亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

深度學習在藥物發現方面很有前景,包括高級圖像分析、分子結構和功能的預測,以及具有定制屬性的創新化學實體的自動生成。盡管有越來越多的成功的應用前景,但基本的數學模型仍然很難被人類的思維所解釋。有一種“可解釋的”深度學習方法的需求,以解決對分子科學機器語言新敘述的需求。這篇綜述總結了可解釋人工智能的最突出的算法概念,并預測了未來的機會,潛在的應用以及一些仍然存在的挑戰。我們還希望它鼓勵進一步努力發展和接受可解釋的人工智能技術。

//www.nature.com/articles/s42256-020-00236-4

付費5元查看完整內容

相關內容

通過人工神經網絡等獲得的預測具有很高的準確性,但人類經常將這些模型視為黑盒子。對于人類來說,關于決策制定的洞察大多是不透明的。在醫療保健或金融等高度敏感領域,對決策的理解至關重要。黑盒子背后的決策要求它對人類來說更加透明、可問責和可理解。這篇綜述論文提供了基本的定義,概述了可解釋監督機器學習(SML)的不同原理和方法。我們進行了最先進的綜述,回顧過去和最近可解釋的SML方法,并根據介紹的定義對它們進行分類。最后,我們通過一個解釋性的案例研究來說明原則,并討論未來的重要方向。

//www.zhuanzhi.ai/paper/d34a1111c1ab9ea312570ae8e011903c

目前人工智能(AI)模型的準確性是顯著的,但準確性并不是最重要的唯一方面。對于高風險的領域,對模型和輸出的詳細理解也很重要。底層的機器學習和深度學習算法構建的復雜模型對人類來說是不透明的。Holzinger等人(2019b)指出,醫學領域是人工智能面臨的最大挑戰之一。對于像醫療這樣的領域,深刻理解人工智能的應用是至關重要的,對可解釋人工智能(XAI)的需求是顯而易見的。

可解釋性在許多領域很重要,但不是在所有領域。我們已經提到了可解釋性很重要的領域,例如衛生保健。在其他領域,比如飛機碰撞避免,算法多年來一直在沒有人工交互的情況下運行,也沒有給出解釋。當存在某種程度的不完整時,需要可解釋性。可以肯定的是,不完整性不能與不確定性混淆。不確定性指的是可以通過數學模型形式化和處理的東西。另一方面,不完全性意味著關于問題的某些東西不能充分編碼到模型中(Doshi-Velez和Kim(2017))。例如,刑事風險評估工具應該是公正的,它也應該符合人類的公平和道德觀念。但倫理學是一個很寬泛的領域,它是主觀的,很難正式化。相比之下,飛機避免碰撞是一個很容易理解的問題,也可以被精確地描述。如果一個系統能夠很好地避免碰撞,就不用再擔心它了。不需要解釋。

本文詳細介紹了可解釋SML的定義,并為該領域中各種方法的分類奠定了基礎。我們區分了各種問題定義,將可解釋監督學習領域分為可解釋模型、代理模型擬合和解釋生成。可解釋模型的定義關注于自然實現的或通過使用設計原則強制實現的整個模型理解。代理模型擬合方法近似基于黑盒的局部或全局可解釋模型。解釋生成過程直接產生一種解釋,區分局部解釋和全局解釋。

綜上所述,本文的貢獻如下:

  • 對五種不同的解釋方法進行形式化,并對整個解釋鏈的相應文獻(分類和回歸)進行回顧。
  • 可解釋性的原因,審查重要領域和可解釋性的評估
  • 這一章僅僅強調了圍繞數據和可解釋性主題的各個方面,比如數據質量和本體
  • 支持理解不同解釋方法的連續用例
  • 回顧重要的未來方向和討論

付費5元查看完整內容

近年來,圖神經網絡(GNNs)由于具有建模和從圖結構數據中學習的能力,在機器學習領域得到了迅猛發展。這種能力在數據具有內在關聯的各種領域具有很強的影響,而傳統的神經網絡在這些領域的表現并不好。事實上,正如最近的評論可以證明的那樣,GNN領域的研究已經迅速增長,并導致了各種GNN算法變體的發展,以及在化學、神經學、電子或通信網絡等領域的突破性應用的探索。然而,在目前的研究階段,GNN的有效處理仍然是一個開放的挑戰。除了它們的新穎性之外,由于它們依賴于輸入圖,它們的密集和稀疏操作的組合,或者在某些應用中需要伸縮到巨大的圖,GNN很難計算。在此背景下,本文旨在做出兩大貢獻。一方面,從計算的角度對GNNs領域進行了綜述。這包括一個關于GNN基本原理的簡短教程,在過去十年中該領域發展的概述,以及在不同GNN算法變體的多個階段中執行的操作的總結。另一方面,對現有的軟硬件加速方案進行了深入分析,總結出一種軟硬件結合、圖感知、以通信為中心的GNN加速方案。

付費5元查看完整內容

在一個常見的機器學習問題中,使用對訓練數據集估計的模型,根據觀察到的特征預測未來的結果值。當測試數據和訓練數據來自相同的分布時,許多學習算法被提出并證明是成功的。然而,對于給定的訓練數據分布,性能最好的模型通常會利用特征之間微妙的統計關系,這使得它們在應用于分布與訓練數據不同的測試數據時,可能更容易出現預測錯誤。對于學術研究和實際應用來說,如何開發能夠穩定和穩健地轉換數據的學習模型是至關重要的。

因果推理是指根據效果發生的條件得出因果關系的結論的過程,是一種強大的統計建模工具,用于解釋和穩定學習。本教程側重于因果推理和穩定學習,旨在從觀察數據中探索因果知識,提高機器學習算法的可解釋性和穩定性。首先,我們將介紹因果推論,并介紹一些最近的數據驅動方法,以估計因果效應從觀測數據,特別是在高維設置。為了彌補因果推理和機器學習之間的差距,我們首先給出了穩定性和魯棒性學習算法的定義,然后將介紹一些最近的穩定學習算法來提高預測的穩定性和可解釋性。最后,我們將討論穩定學習的應用和未來的發展方向,并提供穩定學習的基準。

//kdd2020tutorial.thumedialab.com/

付費5元查看完整內容

主題: Opportunities and Challenges in Explainable Artificial Intelligence (XAI): A Survey

摘要: 如今,深度神經網絡已廣泛應用于對醫療至關重要的任務關鍵型系統,例如醫療保健,自動駕駛汽車和軍事領域,這些系統對人類生活產生直接影響。然而,深層神經網絡的黑匣子性質挑戰了其在使用中的關鍵任務應用,引發了引起信任不足的道德和司法問題。可解釋的人工智能(XAI)是人工智能(AI)的一個領域,它促進了一系列工具,技術和算法的產生,這些工具,技術和算法可以生成對AI決策的高質量,可解釋,直觀,人類可理解的解釋。除了提供有關深度學習當前XAI格局的整體視圖之外,本文還提供了開創性工作的數學總結。我們首先提出分類法,然后根據它們的解釋范圍,算法背后的方法,解釋級別或用法對XAI技術進行分類,這有助于建立可信賴,可解釋且自解釋的深度學習模型。然后,我們描述了XAI研究中使用的主要原理,并介紹了2007年至2020年XAI界標研究的歷史時間表。在詳細解釋了每種算法和方法之后,我們評估了八種XAI算法對圖像數據生成的解釋圖,討論了其局限性方法,并提供潛在的未來方向來改進XAI評估。

付費5元查看完整內容

圖神經網絡通過聚合和結合鄰居信息來學習節點特征,在許多圖的任務中取得了良好的性能。然而,GNN大多被視為黑盒,缺乏人類可理解的解釋。因此,如果不能解釋GNN模型,就不能完全信任它們并在某些應用程序域中使用它們。在這項工作中,我們提出了一種新的方法,稱為XGNN,在模型級別上解釋GNN。我們的方法可以為GNNs的工作方式提供高層次的見解和一般性的理解。特別地,我們提出通過訓練一個圖生成器來解釋GNN,使生成的圖模式最大化模型的某種預測。我們將圖形生成表述為一個強化學習任務,其中對于每一步,圖形生成器預測如何向當前圖形中添加一條邊。基于訓練后的GNN信息,采用策略梯度方法對圖生成器進行訓練。此外,我們還加入了一些圖規則,以促使生成的圖是有效的。在合成和真實數據集上的實驗結果表明,我們提出的方法有助于理解和驗證訓練過的GNN。此外,我們的實驗結果表明,所生成的圖可以為如何改進訓練的神經網絡提供指導。

概述

圖神經網絡(GNNs)在不同的圖任務(如節點分類[11,37]、圖分類[39,47]和鏈接預測[46])上顯示了其有效性并取得了最新的性能。此外,對不同的圖運算進行了大量的研究,如圖卷積[13,16,19]、圖池化[20,44]、圖注意力[10,36,37]。由于圖數據廣泛存在于不同的真實世界應用程序中,如社交網絡、化學和生物學,GNN變得越來越重要和有用。盡管它們的性能很好,GNNs也有和其他深度學習模型一樣的缺點;也就是說,它們通常被視為黑盒子,缺乏人類理解的解釋。如果不理解和驗證內部工作機制,就不能完全信任GNNs,這就阻礙了它們在涉及公平、隱私和安全的關鍵應用程序中的使用[7,40]。例如,我們可以訓練一個GNN模型來預測藥物的效果,我們將每種藥物視為一個分子圖。如果不探索其工作機理,我們就不知道分子圖中是什么化學基團導致了這些預測。那么我們就無法驗證GNN模型的規則是否與真實世界的化學規則一致,因此我們不能完全信任GNN模型。這就增加了開發GNN解釋技術的需要。

最近,人們提出了幾種解釋技術來解釋圖像和文本數據的深度學習模型。根據所提供的解釋的類型,現有的技術可以歸類為實例級[5,9,29,31,32,43,45,48]或模型級[8,24,25]方法。實例級解釋通過模型確定輸入中的重要特征或該輸入的決策過程來解釋對給定輸入示例的預測。這類常用技術包括基于梯度的方法[31,32,43]、中間特征圖可視化[29,48]和基于遮擋的方法[5,9,45]。與提供依賴于輸入的解釋不同,模型級別的解釋旨在通過研究哪些輸入模式可以導致某種預測來解釋模型的一般行為,而不考慮任何特定的輸入示例。輸入優化[8,24 - 26]是最常用的模型級解釋方法。這兩類解釋方法旨在從不同的角度解釋深層模型。由于解釋的最終目的是驗證和理解深度模型,我們需要手動檢查解釋結果,并得出深度模型是否按我們預期的方式工作的結論。對于示例級方法,我們可能需要探究大量示例的解釋,然后才能相信模型。然而,這需要時間和專家的廣泛努力。對于模型級方法,其解釋更加普遍和高級,因此需要較少的人力監督。然而,與實例級的解釋相比,模型級方法的解釋不那么精確。總的來說,模型級和實例級方法對于解釋和理解深度模型都很重要。

在圖數據上解釋深度學習模型變得越來越重要,但仍缺乏探索。就我們所知,目前還沒有在模型級解釋GNN的研究。現有研究[4,40]僅對圖模型提供了實例層次的解釋。作為對現有工作的徹底背離,我們提出了一種新的解釋技術,稱為XGNN,用于在模型級別上解釋深層圖模型。我們提出研究什么樣的圖模式可以最大化某個預測。具體地說,我們提出訓練一個圖生成器,以便生成的圖模式可以用來解釋深度圖模型。我們把它表示為一個強化學習問題,在每一步,圖生成器預測如何添加一條邊到給定的圖和形成一個新的圖。然后根據已訓練圖模型的反饋,使用策略梯度[35]對生成器進行訓練。我們還加入了一些圖規則,以鼓勵生成的圖是有效的。注意,XGNN框架中的圖生成部分可以推廣到任何合適的圖生成方法,這些方法由手邊的數據集和要解釋的GNN決定。最后,我們在真實數據集和合成數據集上訓練了GNN模型,取得了良好的性能。然后我們使用我們提出的XGNN來解釋這些訓練過的模型。實驗結果表明,我們提出的XGNN可以找到所需的圖模式,并解釋了這些模型。通過生成的圖形模式,我們可以驗證、理解甚至改進經過訓練的GNN模型。

付費5元查看完整內容

【導讀】國際萬維網大會(The Web Conference,簡稱WWW會議)是由國際萬維網會議委員會發起主辦的國際頂級學術會議,創辦于1994年,每年舉辦一屆,是CCF-A類會議。WWW 2020將于2020年4月20日至4月24日在中國臺灣臺北舉行。本屆會議共收到了1129篇長文投稿,錄用217篇長文,錄用率為19.2%。這周會議已經召開。來自美國Linkedin、AWS等幾位學者共同給了關于在工業界中可解釋人工智能的報告,講述了XAI概念、方法以及面臨的挑戰和經驗教訓。

人工智能在我們的日常生活中扮演著越來越重要的角色。此外,隨著基于人工智能的解決方案在招聘、貸款、刑事司法、醫療和教育等領域的普及,人工智能對個人和職業的影響將是深遠的。人工智能模型在這些領域所起的主導作用已經導致人們越來越關注這些模型中的潛在偏見,以及對模型透明性和可解釋性的需求。此外,模型可解釋性是在需要可靠性和安全性的高風險領域(如醫療和自動化交通)以及具有重大經濟意義的關鍵工業應用(如預測維護、自然資源勘探和氣候變化建模)中建立信任和采用人工智能系統的先決條件。

因此,人工智能的研究人員和實踐者將他們的注意力集中在可解釋的人工智能上,以幫助他們更好地信任和理解大規模的模型。研究界面臨的挑戰包括 (i) 定義模型可解釋性,(ii) 為理解模型行為制定可解釋性任務,并為這些任務開發解決方案,最后 (iii)設計評估模型在可解釋性任務中的性能的措施。

在本教程中,我們將概述AI中的模型解譯性和可解釋性、關鍵規則/法律以及作為AI/ML系統的一部分提供可解釋性的技術/工具。然后,我們將關注可解釋性技術在工業中的應用,在此我們提出了有效使用可解釋性技術的實踐挑戰/指導方針,以及在幾個網絡規模的機器學習和數據挖掘應用中部署可解釋模型的經驗教訓。我們將介紹不同公司的案例研究,涉及的應用領域包括搜索和推薦系統、銷售、貸款和欺詐檢測。最后,根據我們在工業界的經驗,我們將確定數據挖掘/機器學習社區的開放問題和研究方向。

//sites.google.com/view/www20-explainable-ai-tutorial

付費5元查看完整內容

圖神經網絡是解決各種圖學習問題的有效的機器學習模型。盡管它們取得了經驗上的成功,但是GNNs的理論局限性最近已經被揭示出來。因此,人們提出了許多GNN模型來克服這些限制。在這次調查中,我們全面概述了GNNs的表達能力和可證明的強大的GNNs變體。

付費5元查看完整內容

簡介: 近年來,生命科學和數據科學已經融合。機器人技術和自動化技術的進步使化學家和生物學家能夠生成大量數據。與20年前的整個職業生涯相比,如今的科學家每天能夠產生更多的數據。快速生成數據的能力也帶來了許多新的科學挑戰。我們不再處于可以通過將數據加載到電子表格中并制作幾個圖表來對其進行處理的時代。為了從這些數據集中提取科學知識,我們必須能夠識別和提取非顯而易見的關系。近年來,作為識別數據模式和關系的強大工具而出現的一種技術是深度學習,它是一類算法,它徹底改變了解決諸如圖像分析,語言翻譯和語音識別等問題的方法。深度學習算法擅長識別和利用大型數據集中的模式。由于這些原因,深度學習在生命科學學科中具有廣泛的應用。本書概述了深度學習如何應用于遺傳學,藥物發現和醫學診斷等多個領域。我們描述的許多示例都附帶有代碼示例,這些示例為方法提供了實用的介紹,并為讀者提供了以后進行研究和探索的起點。

該書中代碼地址://github.com/deepchem/DeepLearningLifeSciences

目錄:

  • 生命科學
  • 深度學習介紹
  • 機器學習與深化
  • 分子與機器學習
  • 生物機器學習
  • 基因組學與深度學習
  • 顯微學與機器學習
  • 醫藥學與深度學習
  • 生成模型
  • 深度模型的解釋
  • 預測模型
  • 展望
付費5元查看完整內容
北京阿比特科技有限公司