亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

題目: An Overview of Privacy in Machine Learning

序言: 在過去幾年中,谷歌、微軟和亞馬遜等供應商已經開始為客戶提供軟件接口,使他們能夠輕松地將機器學習任務嵌入到他們的應用程序中。總的來說,機構現在可以使用機器學習作為服務(MLaaS)引擎來外包復雜的任務,例如訓練分類器、執行預測、聚類等等。他們還可以讓其他人根據他們的數據查詢模型。當然,這種方法也可以在其他情況下使用(并且經常提倡使用),包括政府協作、公民科學項目和企業對企業的伙伴關系。然而,如果惡意用戶能夠恢復用于訓練這些模型的數據,那么由此導致的信息泄漏將會產生嚴重的問題。同樣,如果模型的內部參數被認為是專有信息,那么對模型的訪問不應該允許對手了解這些參數。在本文中,我們對這一領域的隱私挑戰進行了回顧,系統回顧了相關的研究文獻,并探討了可能的對策。具體地說,我們提供了大量關于機器學習和隱私相關概念的背景信息。然后,我們討論了可能的對抗模型和設置,涵蓋了與隱私和/或敏感信息泄漏有關的廣泛攻擊,并回顧了最近試圖防御此類攻擊的結果。最后,我們總結出一系列需要更多工作的開放問題,包括需要更好的評估、更有針對性的防御,以及研究與政策和數據保護工作的關系。

付費5元查看完整內容

相關內容

“機器學習是近20多年興起的一門多領域交叉學科,涉及概率論、統計學、逼近論、凸分析、算法復雜度理論等多門學科。機器學習理論主要是設計和分析一些讓 可以自動“ ”的算法。機器學習算法是一類從數據中自動分析獲得規律,并利用規律對未知數據進行預測的算法。因為學習算法中涉及了大量的統計學理論,機器學習與統計推斷學聯系尤為密切,也被稱為統計學習理論。算法設計方面,機器學習理論關注可以實現的,行之有效的學習算法。很多 問題屬于 ,所以部分的機器學習研究是開發容易處理的近似算法。” ——中文維基百科

知識薈萃

精品入門和進階教程、論文和代碼整理等

更多

查看相關VIP內容、論文、資訊等

主題: Data Science: A Comprehensive Overview

摘要: 二十一世紀迎來了大數據時代和數據經濟時代,其中攜帶重要知識,見識和潛力的數據DNA已成為所有基于數據的生物的固有組成部分。對數據DNA及其有機體的適當理解依賴于數據科學及其基石分析的新領域。盡管人們爭論大數據是否僅僅是炒作和嗡嗡聲,并且數據科學還處于非常早期的階段,但是重大挑戰和機遇正在涌現,或者受到數據科學的研究,創新,業務,專業和教育的啟發。本文提供了有關數據科學基本方面的全面調查和教程:從數據分析到數據科學的演變,數據科學概念,數據科學時代的全景,數據創新的主要挑戰和方向,數據分析的性質,數據經濟中的新工業化和服務機會,數據教育的專業和能力以及數據科學的未來。除了提供豐富的觀察,教訓以及對數據科學和分析的思考之外,本文是本領域中第一篇全面概述的文章。

付費5元查看完整內容

隨著深度學習在視覺、推薦系統、自然語言處理等諸多領域的不斷發展,深度神經網絡(DNNs)在生產系統中得到了廣泛的應用。大數據集的可用性和高計算能力是這些進步的主要因素。這些數據集通常是眾包的,可能包含敏感信息。這造成了嚴重的隱私問題,因為這些數據可能被濫用或通過各種漏洞泄露。即使云提供商和通信鏈路是可信的,仍然存在推理攻擊的威脅,攻擊者可以推測用于訓練的數據的屬性,或者找到底層的模型架構和參數。在這次調查中,我們回顧了深度學習帶來的隱私問題,以及為解決這些問題而引入的緩解技術。我們還指出,在測試時間推斷隱私方面的文獻存在空白,并提出未來可能的研究方向。

付費5元查看完整內容

題目

保護隱私的協同過濾綜述,Survey of Privacy-Preserving Collaborative Filtering

關鍵字

協同過濾,隱私保護,機器學習,人工智能,推薦系統

簡介

協作過濾推薦系統根據用戶過去的經驗以及具有相似興趣的其他用戶的經驗向用戶提供建議。推薦系統的使用在最近幾年得到了廣泛的發展,可以幫助人們選擇觀看哪些電影,閱讀哪些書籍以及購買哪些物品。但是,在使用此類系統時,用戶通常會擔心其隱私,并且許多用戶不愿意為大多數在線服務提供準確的信息。隱私保護協作過濾推薦系統旨在為用戶提供準確的推薦,同時保持有關其數據隱私的某些保證。這項調查研究了有關保護隱私的協作過濾的最新文獻,提供了一個廣闊的視野,并使用兩種不同的標準對文獻中的關鍵貢獻進行了分類:漏洞的類型和解決方法。

作者

Islam Elnabarawy,Student Member, IEEE,Wei Jiang,Member, IEEE,and Donald C. Wunsch II,Fellow, IEEE

付費5元查看完整內容

題目: Survey of Personalization Techniques for Federated Learning

簡介:

聯邦學習使機器學習模型可以從分散的數據中學習,而不會損害隱私。 聯邦學習的標準制定為所有客戶提供了一種共享模型。 由于跨設備的非IID數據分布造成的統計異質性通常導致以下情況:對于某些客戶,僅對自己的私有數據進行訓練的局部模型的性能要優于全局共享模型,從而喪失了參與該過程的動力。 已經提出了幾種技術來個性化全局模型,以更好地為單個客戶服務。 本文強調了個性化的必要性,并對有關該主題的最新研究進行了調查。

目錄:

付費5元查看完整內容

題目: Threats to Federated Learning: A Survey

簡介:

隨著數據孤島的出現和隱私意識,訓練人工智能(AI)模型的傳統集中式方法面臨著嚴峻的挑戰。在這種新現實下,聯邦學習(FL)最近成為一種有效的解決方案。現有的FL協議設計已顯示出存在漏洞,系統內部和外部系統的攻擊者都可以利用這些漏洞來破壞數據隱私。因此,讓FL系統設計人員了解未來FL算法設計對隱私保護的意義至關重要。當前,沒有關于此主題的調查。在本文中,我們 彌合FL文學中的這一重要鴻溝。通過簡要介紹FL的概念以及涵蓋威脅模型和FL的兩種主要攻擊的獨特分類法:1)中毒攻擊 2)推理攻擊,本文提供了對該重要主題的易于理解的概述。我們重點介紹了各種攻擊所采用的關鍵技術以及基本假設,并討論了未來研究方向,以實現FL中更強大的隱私保護。

目錄:

付費5元查看完整內容

簡介:

近年來,由于機器學習(ML)/深度學習(DL)技術使用多維醫學圖像,在從一維心臟信號的心臟驟停的預測到計算機輔助診斷(CADx)的各種醫療保健應用中的卓越性能,見證了機器學習(ML)/深度學習(DL)技術的廣泛采用。盡管ML / DL的性能令人印象深刻,但對于ML / DL在醫療機構中的健壯性仍然存有疑慮(由于涉及眾多安全性和隱私問題,傳統上認為ML / DL的挑戰性很大),尤其是鑒于最近的研究結果表明ML / DL容易受到對抗性攻擊。在本文中,我們概述了醫療保健中各個應用領域,這些領域從安全性和隱私性的角度利用了這些技術,并提出了相關的挑戰。此外,我們提出了潛在的方法來確保醫療保健應用程序的安全和隱私保護機器學習。最后,我們提供了有關當前研究挑戰的見解以及未來研究的有希望的方向。

內容大綱:

付費5元查看完整內容

題目: Quantum Adversarial Machine Learning

摘要: 對抗性機器學習是一個新興的研究領域,主要研究機器學習方法在對抗性環境中的脆弱性,并開發相應的技術,使學習對對抗性操作具有魯棒性。它在各種機器學習應用中起著至關重要的作用,近年來引起了不同社區的極大關注。本文探討了量子機器學習中不同的對抗情境。我們發現,與基于經典神經網絡的傳統分類器類似,量子學習系統同樣容易受到精心設計的對抗性示例的攻擊,而與輸入數據是經典的還是量子的無關。特別是,我們發現,通過對原始合法樣本添加不可察覺的擾動而獲得的對抗性示例,可以最終欺騙達到接近最新精度的量子分類器。這在不同場景下的量子對抗學習中得到了明確的證明,包括對現實生活中的圖像(如數據集MNIST中的手寫數字圖像)進行分類,對物質的學習階段(如鐵磁/順磁有序和對稱保護拓撲相)進行分類,以及對量子數據進行分類。此外,我們還指出,根據手頭的對抗性例子的信息,可以設計出實用的防御策略來對抗多種不同的攻擊。我們的研究結果揭示了量子機器學習系統對各種擾動的顯著脆弱性,這不僅從理論上揭示了機器學習與量子物理學之間的聯系,而且為基于近期和未來量子技術的量子分類器的實際應用提供了有價值的指導。

付費5元查看完整內容

簡介: 圖是表示知識的有效方法。它們可以在一個統一的結構中表示不同類型的知識。生物科學和金融等領域已經開始積累大量的知識圖,但是它們缺乏從中提取見解的機器學習工具。

David Mack概述了自己相關想法并調查了最流行的方法。在此過程中,他指出了積極研究的領域,并共享在線資源和參考書目以供進一步研究。

作者介紹: David Mack是Octavian.ai的創始人和機器學習工程師,致力于探索圖機器學習的新方法。在此之前,他與他人共同創立了SketchDeck,這是一家由Y Combinator支持的初創公司,提供設計即服務。他擁有牛津大學的數學碩士學位和計算機科學的基礎,并擁有劍橋大學的計算機科學學士學位。

內容介紹: 本次報告涵蓋內容:為什么將圖應用在機器學習上;圖機器學習的不同方法。現存的圖機器學習往往會忽略數據中的上下文信息,使用圖可以獲取更多的潛在信息。圖的構建方法為節點分類、邊的預測,圖的分類以及邊的分類。兩個主要方法是使用機器學習算法將圖轉換為table,另一種方法是將圖轉換為網絡。在報告中作者詳細介紹了這兩種方法。

付費5元查看完整內容

題目: A Survey on Distributed Machine Learning

簡介: 在過去十年中,對人工智能的需求已顯著增長,并且這種增長得益于機器學習技術的進步以及利用硬件加速的能力,但是,為了提高預測質量并在復雜的應用程序中提供可行的機器學習解決方案,需要大量的訓練數據。盡管小型機器學習模型可以使用一定數量的數據進行訓練,但用于訓練較大模型(例如神經網絡)的輸入與參數數量成指數增長。由于處理訓練數據的需求已經超過了計算機器的計算能力的增長,因此急需在多個機器之間分配機器學習工作量,并將集中式的精力分配到分配的系統上。這些分布式系統提出了新的挑戰,最重要的是訓練過程的科學并行化和相關模型的創建。本文通過概述傳統的(集中的)機器學習方法,探討了分布式機器學習的挑戰和機遇,從而對當前的最新技術進行了廣泛的概述,并對現有的技術進行研究。

付費5元查看完整內容

近幾年來,隨著機器學習的普及,機器學習系統的公平性問題引起了實際的道德、社會等問題。圖書《公平性與機器學習—局限與機遇》以公平性為核心問題來看待機器學習,提供了對當前機器學習實踐以及為實現公平而提出的技術修復方案的批判性思考。

社會、道德和機器學習自身等角度,介紹了目前機器學習中的公平性問題,如由于數據導致的偏置(bias)等問題。

圖書《Fairness and Machine Learning - Limitations and Opportunities》(《公平性與機器學習—局限與機遇》)以公平性為核心問題來看待機器學習,強調機器學習在道德方面的挑戰。作者希望該書盡可能地被廣泛閱讀,但在寫作時依然堅持著技術的嚴謹性。該書并沒有提供包羅萬象的對公平性完整的正式定義,也沒有提出一個快速解決社會對自動決策擔憂的修復方案。

解決機器學習公平性問題需要認真理解機器學習工具的局限性。該書提供了對當前機器學習實踐以及為實現公平而提出的技術修復方案的批判性思考。雖然這些問題都沒有簡單的答案,作者希望這本書能夠幫助讀者更深層次地理解如何構建負責任的機器學習系統。

付費5元查看完整內容
北京阿比特科技有限公司