圖神經網絡(GNNs)最近在人工智能領域變得越來越受歡迎,這是因為它們具有提取相對非結構化數據類型作為輸入數據的獨特能力。盡管GNN體系結構的一些元素在操作上與傳統神經網絡(以及神經網絡變體)的概念相似,但其他元素則不同于傳統的深度學習技術。本教程通過整理和呈現最常見類型的GNNs的動機、概念、數學和應用的詳細信息,向一般深度學習愛好者展示了GNNs的強大功能和新穎之處。重要的是,我們以介紹性的速度簡要地介紹了本教程,并提供了理解和使用GNNs的實用和可訪問的指南。
摘要:
當代人工智能(AI),或者更具體地說,深度學習(DL)近年來被稱為神經網絡(NN)的學習架構所主導。NN變體被設計用于提高某些問題領域的性能;卷積神經網絡(CNN)在基于圖像的任務環境中表現突出,而遞歸神經網絡(RNN)在自然語言處理和時間序列分析空間中表現突出。神經網絡也被用作復合DL框架的組件——它們在生成對抗網絡(GANs)中被用作可訓練的生成器和判別器,在transformers [46]中被用作編碼器和解碼器。雖然在計算機視覺中作為輸入的圖像和在自然語言處理中作為輸入的句子看起來是不相關的,但是它們都可以用一個單一的、通用的數據結構來表示:圖(見圖1)。
形式上,圖是一組不同的頂點(表示項目或實體),這些頂點通過邊(表示關系)選擇性地連接在一起。被設計來處理這些圖的學習架構是有名稱的圖神經網絡(GNN)。輸入圖之間的頂點和邊的數量可以改變。通過這種方式,GNNs可以處理非結構化的、非歐幾里得數據[4],這一特性使得它們在圖形數據豐富的特定問題域中具有價值。相反,基于NN的算法通常需要對具有嚴格定義維數的結構化輸入進行操作。例如,構建一個用于在MNIST數據集上進行分類的CNN,其輸入層必須為28×28個神經元,后續輸入給它的所有圖像大小必須為28×28像素,才能符合這個嚴格的維數要求[27]。
圖作為數據編碼方法的表達性,以及GNNs相對于非結構化輸入的靈活性,推動了它們的研究和開發。它們代表了一種探索相對通用的深度學習方法的新方法,并且它們促進了深度學習方法對數據集的應用,直到最近,這些數據集還不能使用傳統的神經網絡或其他此類算法。
本篇內容結構:
//deepai.org/publication/a-practical-guide-to-graph-neural-networks
摘要:隨著計算機行業和互聯網時代的不斷發展與進步,圖神經網絡已經成為人工智能和大數據重要研究領域。圖神經網絡是對相鄰節點間信息的傳播和聚合的重要技術,可以有效地將深度學習的理念應用于非歐幾里德空間的數據上。簡述圖計算、圖數據庫、知識圖譜、圖神經網絡等圖技術領域的相關研究歷史,分類介紹不同類型的圖結構。分析對比不同的圖神經網絡技術,重點從頻域和空間與的信息聚合方式上分類比較不同的圖卷積網絡算法。闡述圖生成和圖對抗網絡、圖強化學習、圖遷移學習、神經任務圖和圖零樣本學習等不同的圖網絡與深度學習方法相結合的技術方法,并列舉不同的圖神經網絡技術在文本、圖像、知識圖譜、視頻任務等領域的具體應用。最后,對圖神經網絡未來的發展與研究方向加以展望。
概述
近年來隨著計算機行業的快速發展和數據量的井噴式增長,深度學習方法被提出并得到了廣泛的 應用。深度學習通過神經網絡端到端的解決方案, 在圖像處理、語音識別、語義理解[1]等領域取得了 巨大的成功,深度學習的應用往往都是在高維特征 空間上特征規則分布的歐幾里德數據。作為一種關 系型數據結構,圖(Graph)在深度學習中的應用研究近年來受到越來越多的關注,本文將圖的演進歷程分為數學起源、計算應用、神經網絡延伸三個階段。
圖的概念起源于 18 世紀著名的柯尼斯堡七橋問 題,到了 20 世紀中期,擬陣理論、超圖理論、極圖 理論等研究蓬勃發展,使得圖論(Graph Theory)[2] 在電子計算誕生前,就已經成為了重要的數學研究領域。
隨著計算機的出現和機器計算時代的到來和發 展,圖作為一種能夠有效且抽象地表達信息和數據 中的實體以及實體之間關系的重要數據結構被廣泛應用,圖數據庫有效解決了傳統的關系型數據結構 面對大量復雜的數據所暴露出的建模缺陷多、計算速度慢等問題,圖數據庫也成為了非常熱門的研究 領域。圖結構(Graph-structured Data)[3]可以將結構化數據點通過邊的形式,依照數據間的關系將不同類型和結構的數據節點連接起來,因而被廣泛地應用在數據的存儲、檢索以及計算應用中。基于圖結構數據,知識圖譜[4-7]可以通過點和邊的語義關系, 來實現精確地描述現實世界中實體之間的關聯關系, 作為人工智能非常重要的研究領域,知識圖譜的研究方向包括知識抽取、知識推理、知識圖譜可視化等。圖計算(Graph Computing)具有數據規模量大、 局部性低、計算性能高等特性,圖計算算法[8-9]主要 可以分為路徑搜索算法、中心性算法、社群發現算法等三類,實現了在關系復雜型的大規模數據上高 時效性和準確度的表現,在社交網絡、團體反欺詐 和用戶推薦等領域有著重要的應用。
與已經非常成熟圖計算不同,圖神經網絡 (Graph Neural Network)的研究主要是集中在相鄰節點信息的傳播與聚合上,從圖神經網絡的概念提 出,到受深度學習中卷積神經網絡的啟發,2013 年 提出的基于圖論的圖卷積神經網絡 [10-11]研究方向吸 引了大量學者關注。2018 年 DeepMind 提出圖網絡 (Graph Network)[12]的概念,希望能夠將深度學習 端到端的學習方式與圖結構關系歸納推理的理論結 合解決深度學習無法處理關系推理的問題。針對圖 神經網絡存在的問題,不同的學者們也給出了不同 的方案,隨著對圖神經網絡這一新興領域更加深入 的研究與探索,人工智能領域的版圖將得到更大擴展。
文獻[12]在關系歸納偏置和深度學習的研究基礎 上,提出了面向關系推理的圖網絡概念并進行了綜 述,但未對不同圖網絡技術進行分類和對比。文獻 [13]從半監督、無監督方法的角度對圖結構上的深度 學習進行了綜述,但缺少相近的分類和應用的討論。文獻[14]主要從傳播規則、網絡結構等角度分析了圖神經網絡的不同模型以及應用。文獻[15]則是詳細對 比了時域和空間的不同圖卷神經網絡方法結構,但沒有對圖神經網絡之于深度學習領域的探討,如圖強化學習、圖遷移學習等。本文針對圖神經網絡, 分析對比了六種圖神經網絡方法的優劣,首次對處 理異構圖數據的圖神經網絡技術進行了討論和研究, 綜述了五類圖神經網絡的研究領域,并對未來的發展方向進行了展望。
近年來,圖神經網絡(GNNs)由于具有建模和從圖結構數據中學習的能力,在機器學習領域得到了迅猛發展。這種能力在數據具有內在關聯的各種領域具有很強的影響,而傳統的神經網絡在這些領域的表現并不好。事實上,正如最近的評論可以證明的那樣,GNN領域的研究已經迅速增長,并導致了各種GNN算法變體的發展,以及在化學、神經學、電子或通信網絡等領域的突破性應用的探索。然而,在目前的研究階段,GNN的有效處理仍然是一個開放的挑戰。除了它們的新穎性之外,由于它們依賴于輸入圖,它們的密集和稀疏操作的組合,或者在某些應用中需要伸縮到巨大的圖,GNN很難計算。在此背景下,本文旨在做出兩大貢獻。一方面,從計算的角度對GNNs領域進行了綜述。這包括一個關于GNN基本原理的簡短教程,在過去十年中該領域發展的概述,以及在不同GNN算法變體的多個階段中執行的操作的總結。另一方面,對現有的軟硬件加速方案進行了深入分析,總結出一種軟硬件結合、圖感知、以通信為中心的GNN加速方案。
深度學習算法已經在圖像分類方面取得了最先進的性能,甚至被用于安全關鍵應用,如生物識別系統和自動駕駛汽車。最近的研究表明,這些算法甚至可以超越人類的能力,很容易受到對抗性例子的攻擊。在計算機視覺中,與之相對的例子是惡意優化算法為欺騙分類器而產生的含有細微擾動的圖像。為了緩解這些漏洞,文獻中不斷提出了許多對策。然而,設計一種有效的防御機制已被證明是一項困難的任務,因為許多方法已經證明對自適應攻擊者無效。因此,這篇自包含的論文旨在為所有的讀者提供一篇關于圖像分類中對抗性機器學習的最新研究進展的綜述。本文介紹了新的對抗性攻擊和防御的分類方法,并討論了對抗性實例的存在性。此外,與現有的調查相比,它還提供了相關的指導,研究人員在設計和評估防御時應該考慮到這些指導。最后,在文獻綜述的基礎上,對未來的研究方向進行了展望。
在本章中,我們將訪問圖神經網絡(GNNs)的一些理論基礎。GNNs最有趣的方面之一是,它們是根據不同的理論動機獨立開發的。一方面,基于圖信號處理理論開發了GNN,將歐氏卷積推廣到非歐氏圖域[Bruna et al., 2014]。然而,與此同時,神經信息傳遞方法(構成了大多數現代GNN的基礎)被類比提出,用于圖模型中的概率推理的信息傳遞算法[Dai等人,2016]。最后,基于GNN與weisfeler - lehman圖同構檢驗的聯系,許多研究對其進行了激發[Hamilton et al., 2017b]。
將三個不同的領域匯聚成一個單一的算法框架是值得注意的。也就是說,這三種理論動機中的每一種都有其自身的直覺和歷史,而人們所采用的視角可以對模型的發展產生實質性的影響。事實上,我們推遲對這些理論動機的描述直到引入GNN模型本身之后,這并非偶然。在這一章,我們的目標是介紹這些背后的關鍵思想不同理論的動機,這樣一個感興趣的讀者可以自由探索和組合這些直覺和動機,因為他們認為合適的。
在本章中,我們將關注更復雜的編碼器模型。我們將介紹圖神經網絡(GNN)的形式,它是定義圖數據上的深度神經網絡的一般框架。關鍵思想是,我們想要生成實際上依賴于圖結構的節點的表示,以及我們可能擁有的任何特征信息。在開發復雜的圖結構數據編碼器的主要挑戰是,我們通常的深度學習工具箱不適用。例如,卷積神經網絡(CNNs)只在網格結構的輸入(如圖像)上定義良好,而遞歸神經網絡(RNNs)只在序列(如文本)上定義良好。要在一般圖上定義深度神經網絡,我們需要定義一種新的深度學習架構。
圖神經網絡一本簡明硬貨新書,快來學習!
William L. Hamilton McGill 大學計算機科學的助理教授,魁北克省Mila AI研究所的加拿大CIFAR AI主席。我開發了機器學習模型,可以對我們復雜、相互關聯的世界進行推理。
總的來說,研究興趣集中在機器學習、網絡科學和自然語言處理的交叉領域,目前重點關注快速增長的圖表示學習和圖神經網絡。
圖表示學習
在過去的7年里,圖表示學習領域以令人難以置信(有時難以控制)的速度發展,從從事一個相對小眾主題的一小部分研究人員,轉變為深度學習中增長最快的子領域之一。
這本書是我對圖表示學習的一個簡要而全面的介紹,包括嵌入圖數據的方法,圖神經網絡,以及圖的深層生成模型。
圖是一種普遍存在的數據結構和描述復雜系統的通用語言。在最普遍的觀點中,一個圖僅僅是對象的集合。,以及一組交互(例如,節點)。(邊)在這些對象對之間。例如,為了將一個社會網絡編碼為一個圖,我們可以使用節點來表示個體,使用邊來表示兩個個體是朋友(圖1.1)。在生物領域,我們可以使用圖中的節點來表示蛋白質,并使用邊緣來表示各種生物相互作用,例如蛋白質之間的動力學相互作用。
圖形式主義的力量在于它關注點之間的關系(而不是單個點的屬性),以及它的一般性。同樣的圖表形式也可以用來表示社會網絡、藥物和蛋白質之間的相互作用、原子之間的相互作用。
然而,圖表不僅僅提供了一個優雅的理論框架。它們提供了一個數學基礎,我們可以在此基礎上分析、理解和學習現實世界的復雜系統。在過去的25年里,可供研究人員使用的圖形結構數據在數量和質量上有了顯著的增長。隨著大型社交網絡平臺的出現,大量的科學活動對交互體建模,食物網,分子圖結構的數據庫,以及數十億網絡連接設備的出現,有意義的圖數據供研究人員分析。挑戰在于釋放這些數據的潛力。
這本書是關于我們如何利用機器學習來應對這一挑戰。當然,機器學習不是分析圖表數據的唯一可能的方法。然而,鑒于我們試圖分析的圖形數據集的規模和復雜性不斷增長,很明顯,機器學習將在提高我們建模、分析和理解圖形數據的能力方面發揮重要作用。
目錄內容:
GNN綜述閱讀報告,報告涵蓋有多篇GNN方面的論文,以及一個按照論文《The Graph Neural Network Model 》使用pytorch編寫的模型例子,該模型在人工數據上進行運行和驗證。項目倉的結構樹為
|-/GNN_Review.md # GNN綜述Markdown文檔
|-/GNN_Review1.1.pdf # GNN綜述PDF版文檔
|-/README.md # README文檔
|-/GNN示例代碼/ # 示例代碼文檔
|-images/ # 示例圖像
|-GNN實例.ipynb # .ipynb文件(可直接使用jupyter運行)
|-node_dict.json # 中間的字典文件
|-/pic/ # GNN綜述相關圖片
|-/PyG和Pytorch實現GNN模型 # PyG和Pytorch的GNN模型實現文檔和代碼
|-cora/ # cora數據集
|-pic/ # 文檔圖片
|-data/ # 數據集文件夾
|-Cora數據集.md # Cora數據集介紹文檔
|-GNN_Implement_with_Pytorch.ipynb # 使用Pytorch實現GCN和Linear GNN示例
|-GNN_Implemet_with_PyG.ipynb # 使用PyG實現GCN示例
|-GNN與子圖匹配.ipynb # GNN的子圖匹配示例
|-GNN的Batch示例.ipynb # GNN訓練的Batch實現示例
|-PyG.md # PyG框架閱讀報告
GNN_Review報告的結構如下
近年來,人們對學習圖結構數據表示的興趣大增。基于標記數據的可用性,圖表示學習方法一般分為三大類。第一種是網絡嵌入(如淺層圖嵌入或圖自動編碼器),它側重于學習關系結構的無監督表示。第二種是圖正則化神經網絡,它利用圖來增加半監督學習的正則化目標的神經網絡損失。第三種是圖神經網絡,目的是學習具有任意結構的離散拓撲上的可微函數。然而,盡管這些領域很受歡迎,但在統一這三種范式方面的工作卻少得驚人。在這里,我們的目標是彌合圖神經網絡、網絡嵌入和圖正則化模型之間的差距。我們提出了圖結構數據表示學習方法的一個綜合分類,旨在統一幾個不同的工作主體。具體來說,我們提出了一個圖編碼解碼器模型(GRAPHEDM),它將目前流行的圖半監督學習算法(如GraphSage、Graph Convolutional Networks、Graph Attention Networks)和圖表示的非監督學習(如DeepWalk、node2vec等)歸納為一個統一的方法。為了說明這種方法的一般性,我們將30多個現有方法放入這個框架中。我們相信,這種統一的觀點既為理解這些方法背后的直覺提供了堅實的基礎,也使該領域的未來研究成為可能。
概述
學習復雜結構化數據的表示是一項具有挑戰性的任務。在過去的十年中,針對特定類型的結構化數據開發了許多成功的模型,包括定義在離散歐幾里德域上的數據。例如,序列數據,如文本或視頻,可以通過遞歸神經網絡建模,它可以捕捉序列信息,產生高效的表示,如機器翻譯和語音識別任務。還有卷積神經網絡(convolutional neural networks, CNNs),它根據移位不變性等結構先驗參數化神經網絡,在圖像分類或語音識別等模式識別任務中取得了前所未有的表現。這些主要的成功僅限于具有簡單關系結構的特定類型的數據(例如,順序數據或遵循規則模式的數據)。
在許多設置中,數據幾乎不是規則的: 通常會出現復雜的關系結構,從該結構中提取信息是理解對象之間如何交互的關鍵。圖是一種通用的數據結構,它可以表示復雜的關系數據(由節點和邊組成),并出現在多個領域,如社交網絡、計算化學[41]、生物學[105]、推薦系統[64]、半監督學習[39]等。對于圖結構的數據來說,將CNNs泛化為圖并非易事,定義具有強結構先驗的網絡是一項挑戰,因為結構可以是任意的,并且可以在不同的圖甚至同一圖中的不同節點之間發生顯著變化。特別是,像卷積這樣的操作不能直接應用于不規則的圖域。例如,在圖像中,每個像素具有相同的鄰域結構,允許在圖像中的多個位置應用相同的過濾器權重。然而,在圖中,我們不能定義節點的順序,因為每個節點可能具有不同的鄰域結構(圖1)。此外,歐幾里德卷積強烈依賴于幾何先驗(如移位不變性),這些先驗不能推廣到非歐幾里德域(如平移可能甚至不能在非歐幾里德域上定義)。
這些挑戰導致了幾何深度學習(GDL)研究的發展,旨在將深度學習技術應用于非歐幾里德數據。特別是,考慮到圖在現實世界應用中的廣泛流行,人們對將機器學習方法應用于圖結構數據的興趣激增。其中,圖表示學習(GRL)方法旨在學習圖結構數據的低維連續向量表示,也稱為嵌入。
廣義上講,GRL可以分為兩類學習問題,非監督GRL和監督(或半監督)GRL。第一個系列的目標是學習保持輸入圖結構的低維歐幾里德表示。第二系列也學習低維歐幾里德表示,但為一個特定的下游預測任務,如節點或圖分類。與非監督設置不同,在非監督設置中輸入通常是圖結構,監督設置中的輸入通常由圖上定義的不同信號組成,通常稱為節點特征。此外,底層的離散圖域可以是固定的,這是直推學習設置(例如,預測一個大型社交網絡中的用戶屬性),但也可以在歸納性學習設置中發生變化(例如,預測分子屬性,其中每個分子都是一個圖)。最后,請注意,雖然大多數有監督和無監督的方法學習歐幾里德向量空間中的表示,最近有興趣的非歐幾里德表示學習,其目的是學習非歐幾里德嵌入空間,如雙曲空間或球面空間。這項工作的主要動機是使用一個連續的嵌入空間,它類似于它試圖嵌入的輸入數據的底層離散結構(例如,雙曲空間是樹的連續版本[99])。
鑒于圖表示學習領域的發展速度令人印象深刻,我們認為在一個統一的、可理解的框架中總結和描述所有方法是很重要的。本次綜述的目的是為圖結構數據的表示學習方法提供一個統一的視圖,以便更好地理解在深度學習模型中利用圖結構的不同方法。
目前已有大量的圖表示學習綜述。首先,有一些研究覆蓋了淺層網絡嵌入和自動編碼技術,我們參考[18,24,46,51,122]這些方法的詳細概述。其次,Bronstein等人的[15]也給出了非歐幾里德數據(如圖或流形)的深度學習模型的廣泛概述。第三,最近的一些研究[8,116,124,126]涵蓋了將深度學習應用到圖數據的方法,包括圖數據神經網絡。這些調查大多集中在圖形表示學習的一個特定子領域,而沒有在每個子領域之間建立聯系。
在這項工作中,我們擴展了Hamilton等人提出的編碼-解碼器框架,并介紹了一個通用的框架,圖編碼解碼器模型(GRAPHEDM),它允許我們將現有的工作分為四大類: (i)淺嵌入方法,(ii)自動編碼方法,(iii) 圖正則化方法,和(iv) 圖神經網絡(GNNs)。此外,我們還介紹了一個圖卷積框架(GCF),專門用于描述基于卷積的GNN,該框架在廣泛的應用中實現了最先進的性能。這使我們能夠分析和比較各種GNN,從在Graph Fourier域中操作的方法到將self-attention作為鄰域聚合函數的方法[111]。我們希望這種近期工作的統一形式將幫助讀者深入了解圖的各種學習方法,從而推斷出相似性、差異性,并指出潛在的擴展和限制。盡管如此,我們對前幾次綜述的貢獻有三個方面
我們介紹了一個通用的框架,即GRAPHEDM,來描述一系列廣泛的有監督和無監督的方法,這些方法對圖形結構數據進行操作,即淺層嵌入方法、圖形正則化方法、圖形自動編碼方法和圖形神經網絡。
我們的綜述是第一次嘗試從同一角度統一和查看這些不同的工作線,我們提供了一個通用分類(圖3)來理解這些方法之間的差異和相似之處。特別是,這種分類封裝了30多個現有的GRL方法。在一個全面的分類中描述這些方法,可以讓我們了解這些方法究竟有何不同。
我們為GRL發布了一個開源庫,其中包括最先進的GRL方法和重要的圖形應用程序,包括節點分類和鏈接預測。我們的實現可以在//github.com/google/gcnn-survey-paper上找到。
【導讀】國際萬維網大會(The Web Conference,簡稱WWW會議)是由國際萬維網會議委員會發起主辦的國際頂級學術會議,創辦于1994年,每年舉辦一屆,是CCF-A類會議。WWW 2020將于2020年4月20日至4月24日在中國臺灣臺北舉行。由于疫情影響,這次會議在線上舉行,本屆會議共收到了1129篇長文投稿,錄用217篇長文,錄用率為19.2%。小編推薦一份圖深度學習-圖神經網絡教程,預覽版可以查看。
從圖數據和關系數據中學習在許多應用中起著重要的作用,包括社交網絡分析、市場營銷、電子商務、信息檢索、知識建模、醫學和生物科學、工程等。在過去的幾年里,圖神經網絡(GNNs)已經成為一種很有前途的新型監督學習框架,能夠將深度表示學習的能力引入到圖和關系數據中。越來越多的研究表明,GNNs在鏈路預測、欺詐檢測、目標配體結合活性預測、知識圖譜補全和產品推薦等方面的性能達到了最新水平。
本教程的目標有兩個。首先,它將概述GNN背后的理論,討論GNN非常適合的問題類型,并介紹一些最廣泛使用的GNN模型體系結構和設計用來解決的問題/應用程序。其次,它將引入深度圖庫(Deep Graph Library, DGL),這是一種新的軟件框架,簡化了高效的基于GNN的訓練和推理程序的開發。為了使事情更具體,本教程將提供使用DGL的實踐會話。這個實踐部分將涵蓋基本的圖形應用程序(例如,節點分類和鏈接預測),以及更高級的主題,包括在大型圖和分布式設置中訓練GNN。此外,它還將提供使用GNNs和DGL進行實際應用(如推薦和欺詐檢測)的實踐教程。
第1節:圖神經網絡概述。本節描述了圖神經網絡是如何運作的,它們的基本理論,以及它們相對于其他圖學習方法的優勢。此外,它還描述了圖形上的各種學習問題,并展示了如何使用GNNs來解決這些問題。
第2節:深度圖庫(DGL)概述。本節描述DGL提供的不同的抽象和api,這些抽象和api旨在簡化GNN模型的實現,并解釋DGL如何與MXNet、Pytorch和TensorFlow進行接口。然后介紹DGL的消息傳遞API,該API可用于開發任意復雜的GNNs和它提供的預定義GNN nn模塊。
第3節:基本圖任務的GNN模型。本節演示如何使用GNNs解決四個關鍵的圖數據學習任務:節點分類、鏈接預測、圖數據分類和網絡嵌入前訓練。它將展示如何使用DGL的nn模塊實現一個流行的GNN模型GraphSage,并展示如何在不同類型的下游任務中使用由GraphSage計算出的節點嵌入。此外,本文還將演示使用DGL的消息傳遞接口實現定制的GNN模型。
第4節:大型圖的GNN訓練。本節使用第3節中描述的一些模型來演示DGL中的微型批處理訓練、多GPU訓練和分布式訓練。它首先描述了mini-batch訓練的概念如何應用于GNN,以及如何通過使用各種抽樣技術來加速mini-batch計算。接下來將舉例說明一種稱為鄰接抽樣的抽樣技術,如何使用木星筆記本在DGL中實現。然后將該筆記本擴展為多GPU訓練和分布式訓練。
第5節:實際應用的GNN模型。本節使用前面幾節中描述的技術,展示如何使用GNNs開發用于推薦和欺詐檢測的可伸縮解決方案。在推薦方面,本文提出了一種基于最近鄰的項目推薦方法,該方法通過采用端到端的學習方法,利用GNN模型學習項目嵌入。對于欺詐檢測,它擴展了上一節中的節點分類模型,以處理異構圖,并解決了標記樣本很少的情況。