眾包是一種計算范式,在這種范式中,人類積極參與計算任務,特別是那些本質上人類比計算機更容易完成的任務。空間眾包是移動互聯網和共享經濟時代眾包中日益流行的一種,任務是時空的,必須在特定的地點和時間完成。事實上,空間眾包激發了最近一系列的產業成功,包括城市服務的共享經濟(Uber和Gigwalk)和時空數據收集(OpenStreetMap和Waze)。本調查深入探討了空間眾包的獨特性帶來的挑戰和技術。特別地,我們確定了空間眾包的四個核心算法問題: (1)任務分配,(2)質量控制,(3)激勵機制設計,(4)隱私保護。我們對上述四個問題的現有研究進行了全面和系統的回顧。我們還分析了具有代表性的空間眾包應用程序,并解釋了它們是如何通過這四個技術問題實現的。最后,我們討論了未來空間眾包研究和應用中需要解決的開放問題。
當前自然語言處理的發展為低資源語言和領域提供了挑戰和機遇。眾所周知,深度神經網絡需要大量的訓練數據,而這些數據在資源貧乏的情況下可能無法得到。然而,也有越來越多的工作來提高低資源環境下的性能。基于對神經模型的基本改變和目前流行的預訓練和微調范式,我們概述了低資源自然語言處理的有前途的方法。在討論了低資源場景的定義和數據可用性的不同維度之后,我們接著研究了在訓練數據稀少時支持學習的方法。這包括創建附加標簽數據的機制,如數據增強和遠程監督,以及轉移學習設置,以減少對目標監督的需要。調查結束時,簡要地看了一下在非NLP機器學習社區中建議的方法,這些方法在資源少的情況下可能對NLP有益。
人工智能(AI)為改善私人和公共生活提供了很多機會,以自動化的方式在大型數據中發現模式和結構是數據科學的核心組件,目前驅動著計算生物學、法律和金融等不同領域的應用發展。然而,這種高度積極的影響也伴隨著重大的挑戰:我們如何理解這些系統所建議的決策,以便我們能夠信任它們?在這個報告中,我們特別關注數據驅動的方法——特別是機器學習(ML)和模式識別模型——以便調查和提取結果和文獻觀察。通過注意到ML模型越來越多地部署在廣泛的業務中,可以特別理解本報告的目的。然而,隨著方法的日益普及和復雜性,業務涉眾對模型的缺陷、特定數據的偏差等越來越關注。類似地,數據科學從業者通常不知道來自學術文獻的方法,或者可能很難理解不同方法之間的差異,所以最終使用行業標準,比如SHAP。在這里,我們進行了一項調查,以幫助行業從業者(以及更廣泛的數據科學家)更好地理解可解釋機器學習領域,并應用正確的工具。我們后面的章節將圍繞一位公認的數據科學家展開敘述,并討論她如何通過提出正確的問題來解釋模型。
近年來,圖神經網絡(GNNs)由于具有建模和從圖結構數據中學習的能力,在機器學習領域得到了迅猛發展。這種能力在數據具有內在關聯的各種領域具有很強的影響,而傳統的神經網絡在這些領域的表現并不好。事實上,正如最近的評論可以證明的那樣,GNN領域的研究已經迅速增長,并導致了各種GNN算法變體的發展,以及在化學、神經學、電子或通信網絡等領域的突破性應用的探索。然而,在目前的研究階段,GNN的有效處理仍然是一個開放的挑戰。除了它們的新穎性之外,由于它們依賴于輸入圖,它們的密集和稀疏操作的組合,或者在某些應用中需要伸縮到巨大的圖,GNN很難計算。在此背景下,本文旨在做出兩大貢獻。一方面,從計算的角度對GNNs領域進行了綜述。這包括一個關于GNN基本原理的簡短教程,在過去十年中該領域發展的概述,以及在不同GNN算法變體的多個階段中執行的操作的總結。另一方面,對現有的軟硬件加速方案進行了深入分析,總結出一種軟硬件結合、圖感知、以通信為中心的GNN加速方案。
The Elements of End-to-end Deep Face Recognition: A Survey of Recent Advances
人臉識別是計算機視覺領域中最基本、最長期存在的研究課題之一。隨著深度卷積神經網絡和大規模數據集的發展,深度人臉識別取得了顯著的進展,并在實際應用中得到了廣泛的應用。以自然圖像或視頻幀作為輸入,端到端深度人臉識別系統輸出人臉特征進行識別。為了實現這一目標,整個系統通常由三個關鍵要素構建:人臉檢測、人臉預處理和人臉表示。人臉檢測在圖像或幀中定位人臉。然后,對人臉進行預處理,將人臉標定為標準視圖,并將其裁剪為標準化像素大小。最后,在人臉表示階段,從預處理后的人臉中提取識別特征進行識別。深度卷積神經網絡滿足了這三個要素。摘要隨著深度學習技術的蓬勃發展,端到端深度人臉識別技術的能力得到了極大的提高,本文對端到端深度人臉識別技術中各個方面的最新進展進行了綜述。首先,我們介紹端到端深度人臉識別的概述,如前所述,它包括人臉檢測、人臉預處理和人臉表示。然后,我們分別回顧了基于深度學習的每個元素的進展,包括許多方面,如最新的算法設計、評估指標、數據集、性能比較、存在的挑戰和未來的研究方向。我們希望這一調查可以為我們更好地理解端到端人臉識別的大圖和更系統的探索帶來有益的想法。
當前的深度學習研究以基準評價為主。如果一種方法在專門的測試集上有良好的經驗表現,那么它就被認為是有利的。這種心態無縫地反映在連續學習的重現領域,在這里研究的是持續到達的基準數據集。核心挑戰是如何保護之前獲得的表示,以免由于迭代參數更新而出現災難性地遺忘的情況。然而,各個方法的比較是與現實應用程序隔離的,通常通過監視累積的測試集性能來判斷。封閉世界的假設仍然占主導地位。假設在部署過程中,一個模型保證會遇到來自與用于訓練的相同分布的數據。這帶來了一個巨大的挑戰,因為眾所周知,神經網絡會對未知的實例提供過于自信的錯誤預測,并在數據損壞的情況下崩潰。在這個工作我們認為值得注意的教訓來自開放數據集識別,識別的統計偏差以外的數據觀測數據集,和相鄰的主動學習領域,數據增量查詢等預期的性能收益最大化,這些常常在深度學習的時代被忽略。基于這些遺忘的教訓,我們提出了一個統一的觀點,以搭建持續學習,主動學習和開放集識別在深度神經網絡的橋梁。我們的結果表明,這不僅有利于每個個體范式,而且突出了在一個共同框架中的自然協同作用。我們從經驗上證明了在減輕災難性遺忘、主動學習中查詢數據、選擇任務順序等方面的改進,同時在以前提出的方法失敗的地方展示了強大的開放世界應用。****
自動駕駛一直是人工智能應用中最活躍的領域。幾乎在同一時間,深度學習的幾位先驅取得了突破,其中三位(也被稱為深度學習之父)Hinton、Bengio和LeCun獲得了2019年ACM圖靈獎。這是一項關于采用深度學習方法的自動駕駛技術的綜述。我們研究了自動駕駛系統的主要領域,如感知、地圖和定位、預測、規劃和控制、仿真、V2X和安全等。由于篇幅有限,我們將重點分析幾個關鍵領域,即感知中的二維/三維物體檢測、攝像機深度估計、數據、特征和任務級的多傳感器融合、車輛行駛和行人軌跡的行為建模和預測。
最新的技術進步提高了交通運輸的質量。新的數據驅動方法為所有基于控制的系統(如交通、機器人、物聯網和電力系統)帶來了新的研究方向。將數據驅動的應用與運輸系統相結合在最近的運輸應用程序中起著關鍵的作用。本文綜述了基于深度強化學習(RL)的交通控制的最新應用。其中,詳細討論了基于深度RL的交通信號控制(TSC)的應用,這在文獻中已經得到了廣泛的研究。綜合討論了TSC的不同問題求解方法、RL參數和仿真環境。在文獻中,也有一些基于深度RL模型的自主駕駛應用研究。我們的調查廣泛地總結了這一領域的現有工作,并根據應用程序類型、控制模型和研究的算法對它們進行了分類。最后,我們討論了基于深度可編程邏輯語言的交通應用所面臨的挑戰和有待解決的問題。
COVID-19大流行在全球蔓延,已引發迫切需要為抗擊對人類人口的巨大威脅作出貢獻。計算機視覺作為人工智能的一個子領域,最近在解決醫療保健中的各種復雜問題方面取得了成功,并有可能在控制COVID-19的斗爭中做出貢獻。為了響應這一號召,計算機視覺研究人員正在試驗他們的知識庫,以設計有效的方法來應對COVID-19的挑戰,并為全球社會服務。新的貢獻每天都在分享。它促使我們回顧最近的工作,收集有關現有研究資源的信息和對未來研究方向的指示。我們想把它提供給計算機視覺研究社區,以節省他們寶貴的時間。本調查報告旨在對計算機視覺與COVID-19大流行對抗的現有文獻進行初步綜述。
題目: A survey of deep learning techniques for autonomous driving
簡介: 本文目的是研究自動駕駛中深度學習技術的最新技術。首先介紹基于AI的自動駕駛架構、CNN和RNN、以及DRL范例。這些方法為駕駛場景感知、路徑規劃、行為決策和運動控制算法奠定基礎。該文研究深度學習方法構建的模塊化“感知-規劃-執行”流水線以及將傳感信息直接映射到轉向命令的端到端系統。此外,設計自動駕駛AI架構遇到的當前挑戰,如安全性、訓練數據源和計算硬件等也進行了討論。該工作有助于深入了解深度學習和自動駕駛AI方法的優越性和局限性,并協助系統的設計選擇。