亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

圖在許多應用中被廣泛用于表示復雜數據,如電子商務、社交網絡和生物信息學。高效、有效地分析圖數據對于基于圖的應用程序非常重要。然而,大多數圖分析任務是組合優化(CO)問題,這是NP困難。最近的研究集中在使用機器學習(ML)解決基于圖CO問題的潛力上。使用基于ML的CO方法,一個圖必須用數值向量表示,這被稱為圖嵌入。在這個調查中,我們提供了一個全面的概述,最近的圖嵌入方法已經被用來解決CO問題。大多數圖嵌入方法有兩個階段:圖預處理和ML模型學習。本文從圖預處理任務和ML模型的角度對圖嵌入工作進行分類。此外,本文還總結了利用圖嵌入的基于圖的CO方法。特別是,圖嵌入可以被用作分類技術的一部分,也可以與搜索方法相結合來尋找CO問題的解決方案。最后對未來的研究方向做了一些評論。

付費5元查看完整內容

相關內容

近年來,圖神經網絡(GNNs)由于具有建模和從圖結構數據中學習的能力,在機器學習領域得到了迅猛發展。這種能力在數據具有內在關聯的各種領域具有很強的影響,而傳統的神經網絡在這些領域的表現并不好。事實上,正如最近的評論可以證明的那樣,GNN領域的研究已經迅速增長,并導致了各種GNN算法變體的發展,以及在化學、神經學、電子或通信網絡等領域的突破性應用的探索。然而,在目前的研究階段,GNN的有效處理仍然是一個開放的挑戰。除了它們的新穎性之外,由于它們依賴于輸入圖,它們的密集和稀疏操作的組合,或者在某些應用中需要伸縮到巨大的圖,GNN很難計算。在此背景下,本文旨在做出兩大貢獻。一方面,從計算的角度對GNNs領域進行了綜述。這包括一個關于GNN基本原理的簡短教程,在過去十年中該領域發展的概述,以及在不同GNN算法變體的多個階段中執行的操作的總結。另一方面,對現有的軟硬件加速方案進行了深入分析,總結出一種軟硬件結合、圖感知、以通信為中心的GNN加速方案。

付費5元查看完整內容

眾包是一種計算范式,在這種范式中,人類積極參與計算任務,特別是那些本質上人類比計算機更容易完成的任務。空間眾包是移動互聯網和共享經濟時代眾包中日益流行的一種,任務是時空的,必須在特定的地點和時間完成。事實上,空間眾包激發了最近一系列的產業成功,包括城市服務的共享經濟(Uber和Gigwalk)和時空數據收集(OpenStreetMap和Waze)。本調查深入探討了空間眾包的獨特性帶來的挑戰和技術。特別地,我們確定了空間眾包的四個核心算法問題: (1)任務分配,(2)質量控制,(3)激勵機制設計,(4)隱私保護。我們對上述四個問題的現有研究進行了全面和系統的回顧。我們還分析了具有代表性的空間眾包應用程序,并解釋了它們是如何通過這四個技術問題實現的。最后,我們討論了未來空間眾包研究和應用中需要解決的開放問題。

//link.springer.com/article/10.1007/s00778-019-00568-7

付費5元查看完整內容

當前的深度學習研究以基準評價為主。如果一種方法在專門的測試集上有良好的經驗表現,那么它就被認為是有利的。這種心態無縫地反映在持續學習的重現領域,在這里研究的是持續到達的基準數據集。核心挑戰是如何保護之前獲得的表示,以免由于迭代參數更新而出現災難性地遺忘的情況。然而,各個方法的比較是與現實應用程序隔離的,通常通過監視累積的測試集性能來判斷。封閉世界的假設仍然占主導地位。假設在部署過程中,一個模型保證會遇到來自與用于訓練的相同分布的數據。這帶來了一個巨大的挑戰,因為眾所周知,神經網絡會對未知的實例提供過于自信的錯誤預測,并在數據損壞的情況下崩潰。在這個工作我們認為值得注意的教訓來自開放數據集識別,識別的統計偏差以外的數據觀測數據集,和相鄰的主動學習領域,數據增量查詢等預期的性能收益最大化,這些常常在深度學習的時代被忽略。基于這些遺忘的教訓,我們提出了一個統一的觀點,以搭建持續學習,主動學習和開放集識別在深度神經網絡的橋梁。我們的結果表明,這不僅有利于每個個體范式,而且突出了在一個共同框架中的自然協同作用。我們從經驗上證明了在減輕災難性遺忘、主動學習中查詢數據、選擇任務順序等方面的改進,同時在以前提出的方法失敗的地方展示了強大的開放世界應用。

//www.zhuanzhi.ai/paper/e5bee7a1e93a93ef97e1c

概述:

隨著實用機器學習系統的不斷成熟,社區發現了對持續學習[1]、[2]的興趣。與廣泛練習的孤立學習不同,在孤立學習中,系統的算法訓練階段被限制在一個基于先前收集的i.i.d數據集的單一階段,持續學習需要利用隨著時間的推移而到來的數據的學習過程。盡管這種范式已經在許多機器學習系統中找到了各種應用,回顧一下最近關于終身機器學習[3]的書,深度學習的出現似乎已經將當前研究的焦點轉向了一種稱為“災難性推理”或“災難性遺忘”的現象[4],[5],正如最近的評論[6],[7],[8],[9]和對深度持續學習[8],[10],[11]的實證調查所表明的那樣。后者是機器學習模型的一個特殊效應,機器學習模型貪婪地根據給定的數據群更新參數,比如神經網絡迭代地更新其權值,使用隨機梯度估計。當包括導致數據分布發生任何變化的不斷到達的數據時,學習到的表示集被單向引導,以接近系統當前公開的數據實例上的任何任務的解決方案。自然的結果是取代以前學到的表征,導致突然忘記以前獲得的信息。

盡管目前的研究主要集中在通過專門機制的設計來緩解持續深度學習中的這種遺忘,但我們認為,一種非常不同形式的災難性遺忘的風險正在增長,即忘記從過去的文獻中吸取教訓的危險。盡管在連續的訓練中保留神經網絡表示的努力值得稱贊,但除了只捕獲災難性遺忘[12]的度量之外,我們還高度關注了實際的需求和權衡,例如包括內存占用、計算成本、數據存儲成本、任務序列長度和訓練迭代次數等。如果在部署[14]、[15]、[16]期間遇到看不見的未知數據或小故障,那么大多數當前系統會立即崩潰,這幾乎可以被視為誤導。封閉世界的假設似乎無所不在,即認為模型始終只會遇到與訓練過程中遇到的數據分布相同的數據,這在真實的開放世界中是非常不現實的,因為在開放世界中,數據可以根據不同的程度變化,而這些變化是不現實的,無法捕獲到訓練集中,或者用戶能夠幾乎任意地向系統輸入預測信息。盡管當神經網絡遇到不可見的、未知的數據實例時,不可避免地會產生完全沒有意義的預測,這是眾所周知的事實,已經被暴露了幾十年了,但是當前的努力是為了通過不斷學習來規避這一挑戰。選擇例外嘗試解決識別不可見的和未知的示例、拒絕荒謬的預測或將它們放在一邊供以后使用的任務,通常總結在開放集識別的傘下。然而,大多數現有的深度連續學習系統仍然是黑盒,不幸的是,對于未知數據的錯誤預測、數據集的異常值或常見的圖像損壞[16],這些系統并沒有表現出理想的魯棒性。

除了目前的基準測試實踐仍然局限于封閉的世界之外,另一個不幸的趨勢是對創建的持續學習數據集的本質缺乏理解。持續生成模型(如[17]的作者的工作,[18],[19],[20],[21],[22]),以及類增量持續學習的大部分工作(如[12]中給出的工作,[23],[24],[25],[26],[27],[28])一般調查sequentialized版本的經過時間考驗的視覺分類基準如MNIST [29], CIFAR[30]或ImageNet[31],單獨的類只是分成分離集和序列所示。為了在基準中保持可比性,關于任務排序的影響或任務之間重疊的影響的問題通常會被忽略。值得注意的是,從鄰近領域的主動機器學習(半監督學習的一種特殊形式)中吸取的經驗教訓,似乎并沒有整合到現代的連續學習實踐中。在主動學習中,目標是學會在讓系統自己查詢接下來要包含哪些數據的挑戰下,逐步地找到與任務解決方案最接近的方法。因此,它可以被視為緩解災難性遺忘的對抗劑。當前的持續學習忙于維護在每個步驟中獲得的信息,而不是無休止地積累所有的數據,而主動學習則關注于識別合適的數據以納入增量訓練系統的補充問題。盡管在主動學習方面的早期開創性工作已經迅速識別出了通過使用啟發式[32]、[33]、[34]所面臨的強大應用的挑戰和陷阱,但后者在深度學習[35]、[36]、[37]、[38]的時代再次占據主導地位,這些挑戰將再次面臨。

在這項工作中,我們第一次努力建立一個原則性和鞏固的深度持續學習、主動學習和在開放的世界中學習的觀點。我們首先單獨回顧每一個主題,然后繼續找出在現代深度學習中似乎較少受到關注的以前學到的教訓。我們將繼續爭論,這些看似獨立的主題不僅從另一個角度受益,而且應該結合起來看待。在這個意義上,我們建議將當前的持續學習實踐擴展到一個更廣泛的視角,將持續學習作為一個總括性術語,自然地包含并建立在先前的主動學習和開放集識別工作之上。本文的主要目的并不是引入新的技術或提倡一種特定的方法作為通用的解決方案,而是對最近提出的神經網絡[39]和[40]中基于變分貝葉斯推理的方法進行了改進和擴展,以說明一種走向全面框架的可能選擇。重要的是,它作為論證的基礎,努力闡明生成建模作為深度學習系統關鍵組成部分的必要性。我們強調了在這篇論文中發展的觀點的重要性,通過實證證明,概述了未來研究的含義和有前景的方向。

付費5元查看完整內容

知識圖譜補全是一類重要的問題。近年來基于圖神經網絡的知識圖譜表示得到了很多關注。這邊綜述論文總結了圖神經網絡知識圖譜補全的工作,值得查看!

摘要:知識圖譜在諸如回答問題和信息檢索等各種下游任務中越來越流行。然而,知識圖譜往往不完備,從而導致性能不佳。因此,人們對知識庫補全的任務很感興趣。最近,圖神經網絡被用來捕獲固有地存儲在這些知識圖譜中的結構信息,并被證明可以跨各種數據集實現SOTA性能。在這次綜述中,我們了解所提出的方法的各種優勢和弱點,并試圖在這一領域發現新的令人興奮的研究問題,需要進一步的調研。

知識庫是以關系三元組形式的事實信息的集合。每個關系三元組可以表示為(e1,r,e2),其中e1和e2是知識庫中的實體,r是e1和e2之間的關系。最受歡迎的知識庫表示方式是多關系圖,每個三元組(r e1, e2)是表示為有向邊從e1, e2與標簽r。知識圖譜被用于各種下游任務。

然而,由于知識庫是從文本中自動挖掘來填充的,它們通常是不完整的,因為不可能手動編寫所有事實,而且在提取過程中經常會出現不準確的情況。這種不準確性會導致各種下游任務的性能下降。因此,大量工作開發一種有效的工具來完成知識庫(KBs)方面,它可以在不需要額外知識的情況下自動添加新的事實。這個任務被稱為知識庫補全(或鏈接預測),其目標是解決諸如(e1,r,?)這樣的查詢。

第一種實現高效知識庫補全的方法是像TransE (Bordes et al.(2013))和TransH (Wang et al.(2014))這樣的加法模型,其中關系被解釋為隱藏實體表示的簡單翻譯。然后觀察到,諸如Distmult (Yang et al.(2015))和Complex (Trouillon et al.(2016))等乘法模型優于這些簡單的相加模型。與平移不同,旋轉(Sun等人(2019a))將關系定義為簡單的旋轉,這樣頭部實體就可以在復雜的嵌入空間中旋轉來匹配尾部實體,這已經被證明滿足了很多有用的語義屬性,比如關系的組合性。最近,引入了表達性更強的基于神經網絡的方法(如ConvE (Dettmers等人(2018))和ConvKB(Nguyen等人(2018)),其中評分函數與模型一起學習。然而,所有這些模型都獨立地處理每個三元組。因此,這些方法不能捕獲語義豐富的鄰域,從而產生低質量的嵌入。

圖已被廣泛用于可視化真實世界的數據。在將ML技術應用于圖像和文本方面已經取得了巨大進展,其中一些已成功應用于圖形(如Kipf和Welling(2017)、Hamilton等人(2017)、Velickovic等人(2018)。基于該方法的啟發,許多基于圖神經網絡的方法被提出用于KBC任務中獲取知識圖的鄰域。在這次調查中,我們的目的是研究這些工作。

付費5元查看完整內容

現實網絡由多種相互作用、不斷進化的實體組成,而現有的研究大多將其簡單地描述為特定的靜態網絡,而沒有考慮動態網絡的演化趨勢。近年來,動態網絡的特性跟蹤研究取得了重大進展,利用網絡中實體和鏈接的變化來設計網絡嵌入技術。與被廣泛提出的靜態網絡嵌入方法相比,動態網絡嵌入努力將節點編碼為低維密集表示,有效地保持了網絡結構和時間動態,有利于處理各種下游機器學習任務。本文對動態網絡嵌入問題進行了系統的研究,重點介紹了動態網絡嵌入的基本概念,首次對現有的動態網絡嵌入技術進行了分類,包括基于矩陣分解的、基于躍格的、基于自動編碼器的、基于神經網絡的等嵌入方法。此外,我們仔細總結了常用的數據集和各種各樣的后續任務,動態網絡嵌入可以受益。在此基礎上,提出了動態嵌入模型、大規模動態網絡、異構動態網絡、動態屬性網絡、面向任務的動態網絡嵌入以及更多的嵌入空間等現有算法面臨的挑戰,并提出了未來可能的研究方向。

付費5元查看完整內容

隨著web技術的發展,多模態或多視圖數據已經成為大數據的主要流,每個模態/視圖編碼數據對象的單個屬性。不同的模態往往是相輔相成的。這就引起了人們對融合多模態特征空間來綜合表征數據對象的研究。大多數現有的先進技術集中于如何融合來自多模態空間的能量或信息,以提供比單一模態的同行更優越的性能。最近,深度神經網絡展示了一種強大的架構,可以很好地捕捉高維多媒體數據的非線性分布,對多模態數據自然也是如此。大量的實證研究證明了深多模態方法的優勢,從本質上深化了多模態深特征空間的融合。在這篇文章中,我們提供了從淺到深空間的多模態數據分析領域的現有狀態的實質性概述。在整個調查過程中,我們進一步指出,該領域的關鍵要素是多模式空間的協作、對抗性競爭和融合。最后,我們就這一領域未來的一些方向分享我們的觀點。

付費5元查看完整內容

當對大量的標記數據集合(如ImageNet)進行訓練時,深度神經網絡展示了它們在特殊監督學習任務(如圖像分類)上的卓越表現。然而,創建這樣的大型數據集需要大量的資源、時間和精力。這些資源在很多實際案例中可能無法獲得,限制了許多深度學習方法的采用和應用。為了尋找數據效率更高的深度學習方法,以克服對大型標注數據集的需求,近年來,我們對半監督學習應用于深度神經網絡的研究興趣日益濃厚,通過開發新的方法和采用現有的半監督學習框架進行深度學習設置。在本文中,我們從介紹半監督學習開始,對深度半監督學習進行了全面的概述。然后總結了在深度學習中占主導地位的半監督方法。

付費5元查看完整內容

最新的技術進步提高了交通運輸的質量。新的數據驅動方法為所有基于控制的系統(如交通、機器人、物聯網和電力系統)帶來了新的研究方向。將數據驅動的應用與運輸系統相結合在最近的運輸應用程序中起著關鍵的作用。本文綜述了基于深度強化學習(RL)的交通控制的最新應用。其中,詳細討論了基于深度RL的交通信號控制(TSC)的應用,這在文獻中已經得到了廣泛的研究。綜合討論了TSC的不同問題求解方法、RL參數和仿真環境。在文獻中,也有一些基于深度RL模型的自主駕駛應用研究。我們的調查廣泛地總結了這一領域的現有工作,并根據應用程序類型、控制模型和研究的算法對它們進行了分類。最后,我們討論了基于深度可編程邏輯語言的交通應用所面臨的挑戰和有待解決的問題。

付費5元查看完整內容

題目: Meta-Learning in Neural Networks: A Survey

簡介: 近年來,元學習領域的興趣急劇上升。與使用固定學習算法從頭解決給定任務的傳統AI方法相反,元學習旨在根據多次學習事件的經驗來改善學習算法本身。這種范例為解決深度學習的許多傳統挑戰提供了機會,包括數據和計算瓶頸以及泛化的基本問題。在本次調查中,我們描述了當代的元學習環境。我們首先討論元學習的定義,并將其相對于相關領域(例如轉移學習,多任務學習和超參數優化)進行定位。然后,我們提出了一種新的分類法,該分類法為當今的元學習方法提供了更為全面的細分。我們調查了元學習的有希望的應用程序和成功案例,包括,強化學習和架構搜索。最后,我們討論了未來研究的突出挑戰和有希望的領域。

付費5元查看完整內容
北京阿比特科技有限公司