亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

主題: Agile Machine Learning

摘要: 凝聚人才,打造一支偉大的應用型機器學習團隊,是一項不小的壯舉。由于開發人員和數據科學家都在各自領域貢獻了專業知識,單靠通信就可能是一個挑戰。敏捷機器學習教你如何通過敏捷過程交付優秀的數據產品,并通過例子學習如何在生產環境中組織和管理一個快速發展的團隊,該團隊面臨著大規模解決新數據問題的挑戰。作者的方法模擬了敏捷宣言中描述的開創性的工程原理。這本書提供了進一步的上下文,并將最初的原則與交付數據產品的系統的需求進行了對比。

作者簡介: Eric Carter,Eric Carter曾在微軟的Bing和Cortana團隊擔任合作伙伴團隊工程經理。在這些角色中,他致力于圍繞產品和評論、業務列表、電子郵件和日歷的搜索功能。他目前在微軟白板產品組上工作。

付費5元查看完整內容

相關內容

計算機科學(Computer Science, CS)是系統性研究信息與計算的理論基礎以及它們在計算機系統中如何實現與應用的實用技術的學科。 它通常被形容為對那些創造、描述以及轉換信息的算法處理的系統研究。計算機科學包含很多分支領域;其中一些,比如計算機圖形學強調特定結果的計算,而另外一些,比如計算復雜性理論是學習計算問題的性質。還有一些領域專注于挑戰怎樣實現計算。比如程序設計語言理論學習描述計算的方法,而程序設計是應用特定的程序設計語言解決特定的計算問題,人機交互則是專注于挑戰怎樣使計算機和計算變得有用、可用,以及隨時隨地為 所用。 現代計算機科學( Computer Science)包含理論計算機科學和應用計算機科學兩大分支。

題目: An Overview of Privacy in Machine Learning

序言: 在過去幾年中,谷歌、微軟和亞馬遜等供應商已經開始為客戶提供軟件接口,使他們能夠輕松地將機器學習任務嵌入到他們的應用程序中。總的來說,機構現在可以使用機器學習作為服務(MLaaS)引擎來外包復雜的任務,例如訓練分類器、執行預測、聚類等等。他們還可以讓其他人根據他們的數據查詢模型。當然,這種方法也可以在其他情況下使用(并且經常提倡使用),包括政府協作、公民科學項目和企業對企業的伙伴關系。然而,如果惡意用戶能夠恢復用于訓練這些模型的數據,那么由此導致的信息泄漏將會產生嚴重的問題。同樣,如果模型的內部參數被認為是專有信息,那么對模型的訪問不應該允許對手了解這些參數。在本文中,我們對這一領域的隱私挑戰進行了回顧,系統回顧了相關的研究文獻,并探討了可能的對策。具體地說,我們提供了大量關于機器學習和隱私相關概念的背景信息。然后,我們討論了可能的對抗模型和設置,涵蓋了與隱私和/或敏感信息泄漏有關的廣泛攻擊,并回顧了最近試圖防御此類攻擊的結果。最后,我們總結出一系列需要更多工作的開放問題,包括需要更好的評估、更有針對性的防御,以及研究與政策和數據保護工作的關系。

付費5元查看完整內容

本文綜述了元學習在圖像分類、自然語言處理和機器人技術等領域的應用。與深度學習不同,元學習使用較少的樣本數據集,并考慮進一步改進模型泛化以獲得更高的預測精度。我們將元學習模型歸納為三類: 黑箱適應模型、基于相似度的方法模型和元學習過程模型。最近的應用集中在將元學習與貝葉斯深度學習和強化學習相結合,以提供可行的集成問題解決方案。介紹了元學習方法的性能比較,并討論了今后的研究方向。

付費5元查看完整內容

基于對28個組織的采訪,我們發現行業從業者沒有配備戰術和戰略工具來保護、檢測和響應對他們的機器學習(ML)系統的攻擊。我們利用了訪談中的見解,并列舉了在傳統軟件安全開發環境下保護機器學習系統的視角上的差距。我們從兩個角色的角度撰寫本文:開發人員/ML工程師和安全事件響應人員,他們的任務是在設計、開發和部署ML系統時保護ML系統。本文的研究目的是為了使研究者們能夠在激烈競爭的ML時代對工業級軟件的安全開發生命周期進行修訂和修正。

付費5元查看完整內容

機器學習的核心是有效地識別數據中的模式和關系。許多任務,例如查找詞匯之間的關聯以便您能夠做出準確的搜索建議,或者在社交網絡中定位具有相似興趣的個人,很自然地以圖Graph的形式表達出來。圖驅動機器學習教你如何使用基于圖形的算法和數據組織策略來開發高級的機器學習應用程序。

對這項技術

對于任何涉及到大型數據集中的模式匹配的任務,基于圖的機器學習都是一個非常強大的工具。應用程序包括安全問題,如識別欺詐或檢測網絡入侵,應用程序領域,如社交網絡或自然語言處理,以及更好的用戶體驗,通過準確的推薦和智能搜索。通過將數據組織和分析為圖形,您的應用程序可以更流暢地使用以圖形為中心的算法(如最近鄰算法或頁面排名算法),在這些算法中,快速識別和利用相關關系非常重要。現代圖形數據存儲(如Neo4j或Amazon Neptune)是支持圖形機器學習的現成工具。

關于這本書

圖驅動機器學習向您介紹圖技術概念,強調圖在機器學習和大數據平臺中的作用。您將深入了解各種技術,包括數據源建模、算法設計、鏈接分析、分類和集群。在掌握核心概念之后,您將探索三個端到端項目,它們將演示體系結構、最佳設計實踐、優化方法和常見缺陷。作者亞歷山德羅·內格羅在構建基于圖形的機器學習系統方面的豐富經驗在每一章中都有所體現,你可以從他與真實客戶合作的實例和具體場景中學習!

里面有什么

  • 機器學習項目的生命周期
  • 三端到端應用程序
  • 大數據平臺中的圖形
  • 數據源建模
  • 自然語言處理、推薦和相關搜索
  • 優化方法
付費5元查看完整內容

主題: Machine Learning Interviews

目錄:

  • 機器學習工作
  • 在機器學習行業得到一份工作
  • 了解面試官的心態
  • 面試過程
  • 招聘渠道

嘉賓介紹: Chip Huyen,一位來自越南的作家和計算機科學家,總部位于硅谷。畢業于斯坦福大學(Stanford University),獲得計算機科學學士和碩士學位。在那里,創建并教授了用于深入學習研究的TensorFlow課程。長期從事人工智能研究,是機器學習領域專家級人物,在研究過程中,主張機器學習要面向實踐,面向實際,立志解決當前問題,AI必須要有商業驅動,方能足夠長遠的發展。//huyenchip.com/

付費5元查看完整內容

書籍介紹: 機器學習是一門人工智能的科學,該領域的主要研究對象是人工智能,特別是如何在經驗學習中改善具體算法的性能。機器學習是人工智能及模式識別領域的共同研究熱點,其理論和方法已被廣泛應用于解決工程應用和科學領域的復雜問題。本書從機器學習的基礎入手,分別講述了分類、排序、降維、回歸等機器學習任務,是入門機器學習的一本好書。

作者: Mehryar Mohri,是紐約大學庫蘭特數學科學研究所的計算機科學教授,也是Google Research的研究顧問。

大綱介紹:

  • 介紹
  • PAC學習框架
  • rademacher復雜度和VC維度
  • 支持向量機
  • 核方法
  • Boosting
  • 線上學習
  • 多類別分類
  • 排序
  • 回歸
  • 算法穩定性
  • 降維
  • 強化學習

作者主頁//cs.nyu.edu/~mohri/

付費5元查看完整內容

近幾年來,隨著機器學習的普及,機器學習系統的公平性問題引起了實際的道德、社會等問題。圖書《公平性與機器學習—局限與機遇》以公平性為核心問題來看待機器學習,提供了對當前機器學習實踐以及為實現公平而提出的技術修復方案的批判性思考。

社會、道德和機器學習自身等角度,介紹了目前機器學習中的公平性問題,如由于數據導致的偏置(bias)等問題。

圖書《Fairness and Machine Learning - Limitations and Opportunities》(《公平性與機器學習—局限與機遇》)以公平性為核心問題來看待機器學習,強調機器學習在道德方面的挑戰。作者希望該書盡可能地被廣泛閱讀,但在寫作時依然堅持著技術的嚴謹性。該書并沒有提供包羅萬象的對公平性完整的正式定義,也沒有提出一個快速解決社會對自動決策擔憂的修復方案。

解決機器學習公平性問題需要認真理解機器學習工具的局限性。該書提供了對當前機器學習實踐以及為實現公平而提出的技術修復方案的批判性思考。雖然這些問題都沒有簡單的答案,作者希望這本書能夠幫助讀者更深層次地理解如何構建負責任的機器學習系統。

付費5元查看完整內容
北京阿比特科技有限公司