課程目標 ?理解、記憶模式識別中的基本概念、步驟和方法 ?對重要方法,要能實際應用,并能理解其前提條件、 應用范圍、應用注意事項和方法原理及推導 ?對講授的其他方法,要能理解其含義和使用環境 ?要對模式識別的前沿領域有感性的認識 ?提高目標 ? 進一步能通過獨立閱讀和實踐掌握較深入的問題和方 法,并能應用到學習、研究中遇到的問題中去
題目
第八屆中國科技大學《計算機圖形學》暑期課程課件
關鍵字
計算機圖像學,教學課件,中國科技大學
簡介
《計算機圖形學前沿進展》(課程編號:001M06)為中國科技大學暑期學期的課程。課程由數學科學學院中科大圖形與幾何計算實驗室(GCL)的張舉勇老師與劉利剛老師及國內外學者共同授課。本年度課程的主題為 “幾何優化、幾何深度學習與三維視覺” 。本次課程的內容涵蓋數值優化、幾何建模、三維重建、三維場景理解、幾何深度學習等內容,內容豐富和前沿,是了解計算機圖形學與三維機器視覺前沿和未來方向的非常難得的機會。若對計算機圖形學中的幾何處理不太熟悉的同學,可提前看一下 劉利剛老師開設的本科生課程《計算機圖形學》( 2013,2014, 2015,2016,2017,2018 )和研究生課程《數字幾何處理》的主頁(其中有較完善的課程課件提供下載 )。
本課程為中國科學技術大學全校性公共選修課程,面向應用數學、計算機科學、信息科學等相關專業的學生,歡迎數學學院、少年班學院、信息學院、計算機學院等學院的本科生高年級學生和研究生來選課 。【注】若本校的本科生需要該課程的學分,只需要在校教務系統中進行選課,而不再需要通過課程的注冊系統進行注冊。本次暑期課程以介紹計算機圖形學與三維視覺領域的最新的研究成果及進展為主,同時兼顧本科生也會介紹該領域的一些基本問題和研究方向,只要有《線性代數》、《微積分》、《數值最優化》、《微分幾何》等課程知識的學生都可以聽懂。
出處
中國科技大學
本章從數學角度描述了卷積神經網絡(CNN)的工作原理。這一章是自成一體的,重點是讓初學者能夠理解CNN領域。
卷積神經網絡(CNN)在許多計算機視覺、機器學習和模式識別問題上表現出優異的性能。關于這個主題已經發表了許多可靠的論文,并且已經提供了許多高質量的開源CNN軟件包。
也有寫得很好的CNN教程或CNN軟件手冊。但是,我們認為,專門為初學者準備的介紹CNN的材料仍然是需要的。研究論文通常很簡潔,缺乏細節。對于初學者來說,閱讀這樣的論文可能是困難的。針對有經驗的研究人員的教程可能無法涵蓋理解CNN如何運行的所有必要細節。
本章試圖提出一個文檔:
自成一體。所有需要的數學背景知識都將在本章(或本書其他章節)中介紹;
有所有衍生的細節。這一章的目的是詳細解釋所有必要的數學。我們盡量不忽略推導過程中的任何重要步驟。因此,初學者應該能夠跟上(盡管專家可能會發現這一章有點重復);
忽略實現細節。目的是讓讀者了解CNN是如何在數學層面運作的。我們將忽略這些實現細節。在CNN中,對各種實現細節做出正確的選擇是其高準確性的關鍵之一(即“細節決定成敗”)。然而,我們有意省略了這一部分,以便讀者關注數學。在了解了數學原理和細節之后,通過親身體驗CNN編程來學習這些實現和設計細節會更有優勢。本章的練習問題提供了動手制作CNN編程的機會。
CNNs在很多應用中都很有用,特別是在與圖像相關的任務中。CNNs的應用包括圖像分類、圖像語義分割、圖像中的目標檢測等。在本章中,我們將重點討論圖像分類。在圖像分類中,每幅圖像都有一個主要的對象,占圖像的很大一部分。一個圖像根據其主要對象的身份被分類到其中一個類中。狗、飛機、鳥等。
伯克利2019三月份開設了《全棧深度學習訓練營》課程,由伯克利Pieter Abbeel, Sergey Karayev, Josh Tobin等教授講解,專門為熟悉深度學習基礎的開發人員提供的實踐訓練,學術工業界硬貨,包含15次課程,非常值得學習。
課程地址:
//fullstackdeeplearning.com/march2019
訓練模型只是深度學習項目的一部分。在本課程中,我們教授全棧生產深度學習:
課件下載鏈接:
提取碼: nnya