題目: Quantum Adversarial Machine Learning
摘要: 對抗性機器學習是一個新興的研究領域,主要研究機器學習方法在對抗性環境中的脆弱性,并開發相應的技術,使學習對對抗性操作具有魯棒性。它在各種機器學習應用中起著至關重要的作用,近年來引起了不同社區的極大關注。本文探討了量子機器學習中不同的對抗情境。我們發現,與基于經典神經網絡的傳統分類器類似,量子學習系統同樣容易受到精心設計的對抗性示例的攻擊,而與輸入數據是經典的還是量子的無關。特別是,我們發現,通過對原始合法樣本添加不可察覺的擾動而獲得的對抗性示例,可以最終欺騙達到接近最新精度的量子分類器。這在不同場景下的量子對抗學習中得到了明確的證明,包括對現實生活中的圖像(如數據集MNIST中的手寫數字圖像)進行分類,對物質的學習階段(如鐵磁/順磁有序和對稱保護拓撲相)進行分類,以及對量子數據進行分類。此外,我們還指出,根據手頭的對抗性例子的信息,可以設計出實用的防御策略來對抗多種不同的攻擊。我們的研究結果揭示了量子機器學習系統對各種擾動的顯著脆弱性,這不僅從理論上揭示了機器學習與量子物理學之間的聯系,而且為基于近期和未來量子技術的量子分類器的實際應用提供了有價值的指導。
題目: An Overview of Privacy in Machine Learning
序言: 在過去幾年中,谷歌、微軟和亞馬遜等供應商已經開始為客戶提供軟件接口,使他們能夠輕松地將機器學習任務嵌入到他們的應用程序中。總的來說,機構現在可以使用機器學習作為服務(MLaaS)引擎來外包復雜的任務,例如訓練分類器、執行預測、聚類等等。他們還可以讓其他人根據他們的數據查詢模型。當然,這種方法也可以在其他情況下使用(并且經常提倡使用),包括政府協作、公民科學項目和企業對企業的伙伴關系。然而,如果惡意用戶能夠恢復用于訓練這些模型的數據,那么由此導致的信息泄漏將會產生嚴重的問題。同樣,如果模型的內部參數被認為是專有信息,那么對模型的訪問不應該允許對手了解這些參數。在本文中,我們對這一領域的隱私挑戰進行了回顧,系統回顧了相關的研究文獻,并探討了可能的對策。具體地說,我們提供了大量關于機器學習和隱私相關概念的背景信息。然后,我們討論了可能的對抗模型和設置,涵蓋了與隱私和/或敏感信息泄漏有關的廣泛攻擊,并回顧了最近試圖防御此類攻擊的結果。最后,我們總結出一系列需要更多工作的開放問題,包括需要更好的評估、更有針對性的防御,以及研究與政策和數據保護工作的關系。
標題
對抗特征幻覺網絡的小樣本學習,Adversarial Feature Hallucination Networks for Few-Shot Learning
關鍵字
小樣本學習,神經網絡,生成對抗網絡,機器學習,人工智能
簡介
最近在各種任務中進行的深度學習蓬勃發展,在很大程度上已經獲得了豐富且可訪問的標記數據的認可。 盡管如此,對于許多實際應用而言,大量的監督仍然是奢侈的事情,這引起了人們對標簽稀缺技術的極大興趣,例如小樣本學習(FSL),旨在通過少量標簽樣本學習新類的概念。 FSL的自然方法是數據擴充,許多最近的工作通過提出各種數據綜合模型證明了其可行性。 但是,這些模型不能很好地確保合成數據的可分辨性和多樣性,因此經常會產生不良結果。 在本文中,我們提出了基于條件Wasserstein生成對抗網絡(cWGAN)的對抗特征幻覺網絡(AFHN),并幻化了以少量標記樣本為條件的各種和判別特征。 兩種新穎的正則化器,即分類正則器和反崩潰正則器,被合并到AFHN中以分別促進合成特征的可辨別性和多樣性。 消融研究驗證了所提出的基于cWGAN的特征幻覺框架和所提出的調節器的有效性。 在三個常見基準數據集上的比較結果證實了AFHN優于現有的基于數據增強的FSL方法和其他最新方法的優越性。
作者
Kai Li, Yulun Zhang, Kunpeng Li, Yun Fu,波士頓東北大學電氣與計算機工程系
真實的顏色紋理生成是RGB-D表面重建的一個重要步驟,但由于重建幾何形狀的不準確性、相機姿態的不正確以及與視圖相關的成像偽影,在實踐中仍然具有挑戰性。在這項工作中,我們提出了一種利用從弱監督視圖中獲得的條件對抗損失來生成顏色紋理的新方法。具體地說,我們提出了一種方法,通過學習一個目標函數來生成近似表面的真實感紋理,即使是在未對齊的圖像中。我們的方法的關鍵思想是學習一個基于補丁的條件鑒別器,它可以引導紋理優化對不匹配的容忍度。我們的鑒別器采用一個合成的視圖和一個真實的圖像,并在一個廣義的真實感定義下評估合成的圖像是否真實。我們通過提供輸入視圖的“真實”示例對及其未對齊的版本來訓練鑒別器,這樣學習到的競爭損失將能夠容忍掃描的錯誤。在定量或定性評價下對合成和真實數據進行的實驗表明,我們的方法與現有方法相比具有優勢。我們的代碼是公開的視頻演示。
基于對28個組織的采訪,我們發現行業從業者沒有配備戰術和戰略工具來保護、檢測和響應對他們的機器學習(ML)系統的攻擊。我們利用了訪談中的見解,并列舉了在傳統軟件安全開發環境下保護機器學習系統的視角上的差距。我們從兩個角色的角度撰寫本文:開發人員/ML工程師和安全事件響應人員,他們的任務是在設計、開發和部署ML系統時保護ML系統。本文的研究目的是為了使研究者們能夠在激烈競爭的ML時代對工業級軟件的安全開發生命周期進行修訂和修正。
在一個持續的循環,在這個循環中,對對抗攻擊更強的防御隨后被更高級的防御感知攻擊打破。我們提出了一種結束此循環的新方法,即通過使攻擊者生成語義上類似于攻擊目標類的輸入來“轉移”對抗攻擊。為此,我們首先提出一種基于膠囊網絡的更強大的防御,它結合了三種檢測機制來實現對標準攻擊和防御感知攻擊的最新檢測性能。然后,我們進行了一項人體研究,要求參與者對攻擊產生的圖像進行標記,結果表明,針對我們的防御系統的未檢測到的攻擊通常與對抗目標類相似。這些攻擊圖像不能再被稱為“對抗性的”,因為我們的網絡像人類一樣對它們進行分類。
簡介:
近年來,由于機器學習(ML)/深度學習(DL)技術使用多維醫學圖像,在從一維心臟信號的心臟驟停的預測到計算機輔助診斷(CADx)的各種醫療保健應用中的卓越性能,見證了機器學習(ML)/深度學習(DL)技術的廣泛采用。盡管ML / DL的性能令人印象深刻,但對于ML / DL在醫療機構中的健壯性仍然存有疑慮(由于涉及眾多安全性和隱私問題,傳統上認為ML / DL的挑戰性很大),尤其是鑒于最近的研究結果表明ML / DL容易受到對抗性攻擊。在本文中,我們概述了醫療保健中各個應用領域,這些領域從安全性和隱私性的角度利用了這些技術,并提出了相關的挑戰。此外,我們提出了潛在的方法來確保醫療保健應用程序的安全和隱私保護機器學習。最后,我們提供了有關當前研究挑戰的見解以及未來研究的有希望的方向。
內容大綱:
教程題目:Adversarial Machine Learning
教程簡介:
近年來,機器學習在廣泛的行業和應用領域得到了顯著的普及。機器學習技術的許多應用本質上是對抗性的,因為其目標是將“壞的”實例與“好的”實例區分開來。事實上,對抗性的使用遠遠超出了這個簡單的分類示例:對惡意軟件的法醫分析,包括集群、異常檢測,甚至自動駕駛汽車上的視覺系統,都可能受到攻擊。針對這些問題,出現了一個關于對抗性機器學習的新興文獻,它涵蓋了對機器學習算法漏洞的分析,以及產生更健壯學習的算法技術。
本教程將從網絡安全和機器學習研究領域中廣泛調查這些問題和技術。特別考慮了對抗性分類器規避(攻擊者改變行為以避免被檢測到)和訓練數據本身已損壞的問題。還討論了逃避攻擊和中毒攻擊,首先討論了分類器,然后討論了其他學習范例和相關的防御技術。然后,我們考慮用于攻擊和防御神經網絡的專門技術,特別是專注于深度學習技術及其對逆向構建實例的脆弱性。
組織者:
Bo Li是伊利諾伊大學香檳分校計算機科學系的助理教授。她的研究興趣在于對抗性的深度學習、安全性、隱私和博弈論。她開發并分析了可伸縮的健壯學習框架,用于在對抗規避攻擊的環境中學習算法。她還分析了物理世界中對抗學習算法的行為。她是賽門鐵克研究實驗室研究生獎學金的獲得者。她于2016年獲得范德比爾特大學博士學位。
Dawn Song是加州大學伯克利分校電氣工程和計算機科學系的教授。她的研究興趣在于深度學習和安全性。她研究了計算機系統和網絡中的各種安全和隱私問題,包括從軟件安全、網絡安全、數據庫安全、分布式系統安全、應用密碼學到機器學習和安全的交叉領域。她是獲得各種獎項,包括麥克阿瑟獎學金,古根海姆獎學金,NSF事業獎,斯隆研究獎學金,麻省理工學院技術評論TR-35獎,喬治Tallman Ladd研究獎,小川基金會研究獎,李嘉誠基金會女性在科學卓越系列講座獎,教師從IBM研究獎,谷歌和其他主要科技公司,從上會議最佳論文獎。她在加州大學伯克利分校獲得了博士學位。在加入加州大學伯克利分校之前,她曾于2002年至2007年在卡內基梅隆大學(Carnegie Mellon University)擔任助理教授。
Yevgeniy Vorobeychik是圣路易斯華盛頓大學計算機科學與工程學院的副教授。此前,他是桑迪亞國家實驗室的首席研究科學家。2008年至2010年,他是賓夕法尼亞大學計算機與信息科學系的博士后研究員。他獲得了密歇根大學的計算機科學與工程博士學位(2008)和碩士學位(2004),以及西北大學的計算機工程學士學位。他的工作重點是安全與隱私的博弈論建模,對抗機器學習,算法和行為博弈論和激勵設計,優化,基于代理的建模,復雜系統,網絡科學,流行病控制。Vorobeychik博士在2017年獲得了美國國家科學基金會職業成就獎,并受邀發表了ijcai16早期職業聚焦演講。他被提名為2008年ACM博士學位論文獎,并獲得了2008年IFAAMAS杰出論文獎的榮譽獎。
教程ppt下載鏈接: 鏈接://pan.baidu.com/s/1YDWJ2lFhiLRtNDpH4YyZLg 提取碼:ccra
題目主題: Dual Learning for Machine Learning
簡介:
許多AI任務以雙重形式出現,例如英語法語翻譯與法語英語翻譯,語音識別與語音合成,問題解答與問題生成,圖像分類與圖像生成。雖然結構對偶性在AI中很常見,但大多數學習算法并未在學習/推理中利用它。雙重學習是一種新的學習框架,它利用AI任務的原始-雙重結構來獲取有效的反饋或正則化信號,從而增強學習/推理過程。雙重學習已在不同的學習環境中進行了研究,并應用于不同的應用程序。 在本教程中,我們將對雙重學習進行介紹,它由三部分組成。在第一部分中,我們將介紹雙重半監督學習,并展示如何有效地一起利用標記和未標記的數據。我們將從神經機器翻譯開始,然后轉移到其他應用程序。在第二部分中,我們介紹了雙重無監督學習,其中的培訓是完全無監督的。我們介紹了無監督機器翻譯和無監督圖像翻譯。最后,我們介紹了雙重監督學習及其以外的內容,其中包括雙重監督學習,雙重推理和雙重對抗性學習。在本教程的最后,我們提出了雙重學習的幾個未來方向。
作者介紹:
Tao Qin博士是Microsoft Research Asia機器學習小組的高級首席研究經理。 他的研究興趣包括機器學習(側重于深度學習和強化學習),人工智能(對語言理解和計算機視覺的應用),游戲理論和多主體系統(對云計算,在線和移動廣告的應用, 電子商務),信息檢索和計算廣告。 他擁有清華大學的博士學位和學士學位。 他是ACM和IEEE的高級會員,也是中國科學技術大學的兼職教授(博士生導師)。
大綱:
題目: Adversarial Machine Learning
報告簡介: 近年來,機器學習在廣泛的行業和應用中獲得了驚人的普及。機器學習技術的許多應用本質上都是對抗性的。的確,對抗性使用遠遠超出了簡單的分類示例:對惡意軟件的分析將群集,異常檢測甚至自動駕駛車輛的視覺系統結合在一起,都可能受到攻擊。針對這些擔憂,出現了有關對抗性機器學習的新興文獻,既涵蓋了機器學習算法中的漏洞分析,又包括產生更強大學習的算法技術。本教程將調查來自網絡安全和機器學習研究領域的各種問題和技術。特別是,我們考慮了對抗性分類器和訓練數據本身已損壞的問題。我們首先討論分類器,然后討論其他學習范例,以及相關的防御技術,然后,我們考慮用于攻擊和防御神經網絡的專用技術。
嘉賓介紹: Bo Li是伊利諾伊大學香檳分校計算機科學系的助理教授。 她的研究興趣在于對抗性深度學習,安全性,隱私和博弈論。 她已經開發并分析了可擴展的健壯學習框架,用于在對抗環境中學習算法以應對逃避攻擊。 她還分析了物理世界中針對學習算法的對抗行為。
Yevgeniy Vorobeychik是圣路易斯華盛頓大學計算機科學與工程學院的副教授。此前,他是桑迪亞國家實驗室的首席研究科學家。2008年至2010年,他是賓夕法尼亞大學計算機與信息科學系的博士后研究員。他獲得了密歇根大學的計算機科學與工程博士學位(2008)和碩士學位(2004),以及西北大學的計算機工程學士學位。他的工作重點是安全與隱私的博弈論建模,對抗機器學習,算法和行為博弈論和激勵設計,優化,基于代理的建模,復雜系統,網絡科學,流行病控制。Vorobeychik博士在2017年獲得了美國國家科學基金會職業成就獎,并受邀發表了ijcai16早期職業聚焦演講。他被提名為2008年ACM博士學位論文獎,并獲得了2008年IFAAMAS杰出論文獎的榮譽獎。