亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

近年來,圖神經網絡(GNNs)由于具有建模和從圖結構數據中學習的能力,在機器學習領域得到了迅猛發展。這種能力在數據具有內在關聯的各種領域具有很強的影響,而傳統的神經網絡在這些領域的表現并不好。事實上,正如最近的評論可以證明的那樣,GNN領域的研究已經迅速增長,并導致了各種GNN算法變體的發展,以及在化學、神經學、電子或通信網絡等領域的突破性應用的探索。然而,在目前的研究階段,GNN的有效處理仍然是一個開放的挑戰。除了它們的新穎性之外,由于它們依賴于輸入圖,它們的密集和稀疏操作的組合,或者在某些應用中需要伸縮到巨大的圖,GNN很難計算。在此背景下,本文旨在做出兩大貢獻。一方面,從計算的角度對GNNs領域進行了綜述。這包括一個關于GNN基本原理的簡短教程,在過去十年中該領域發展的概述,以及在不同GNN算法變體的多個階段中執行的操作的總結。另一方面,對現有的軟硬件加速方案進行了深入分析,總結出一種軟硬件結合、圖感知、以通信為中心的GNN加速方案。

付費5元查看完整內容

相關內容

圖神經網絡 (GNN) 是一種連接模型,它通過圖的節點之間的消息傳遞來捕捉圖的依賴關系。與標準神經網絡不同的是,圖神經網絡保留了一種狀態,可以表示來自其鄰域的具有任意深度的信息。近年來,圖神經網絡(GNN)在社交網絡、知識圖、推薦系統、問答系統甚至生命科學等各個領域得到了越來越廣泛的應用。

知識薈萃

精品入門和進階教程、論文和代碼整理等

更多

查看相關VIP內容、論文、資訊等

圖神經網絡(GNNs)最近在人工智能領域變得越來越受歡迎,這是因為它們具有提取相對非結構化數據類型作為輸入數據的獨特能力。盡管GNN體系結構的一些元素在操作上與傳統神經網絡(以及神經網絡變體)的概念相似,但其他元素則不同于傳統的深度學習技術。本教程通過整理和呈現最常見類型的GNNs的動機、概念、數學和應用的詳細信息,向一般深度學習愛好者展示了GNNs的強大功能和新穎之處。重要的是,我們以介紹性的速度簡要地介紹了本教程,并提供了理解和使用GNNs的實用和可訪問的指南。

摘要:

當代人工智能(AI),或者更具體地說,深度學習(DL)近年來被稱為神經網絡(NN)的學習架構所主導。NN變體被設計用于提高某些問題領域的性能;卷積神經網絡(CNN)在基于圖像的任務環境中表現突出,而遞歸神經網絡(RNN)在自然語言處理和時間序列分析空間中表現突出。神經網絡也被用作復合DL框架的組件——它們在生成對抗網絡(GANs)中被用作可訓練的生成器和判別器,在transformers [46]中被用作編碼器和解碼器。雖然在計算機視覺中作為輸入的圖像和在自然語言處理中作為輸入的句子看起來是不相關的,但是它們都可以用一個單一的、通用的數據結構來表示:圖(見圖1)。

形式上,圖是一組不同的頂點(表示項目或實體),這些頂點通過邊(表示關系)選擇性地連接在一起。被設計來處理這些圖的學習架構是有名稱的圖神經網絡(GNN)。輸入圖之間的頂點和邊的數量可以改變。通過這種方式,GNNs可以處理非結構化的、非歐幾里得數據[4],這一特性使得它們在圖形數據豐富的特定問題域中具有價值。相反,基于NN的算法通常需要對具有嚴格定義維數的結構化輸入進行操作。例如,構建一個用于在MNIST數據集上進行分類的CNN,其輸入層必須為28×28個神經元,后續輸入給它的所有圖像大小必須為28×28像素,才能符合這個嚴格的維數要求[27]。

圖作為數據編碼方法的表達性,以及GNNs相對于非結構化輸入的靈活性,推動了它們的研究和開發。它們代表了一種探索相對通用的深度學習方法的新方法,并且它們促進了深度學習方法對數據集的應用,直到最近,這些數據集還不能使用傳統的神經網絡或其他此類算法。

本篇內容結構:

  • (1) 簡明易懂的GNNs入門教程。
  • (2) 具體GNN架構(RGNNs、CGNNs、GAEs)的操作說明,逐步構建對GNN框架的整體理解(分別參見第3、4、5節)。
  • (3) GNN如何應用于現實世界問題領域的完整例子(見附錄B.1、B.2和B.3)。
  • (4) 具體的進一步閱讀建議和先進的文獻(提供在第3、4、5節的最后)。

//deepai.org/publication/a-practical-guide-to-graph-neural-networks

付費5元查看完整內容

當前的深度學習研究以基準評價為主。如果一種方法在專門的測試集上有良好的經驗表現,那么它就被認為是有利的。這種心態無縫地反映在持續學習的重現領域,在這里研究的是持續到達的基準數據集。核心挑戰是如何保護之前獲得的表示,以免由于迭代參數更新而出現災難性地遺忘的情況。然而,各個方法的比較是與現實應用程序隔離的,通常通過監視累積的測試集性能來判斷。封閉世界的假設仍然占主導地位。假設在部署過程中,一個模型保證會遇到來自與用于訓練的相同分布的數據。這帶來了一個巨大的挑戰,因為眾所周知,神經網絡會對未知的實例提供過于自信的錯誤預測,并在數據損壞的情況下崩潰。在這個工作我們認為值得注意的教訓來自開放數據集識別,識別的統計偏差以外的數據觀測數據集,和相鄰的主動學習領域,數據增量查詢等預期的性能收益最大化,這些常常在深度學習的時代被忽略。基于這些遺忘的教訓,我們提出了一個統一的觀點,以搭建持續學習,主動學習和開放集識別在深度神經網絡的橋梁。我們的結果表明,這不僅有利于每個個體范式,而且突出了在一個共同框架中的自然協同作用。我們從經驗上證明了在減輕災難性遺忘、主動學習中查詢數據、選擇任務順序等方面的改進,同時在以前提出的方法失敗的地方展示了強大的開放世界應用。

//www.zhuanzhi.ai/paper/e5bee7a1e93a93ef97e1c

概述:

隨著實用機器學習系統的不斷成熟,社區發現了對持續學習[1]、[2]的興趣。與廣泛練習的孤立學習不同,在孤立學習中,系統的算法訓練階段被限制在一個基于先前收集的i.i.d數據集的單一階段,持續學習需要利用隨著時間的推移而到來的數據的學習過程。盡管這種范式已經在許多機器學習系統中找到了各種應用,回顧一下最近關于終身機器學習[3]的書,深度學習的出現似乎已經將當前研究的焦點轉向了一種稱為“災難性推理”或“災難性遺忘”的現象[4],[5],正如最近的評論[6],[7],[8],[9]和對深度持續學習[8],[10],[11]的實證調查所表明的那樣。后者是機器學習模型的一個特殊效應,機器學習模型貪婪地根據給定的數據群更新參數,比如神經網絡迭代地更新其權值,使用隨機梯度估計。當包括導致數據分布發生任何變化的不斷到達的數據時,學習到的表示集被單向引導,以接近系統當前公開的數據實例上的任何任務的解決方案。自然的結果是取代以前學到的表征,導致突然忘記以前獲得的信息。

盡管目前的研究主要集中在通過專門機制的設計來緩解持續深度學習中的這種遺忘,但我們認為,一種非常不同形式的災難性遺忘的風險正在增長,即忘記從過去的文獻中吸取教訓的危險。盡管在連續的訓練中保留神經網絡表示的努力值得稱贊,但除了只捕獲災難性遺忘[12]的度量之外,我們還高度關注了實際的需求和權衡,例如包括內存占用、計算成本、數據存儲成本、任務序列長度和訓練迭代次數等。如果在部署[14]、[15]、[16]期間遇到看不見的未知數據或小故障,那么大多數當前系統會立即崩潰,這幾乎可以被視為誤導。封閉世界的假設似乎無所不在,即認為模型始終只會遇到與訓練過程中遇到的數據分布相同的數據,這在真實的開放世界中是非常不現實的,因為在開放世界中,數據可以根據不同的程度變化,而這些變化是不現實的,無法捕獲到訓練集中,或者用戶能夠幾乎任意地向系統輸入預測信息。盡管當神經網絡遇到不可見的、未知的數據實例時,不可避免地會產生完全沒有意義的預測,這是眾所周知的事實,已經被暴露了幾十年了,但是當前的努力是為了通過不斷學習來規避這一挑戰。選擇例外嘗試解決識別不可見的和未知的示例、拒絕荒謬的預測或將它們放在一邊供以后使用的任務,通常總結在開放集識別的傘下。然而,大多數現有的深度連續學習系統仍然是黑盒,不幸的是,對于未知數據的錯誤預測、數據集的異常值或常見的圖像損壞[16],這些系統并沒有表現出理想的魯棒性。

除了目前的基準測試實踐仍然局限于封閉的世界之外,另一個不幸的趨勢是對創建的持續學習數據集的本質缺乏理解。持續生成模型(如[17]的作者的工作,[18],[19],[20],[21],[22]),以及類增量持續學習的大部分工作(如[12]中給出的工作,[23],[24],[25],[26],[27],[28])一般調查sequentialized版本的經過時間考驗的視覺分類基準如MNIST [29], CIFAR[30]或ImageNet[31],單獨的類只是分成分離集和序列所示。為了在基準中保持可比性,關于任務排序的影響或任務之間重疊的影響的問題通常會被忽略。值得注意的是,從鄰近領域的主動機器學習(半監督學習的一種特殊形式)中吸取的經驗教訓,似乎并沒有整合到現代的連續學習實踐中。在主動學習中,目標是學會在讓系統自己查詢接下來要包含哪些數據的挑戰下,逐步地找到與任務解決方案最接近的方法。因此,它可以被視為緩解災難性遺忘的對抗劑。當前的持續學習忙于維護在每個步驟中獲得的信息,而不是無休止地積累所有的數據,而主動學習則關注于識別合適的數據以納入增量訓練系統的補充問題。盡管在主動學習方面的早期開創性工作已經迅速識別出了通過使用啟發式[32]、[33]、[34]所面臨的強大應用的挑戰和陷阱,但后者在深度學習[35]、[36]、[37]、[38]的時代再次占據主導地位,這些挑戰將再次面臨。

在這項工作中,我們第一次努力建立一個原則性和鞏固的深度持續學習、主動學習和在開放的世界中學習的觀點。我們首先單獨回顧每一個主題,然后繼續找出在現代深度學習中似乎較少受到關注的以前學到的教訓。我們將繼續爭論,這些看似獨立的主題不僅從另一個角度受益,而且應該結合起來看待。在這個意義上,我們建議將當前的持續學習實踐擴展到一個更廣泛的視角,將持續學習作為一個總括性術語,自然地包含并建立在先前的主動學習和開放集識別工作之上。本文的主要目的并不是引入新的技術或提倡一種特定的方法作為通用的解決方案,而是對最近提出的神經網絡[39]和[40]中基于變分貝葉斯推理的方法進行了改進和擴展,以說明一種走向全面框架的可能選擇。重要的是,它作為論證的基礎,努力闡明生成建模作為深度學習系統關鍵組成部分的必要性。我們強調了在這篇論文中發展的觀點的重要性,通過實證證明,概述了未來研究的含義和有前景的方向。

付費5元查看完整內容

圖在許多應用中被廣泛用于表示復雜數據,如電子商務、社交網絡和生物信息學。高效、有效地分析圖數據對于基于圖的應用程序非常重要。然而,大多數圖分析任務是組合優化(CO)問題,這是NP困難。最近的研究集中在使用機器學習(ML)解決基于圖CO問題的潛力上。使用基于ML的CO方法,一個圖必須用數值向量表示,這被稱為圖嵌入。在這個調查中,我們提供了一個全面的概述,最近的圖嵌入方法已經被用來解決CO問題。大多數圖嵌入方法有兩個階段:圖預處理和ML模型學習。本文從圖預處理任務和ML模型的角度對圖嵌入工作進行分類。此外,本文還總結了利用圖嵌入的基于圖的CO方法。特別是,圖嵌入可以被用作分類技術的一部分,也可以與搜索方法相結合來尋找CO問題的解決方案。最后對未來的研究方向做了一些評論。

付費5元查看完整內容

在本章中,我們將訪問圖神經網絡(GNNs)的一些理論基礎。GNNs最有趣的方面之一是,它們是根據不同的理論動機獨立開發的。一方面,基于圖信號處理理論開發了GNN,將歐氏卷積推廣到非歐氏圖域[Bruna et al., 2014]。然而,與此同時,神經信息傳遞方法(構成了大多數現代GNN的基礎)被類比提出,用于圖模型中的概率推理的信息傳遞算法[Dai等人,2016]。最后,基于GNN與weisfeler - lehman圖同構檢驗的聯系,許多研究對其進行了激發[Hamilton et al., 2017b]。

將三個不同的領域匯聚成一個單一的算法框架是值得注意的。也就是說,這三種理論動機中的每一種都有其自身的直覺和歷史,而人們所采用的視角可以對模型的發展產生實質性的影響。事實上,我們推遲對這些理論動機的描述直到引入GNN模型本身之后,這并非偶然。在這一章,我們的目標是介紹這些背后的關鍵思想不同理論的動機,這樣一個感興趣的讀者可以自由探索和組合這些直覺和動機,因為他們認為合適的。

付費5元查看完整內容

在本章中,我們將關注更復雜的編碼器模型。我們將介紹圖神經網絡(GNN)的形式,它是定義圖數據上的深度神經網絡的一般框架。關鍵思想是,我們想要生成實際上依賴于圖結構的節點的表示,以及我們可能擁有的任何特征信息。在開發復雜的圖結構數據編碼器的主要挑戰是,我們通常的深度學習工具箱不適用。例如,卷積神經網絡(CNNs)只在網格結構的輸入(如圖像)上定義良好,而遞歸神經網絡(RNNs)只在序列(如文本)上定義良好。要在一般圖上定義深度神經網絡,我們需要定義一種新的深度學習架構。

付費5元查看完整內容

近年來, 隨著海量數據的涌現, 可以表示對象之間復雜關系的圖結構數據越來越受到重視并給已有的算法帶來了極大的挑戰. 圖神經網絡作為可以揭示深層拓撲信息的模型, 已開始廣泛應用于諸多領域,如通信、生命科學和經濟金融等. 本文對近幾年來提出的圖神經網絡模型和應用進行綜述, 主要分為以下幾類:基于空間方法的圖神經網絡模型、基于譜方法的圖神經網絡模型和基于生成方法的圖神經網絡模型等,并提出可供未來進一步研究的問題.

//engine.scichina.com/publisher/scp/journal/SSM/50/3/10.1360/N012019-00133?slug=fulltext

圖是對對象及其相互關系的一種簡潔抽象的直觀數學表達. 具有相互關系的數據—圖結構數據在眾多領域普遍存在, 并得到廣泛應用. 隨著大量數據的涌現, 傳統的圖算法在解決一些深層次的重要問題, 如節點分類和鏈路預測等方面有很大的局限性. 圖神經網絡模型考慮了輸入數據的規模、異質性和深層拓撲信息等, 在挖掘深層次有效拓撲信息、 提取數據的關鍵復雜特征和 實現對海量數據的快速處理等方面, 例如, 預測化學分子的特性 [1]、文本的關系提取 [2,3]、圖形圖像的結構推理 [4,5]、社交網絡的鏈路預測和節點聚類 [6]、缺失信息的網絡補全 [7]和藥物的相互作用預測 [8], 顯示了令人信服的可靠性能.

圖神經網絡的概念最早于 2005 年由 Gori 等 [9]提出, 他借鑒神經網絡領域的研究成果, 設計了一種用于處理圖結構數據的模型. 2009 年, Scarselli 等 [10]對此模型進行了詳細闡述. 此后, 陸續有關于圖神經網絡的新模型及應用研究被提出. 近年來, 隨著對圖結構數據研究興趣的不斷增加, 圖神經網絡研究論文數量呈現出快速上漲的趨勢, 圖神經網絡的研究方向和應用領域都得到了很大的拓展.

目前已有一些文獻對圖神經網絡進行了綜述. 文獻 [11]對圖結構數據和流形數據領域的深度學習方法進行了綜述, 側重于將所述各種方法置于一個稱為幾何深度學習的統一框架之內; 文獻[12]將圖神經網絡方法分為三類: 半監督學習、無監督學習和最新進展, 并根據發展歷史對各種方法進行介紹、分析和對比; 文獻[13]介紹了圖神經網絡原始模型、變體和一般框架, 并將圖神經網絡的應用劃分為結構場景、非結構場景和其他場景; 文獻[14]提出了一種新的圖神經網絡分類方法, 重點介紹了圖卷積網絡, 并總結了圖神經網絡方法在不同學習任務中的開源代碼和基準.

本文將對圖神經網絡模型的理論及應用進行綜述, 并討論未來的方向和挑戰性問題. 與其他綜述文獻的不同之處在于, 我們給出新的分類標準, 并且介紹圖神經網絡豐富的應用成果. 本文具體結構如下: 首先介紹三類主要的圖神經網絡模型, 分別是基于空間方法的圖神經網絡、基于譜方法的圖神經網絡和基于生成方法的圖神經網絡等; 然后介紹模型在節點分類、鏈路預測和圖生成等方面的應用; 最后提出未來的研究方向.

付費5元查看完整內容

近年來,人們對學習圖結構數據表示的興趣大增。基于標記數據的可用性,圖表示學習方法一般分為三大類。第一種是網絡嵌入(如淺層圖嵌入或圖自動編碼器),它側重于學習關系結構的無監督表示。第二種是圖正則化神經網絡,它利用圖來增加半監督學習的正則化目標的神經網絡損失。第三種是圖神經網絡,目的是學習具有任意結構的離散拓撲上的可微函數。然而,盡管這些領域很受歡迎,但在統一這三種范式方面的工作卻少得驚人。在這里,我們的目標是彌合圖神經網絡、網絡嵌入和圖正則化模型之間的差距。我們提出了圖結構數據表示學習方法的一個綜合分類,旨在統一幾個不同的工作主體。具體來說,我們提出了一個圖編碼解碼器模型(GRAPHEDM),它將目前流行的圖半監督學習算法(如GraphSage、Graph Convolutional Networks、Graph Attention Networks)和圖表示的非監督學習(如DeepWalk、node2vec等)歸納為一個統一的方法。為了說明這種方法的一般性,我們將30多個現有方法放入這個框架中。我們相信,這種統一的觀點既為理解這些方法背后的直覺提供了堅實的基礎,也使該領域的未來研究成為可能。

概述

學習復雜結構化數據的表示是一項具有挑戰性的任務。在過去的十年中,針對特定類型的結構化數據開發了許多成功的模型,包括定義在離散歐幾里德域上的數據。例如,序列數據,如文本或視頻,可以通過遞歸神經網絡建模,它可以捕捉序列信息,產生高效的表示,如機器翻譯和語音識別任務。還有卷積神經網絡(convolutional neural networks, CNNs),它根據移位不變性等結構先驗參數化神經網絡,在圖像分類或語音識別等模式識別任務中取得了前所未有的表現。這些主要的成功僅限于具有簡單關系結構的特定類型的數據(例如,順序數據或遵循規則模式的數據)。

在許多設置中,數據幾乎不是規則的: 通常會出現復雜的關系結構,從該結構中提取信息是理解對象之間如何交互的關鍵。圖是一種通用的數據結構,它可以表示復雜的關系數據(由節點和邊組成),并出現在多個領域,如社交網絡、計算化學[41]、生物學[105]、推薦系統[64]、半監督學習[39]等。對于圖結構的數據來說,將CNNs泛化為圖并非易事,定義具有強結構先驗的網絡是一項挑戰,因為結構可以是任意的,并且可以在不同的圖甚至同一圖中的不同節點之間發生顯著變化。特別是,像卷積這樣的操作不能直接應用于不規則的圖域。例如,在圖像中,每個像素具有相同的鄰域結構,允許在圖像中的多個位置應用相同的過濾器權重。然而,在圖中,我們不能定義節點的順序,因為每個節點可能具有不同的鄰域結構(圖1)。此外,歐幾里德卷積強烈依賴于幾何先驗(如移位不變性),這些先驗不能推廣到非歐幾里德域(如平移可能甚至不能在非歐幾里德域上定義)。

這些挑戰導致了幾何深度學習(GDL)研究的發展,旨在將深度學習技術應用于非歐幾里德數據。特別是,考慮到圖在現實世界應用中的廣泛流行,人們對將機器學習方法應用于圖結構數據的興趣激增。其中,圖表示學習(GRL)方法旨在學習圖結構數據的低維連續向量表示,也稱為嵌入。

廣義上講,GRL可以分為兩類學習問題,非監督GRL和監督(或半監督)GRL。第一個系列的目標是學習保持輸入圖結構的低維歐幾里德表示。第二系列也學習低維歐幾里德表示,但為一個特定的下游預測任務,如節點或圖分類。與非監督設置不同,在非監督設置中輸入通常是圖結構,監督設置中的輸入通常由圖上定義的不同信號組成,通常稱為節點特征。此外,底層的離散圖域可以是固定的,這是直推學習設置(例如,預測一個大型社交網絡中的用戶屬性),但也可以在歸納性學習設置中發生變化(例如,預測分子屬性,其中每個分子都是一個圖)。最后,請注意,雖然大多數有監督和無監督的方法學習歐幾里德向量空間中的表示,最近有興趣的非歐幾里德表示學習,其目的是學習非歐幾里德嵌入空間,如雙曲空間或球面空間。這項工作的主要動機是使用一個連續的嵌入空間,它類似于它試圖嵌入的輸入數據的底層離散結構(例如,雙曲空間是樹的連續版本[99])。

鑒于圖表示學習領域的發展速度令人印象深刻,我們認為在一個統一的、可理解的框架中總結和描述所有方法是很重要的。本次綜述的目的是為圖結構數據的表示學習方法提供一個統一的視圖,以便更好地理解在深度學習模型中利用圖結構的不同方法。

目前已有大量的圖表示學習綜述。首先,有一些研究覆蓋了淺層網絡嵌入和自動編碼技術,我們參考[18,24,46,51,122]這些方法的詳細概述。其次,Bronstein等人的[15]也給出了非歐幾里德數據(如圖或流形)的深度學習模型的廣泛概述。第三,最近的一些研究[8,116,124,126]涵蓋了將深度學習應用到圖數據的方法,包括圖數據神經網絡。這些調查大多集中在圖形表示學習的一個特定子領域,而沒有在每個子領域之間建立聯系。

在這項工作中,我們擴展了Hamilton等人提出的編碼-解碼器框架,并介紹了一個通用的框架,圖編碼解碼器模型(GRAPHEDM),它允許我們將現有的工作分為四大類: (i)淺嵌入方法,(ii)自動編碼方法,(iii) 圖正則化方法,和(iv) 圖神經網絡(GNNs)。此外,我們還介紹了一個圖卷積框架(GCF),專門用于描述基于卷積的GNN,該框架在廣泛的應用中實現了最先進的性能。這使我們能夠分析和比較各種GNN,從在Graph Fourier域中操作的方法到將self-attention作為鄰域聚合函數的方法[111]。我們希望這種近期工作的統一形式將幫助讀者深入了解圖的各種學習方法,從而推斷出相似性、差異性,并指出潛在的擴展和限制。盡管如此,我們對前幾次綜述的貢獻有三個方面

  • 我們介紹了一個通用的框架,即GRAPHEDM,來描述一系列廣泛的有監督和無監督的方法,這些方法對圖形結構數據進行操作,即淺層嵌入方法、圖形正則化方法、圖形自動編碼方法和圖形神經網絡。

  • 我們的綜述是第一次嘗試從同一角度統一和查看這些不同的工作線,我們提供了一個通用分類(圖3)來理解這些方法之間的差異和相似之處。特別是,這種分類封裝了30多個現有的GRL方法。在一個全面的分類中描述這些方法,可以讓我們了解這些方法究竟有何不同。

  • 我們為GRL發布了一個開源庫,其中包括最先進的GRL方法和重要的圖形應用程序,包括節點分類和鏈接預測。我們的實現可以在//github.com/google/gcnn-survey-paper上找到。

付費5元查看完整內容

圖神經網絡是解決各種圖學習問題的有效的機器學習模型。盡管它們取得了經驗上的成功,但是GNNs的理論局限性最近已經被揭示出來。因此,人們提出了許多GNN模型來克服這些限制。在這次調查中,我們全面概述了GNNs的表達能力和可證明的強大的GNNs變體。

付費5元查看完整內容
北京阿比特科技有限公司