研究進行,將回答以下的附屬問題。在滲透和瓦解敵人的A2/AD陣列過程中,歷史上有哪些C2特征促成或阻礙了跨領域和跨梯隊能力的同步和整合?該研究通過回答這些問題,解決了當前文獻中關于有效C2的哪些特征能夠在JADO期間實現融合的空白。然而,在繼續研究之前,重要的是要解決在文獻回顧中詳細討論的術語的定義,這對本研究至關重要。
本專著的范圍涵蓋了JADO概念組成部分的背景發展,同時特別關注C2的那些特征,這些特征將有效地實現對敵人A2/AD陣列的融合。本專論的發展有兩個重要的限制--時間和分類。由于完成的學術時間要求,本研究的研究只延伸到2020年10月底。第二個限制是一些文件的分類,如《國防戰略》(NDS)和《CCJO 2020》,這使得我們無法進行全面的文獻審查,而只能依靠未分類的總結。此外,由于聯合參謀部和各軍種仍在開發JADO概念的許多方面,對一些概念材料的發布有限制,這限制或阻止了本專著對其的引用。
菲律賓需要一種全面的海洋態勢感知(MDA)能力來應對日益增加的國家和非國家海洋威脅。菲律賓軍事現代化計劃的目標之一是通過菲律賓海軍海上態勢感知系統(PNMSAS)提高海上態勢感知。本研究的主要目的是了解PNMSAS的現狀、差距,以及海上特種作戰部隊在提高菲律賓海上態勢感知方面的潛在作用。這項定性研究利用了從政府文件和關鍵信息者訪談中收集到的數據,以及從公開文獻中獲得的信息。迄今為止,菲律賓海軍已經采取了若干舉措。這些舉措包括建立新的海岸觀察站和升級現有的觀察站,以及采購新的海軍平臺,以加強對海洋形勢的認識的信息收集。然而,菲律賓受到資源匱乏和已獲得的陸基和移動傳感器的長期交付的阻礙,因此需要尋找一個成本效益高的信息收集系統,而不僅僅是依賴昂貴的技術。本論文研究了海上特種作戰部隊作為低成本/低技術解決方案的潛在作用,它將增強現有的舉措并提高菲律賓海軍的海洋領域感知能力。
本專著追求的是確定美國陸軍如何能夠建立對定位導航和授時的共同作戰理解。規劃人員、分析人員和戰略人員必須了解如何實施空間使能因素和能力,以應對有爭議的作戰環境中的挑戰。最重要的是,本專著試圖回答美國陸軍將如何在未來的多域作戰中減輕定位導航和授時(PNT)的不利影響的問題。空間使能器對于成功彌補BCT級別的空間作戰差距以應對PNT戰爭中的近距離威脅是至關重要的。了解美國陸軍在MDO期間如何針對近距離對手開展行動,對于未來的任務規劃至關重要,這將使美國陸軍在多域作戰中應對作戰挑戰并保持作戰優勢。該專著將提供背景資料,確定美國陸軍在被拒絕、降級和中斷的空間作戰環境(D3SOE)中的GPS所面臨的當前問題,適用于PNT的當前文獻,并分析當前PNT的能力和局限性。最后,它的結論是關于美國陸軍必須如何認識到MDO的未來影響,并確定將阻礙美國陸軍未來行動的任何執行的脆弱性的建議。
在當前的信息和技術時代,世界人口已變得越來越依賴實時數據。無論是手機、電視,甚至是電力,技術已經成為地球上日常生活中提供實時信息的主力軍。隨著這種技術全球化的增加,對美國國家安全的挑戰和保護美國國內外利益的復雜性也在增加。美國繼續在有爭議的作戰環境中投射力量。美國在被拒絕的、退化的和被破壞的作戰環境中通過空間能力投射力量的能力不能僅僅停留在戰略領域,還必須延伸到作戰和戰術層面。
今天,近在咫尺的對手威脅,特別是中國和俄羅斯,正在與美國進行一場越來越復雜的技術競賽。國防空間戰略(DSS)總結提出,由于俄羅斯等大國開發、測試和部署反空間能力及其相關的軍事理論,以便在沖突中延伸到空間,因此構成最大的戰略威脅。這與其說是創造最主要和最致命的武器的競賽,不如說是一場更專注于如何拒絕對手能力的競賽。了解到這些空間支持行動的戰略利益,外國政府正在發展威脅他人使用空間能力的能力。中國和俄羅斯各自將空間武器化,作為降低美國和盟國軍事效力和挑戰美國空間行動自由的手段。
這種拒絕對手能力的技術競賽可能導致信息傳遞的 "內容 "和 "方式 "的范式轉變。拒絕信息傳遞是信息作戰(IO)和多域作戰(MDO)的最前沿。美國陸軍目前在作戰層面上面臨的問題是對定位、導航和授時(PNT)以及空間能力如何在退化、中斷或被拒絕的作戰環境中實現任務規劃和執行缺乏共識。美國陸軍必須了解PNT戰爭如何在作戰環境中發生,以及如何在未來的MDO期間減少所有梯隊對PNT戰爭的敵對使用。
三種不同的基本能力的組合定義了PNT。定位是指在標準大地測量系統(如1984年世界大地測量系統或WGS84)中準確和精確地確定一個人的位置和方向的能力,或在需要時確定三維位置。導航是確定當前和所需位置(相對或絕對)的能力,并應用于修正航線、方向和速度,以達到世界上任何地方的所需位置,從地下到表面,從表面到空間。計時是指在世界任何地方并在用戶定義的及時性參數范圍內,從一個標準(協調世界時或UTC)獲得并保持準確和精確的時間的能力。計時還包括時間轉移。
授時是PNT的關鍵。它是定位和導航的基礎。GPS的定位和導航數據來自接收設備的授時信號。全球的用戶完全依靠美國空軍維護的衛星群來獲得授時信息。
由于平民依賴PNT,即目前現代技術的支柱,美國軍隊也極其依賴PNT及其能力。廣泛依賴衛星信號進行導航和計時,使美國的關鍵基礎設施和經濟活動處于危險之中。
從戰術層面上進行徒步巡邏的步兵到進行聯合演習的海軍艦艇,甚至是在戰略層面上投擲精確制導炸彈的B-52 "斷頭臺",這些行動的成功執行所需的精確位置的計算都使用PNT。PNT的中斷可能有能力阻止美國軍隊的行動。人們越來越關注對手破壞GPS信號的方法和手段,從而使美軍無法獲得實現 "美國戰爭方式 "的定位和導航信息。美軍必須對付這些對手的措施,以便在被拒絕的、退化的和被破壞的空間作戰環境(D3SOE)中有效運作。
在D3SOE中有效運作依賴于幾個維持連接網絡的天基系統。天基系統和不受阻礙的空間訪問對國家的經濟福祉越來越關鍵,并與美國的國家安全相關聯。美國陸軍依靠空間能力來實現和加強陸地戰爭;幾乎每一個陸軍和聯合行動都受益于這些能力。了解這些涉及的復雜系統的風險將產生一種保護美國利益的預防行動的緊迫感。
基于空間的能力是軍事、商業和民用部門的一個組成部分。目前美國的空間政策闡明了基礎活動,通過加強機構間和商業伙伴關系來改善空間系統的開發和采購。長期存在的空間技術和成本障礙正在下降,這使得更多的國家和商業公司能夠參與到衛星建造、空間發射、空間探索和人類太空飛行中。私人商業公司Space X最近公布了其空間計劃。這可能促進美國商業空間能力和服務的新市場機會,包括依賴美國政府提供的空間系統的商業應用。促進商業應用對有保障的PNT的依賴,可以利用美國的能力來增強和鼓勵新興技術和空間能力的民用和軍用互操作性。鑒于上述概述,本專論將討論在美國陸軍作戰計劃中理解PNT的重要性。
美國陸軍將如何在未來的多域作戰 (MDO) 中減輕 PNT 戰爭的影響?
美國陸軍要求重點支持有保障的PNT和緩解技術,這可能使美國陸軍在MDO期間應對作戰挑戰并保持作戰優勢。為了應對有保障的PNT所面臨的近似挑戰,美國陸軍必須找到新的和全面的方法,通過同時使用其他作戰領域,如網絡戰和電子戰,來減少對計時系統的威脅。這也意味著要建立一個防御性的時間基礎設施和網絡,以維護和改善友好的授時源和授時分配,重點是精確授時的廣泛用途。在GPS被屏蔽的環境中,確保準確的PNT信息被傳遞給作戰人員是絕對關鍵的。為了采用這些技術,并有效地應對近距離的威脅,美國陸軍必須在作戰層面上提高整個部隊對空間能力和促進因素的共同理解。
美國陸軍必須認識到MDO的未來影響,并確定將阻礙美國陸軍未來行動的任何執行的弱點。了解美國陸軍在MDO期間如何對近距離的對手開展行動,對于未來的任務規劃至關重要。MDO方法將等同于美國陸軍如何減少其目前對PNT的過度依賴,同時繼續執行和實現任務的成功。
通過條令、歷史和理論的視角,研究將集中在公開來源的非保密檔案材料、當前和歷史上的軍事學說以及理論框架,以產生一個規范性的建議來回答研究問題。訪問聯合導航戰中心(JNWC)、美國陸軍空間和導彈防御司令部(USASMDC)、美國戰略司令部(USTRATCOM)和位于科羅拉多州彼得森空軍基地(AFB)的美國空間司令部(USSPACECOM)的人員資源,將提供歷史和當前背景以及與研究問題有關的信息。這將有助于指導研究,任何發現,并提供與此主題有關的額外背景。該專著將確定當前的MDO理論,包括當前的空間作戰理論,以了解已確定的PNT脆弱性,在可能的情況下減輕,以及在空間使能器可以彌補任何操作差距的情況下未減輕。空間使能器對于在BCT層面成功彌補空間作戰差距以應對PNT戰爭期間的近距離威脅是最重要的。
本專著將特別關注解決美國陸軍應通過實施集中的系統方法來理解PNT的過程。這個過程將通過在各旅戰斗隊(BCT)實施空間使能器和空間能力來提高對PNT戰爭的作戰理解。空間能力是投射陸地力量和贏得近距離戰斗的關鍵使能因素。本專著分為四個主要部分:第一部分是導言,包括背景信息,指出美國陸軍在D3SOE中面臨的GPS問題;第二部分提供適用于PNT戰爭的當前理論,以及對當前PNT戰爭能力和限制的理解;第三部分分析美國陸軍目前如何計劃和執行MDO;第四部分總結了影響、建議,以及必須進行的額外研究。
目標姿態估計和目標點選擇在直接能量武器系統中至關重要,因為它使系統能夠指向目標的特定和戰略區域。然而,這是一項具有挑戰性的任務,因為需要一個專門的姿態傳感器。在新出現的深度學習能力的激勵下,本工作提出了一個深度學習模型,以歐拉角的方式估計目標航天器的姿態。深度學習模型的數據是通過實驗從三維無人機模型中產生的,其中包括大氣背景和湍流等效應。目標姿態來自于二維關鍵點的訓練、驗證和預測。有了關鍵點檢測模型,就有可能檢測到圖像中的興趣點,這使我們能夠估計有關目標的姿勢、角度和尺寸。利用弱透視直接線性變換算法,可以從三維到二維的對應關系中確定三維物體相對于攝像機的姿勢。此外,從這種對應關系中,可以確定目標上的瞄準點,模仿激光跟蹤。這項工作評估了這些方法及其在模擬真實世界環境中實驗產生的數據的準確性。
融合項目(PC)是一項美國陸軍學習活動,旨在整合和推進他們對聯合部隊(陸軍、海軍、空軍和海軍陸戰隊)的貢獻。根據研究和分析中心(TRAC)-蒙特雷的說法,"PC確保陸軍作為聯合戰斗的一部分,能夠快速和持續地整合或'融合'所有領域的效果--空中、陸地、海上、太空和網絡空間,以便在競爭和沖突中戰勝對手"(研究和分析中心[TRAC]2020)。目標是評估在PC21上展示的新的創新系統(SoS)技術是否滿足為聯合部隊提供必要的速度、范圍和融合所需的作戰能力,以產生未來的決策主導權和大國競爭的超能力。然而,鑒于PC期間各種現代技術的注入,TRAC-蒙特雷目前缺乏一種方法來衡量作戰效果以及作為軍隊和聯合部隊的融合是否正在實現。因此,本項目的重點是制定一個概念性的評估框架,以確定在PC21演習中測試的多域作戰(MDO)任務中SoS的作戰有效性。這個框架將集中在那些被證明可以減少傳感器到射手(S2S)時間的技術的行動有效性,以便在聯合MDO任務中消滅一個固定的目標。
該小組確定,對某一特定能力的功能分解,結合用于開發MOE的Langford綜合框架的修改版,將產生描述該特定能力的行動有效性的良好措施。為了將衡量標準轉化為價值分數,團隊使用了構建價值尺度的理想范圍方法,該方法為每個衡量標準建立了一個從最好到最壞的情況,使其具有適應任何能力的靈活性。帕內爾的搖擺加權法被用來量化利益相關者對每個蘭福衍生的MOE的重要性,以確定能力的每個MOE的加權價值分數(WVS)。WVS相加得出總分,這就提供了對運營有效性的最終評估。然后,該團隊產生了一個行動有效性量表,向利益相關者說明他們的能力在這個量表中的得分情況。
該項目最后針對概念評估框架應用了PC21用例,以衡量其在生成與用例中的能力最相關的MOE以及單一行動有效性分數方面的穩健性。該模型的最終驗證將在目前計劃于2021年10月開始的PC21期間進行。
總之,該團隊使用系統工程流程建立了一個概念性評估框架系統,該系統將使TRAC-Monterey有能力評估PC21期間展示的新的創新SoS技術的作戰能力。該團隊開發了一個利益相關者分析,一個由利益相關者衍生的目標層次,一個功能分解,以及一個創建良好措施的過程,將這些措施轉化為價值分數,量化措施的重要性,并將產生的價值匯總為一個單一的、行動有效性分數。該框架將為利益相關者提供信息,使他們能夠就進一步的技術開發做出明智的決定。TRAC-Monterey還可以將本研究中制定的衡量標準作為指南,在整個PC21和未來的PC活動中收集相關信息。
建議 TRAC 在 PC21 期間對照 S2S 用例 1-1 驗證概念性評估框架。還應采用其他用例來測試框架的靈活性和可用性。還建議進一步研究行動效率的認知方面,以及如何利用這些信息來擴大本評估框架的范圍。TRAC和JMC向團隊表示,PC的努力將有助于改寫聯合行動的理論。