亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

COVID-19大流行在全球蔓延,已引發迫切需要為抗擊對人類人口的巨大威脅作出貢獻。計算機視覺作為人工智能的一個子領域,最近在解決醫療保健中的各種復雜問題方面取得了成功,并有可能在控制COVID-19的斗爭中做出貢獻。為了響應這一號召,計算機視覺研究人員正在試驗他們的知識庫,以設計有效的方法來應對COVID-19的挑戰,并為全球社會服務。新的貢獻每天都在分享。它促使我們回顧最近的工作,收集有關現有研究資源的信息和對未來研究方向的指示。我們想把它提供給計算機視覺研究社區,以節省他們寶貴的時間。本調查報告旨在對計算機視覺與COVID-19大流行對抗的現有文獻進行初步綜述。

付費5元查看完整內容

相關內容

計算機視覺是一門研究如何使機器“看”的科學,更進一步的說,就是是指用攝影機和電腦代替人眼對目標進行識別、跟蹤和測量等機器視覺,并進一步做圖形處理,使電腦處理成為更適合人眼觀察或傳送給儀器檢測的圖像。作為一個科學學科,計算機視覺研究相關的理論和技術,試圖建立能夠從圖像或者多維數據中獲取‘信息’的人工智能系統。

知識薈萃

精品入門和進階教程、論文和代碼整理等

更多

查看相關VIP內容、論文、資訊等

為了對抗COVID-19,臨床醫生和科學家都需要查閱大量相關的文獻生物醫學知識,了解其發病機制和相關的生物學功能。我們開發了全新的、全面的知識發現框架COVID-KG,它利用新的語義表示和外部本體來表示輸入文獻數據中的文本和圖像,然后進行各種提取組件來提取細粒度的多媒體知識元素(實體、關系和事件)。然后,我們利用構建的多媒體信息庫進行問題回答和報告生成,并以藥物再利用作為案例研究。我們的框架還提供了詳細的上下文句子、子圖和知識子圖作為證據。所有數據、KGs、資源和共享服務都是公開可用的。

付費5元查看完整內容

【導讀】知識蒸餾是一種典型的模型壓縮和加速方法,在很多應用場景對此有需求。來自悉尼大學的學者發布了《知識蒸餾》的綜述論文,值的關注。

//arxiv.org/abs/2006.05525

近年來,深度神經網絡在工業和學術界取得了巨大的成功,特別是在視覺識別和神經語言處理方面的應用。深度學習的巨大成功,主要歸功于其巨大的可擴展性,既有大規模的數據樣本,也有數十億的模型參數。然而,在資源有限的設備如移動電話和嵌入式設備上部署這些笨重的深模型也帶來了巨大的挑戰,不僅因為計算量大,而且存儲空間大。為此,開發了各種模型壓縮和加速技術,如剪枝、量化和神經結構搜索。知識蒸餾是一種典型的模型壓縮和加速方法,旨在從大教師模型中學習小學生模型,越來越受到社會的關注。本文從知識分類、訓練方案、知識提取算法以及應用等方面對知識提取進行了綜述。此外,我們簡要回顧了知識提煉的挑戰,并對未來的研究課題提供了一些見解。

概述

在過去的幾年里,深度學習在人工智能領域取得了巨大的成功,包括計算機視覺(Krizhevsky et al., 2012)、強化學習(Silver et al., 2016)和神經語言處理(Devlin et al., 2018)的各種應用。借助最近許多技術,包括殘差連接(He et al., 2016)和批處理歸一化(Ioffe and Szegedy, 2015),我們可以輕松地在強大的GPU或TPU集群上訓練具有數千層的深度模型。例如,只需不到10分鐘就可以在數百萬張圖像的數據集上訓練ResNet模型(Deng et al. , 2009 ; Sun et al. , 2019); 訓練一個強大的BERT模型進行語言理解只需要不到一個半小時 (Devlin et al., 2018; You et al., 2019).。雖然大規模的深度模型帶來了令人難以置信的性能,但其龐大的計算復雜度和海量的存儲需求給實時應用的部署帶來了巨大的挑戰,特別是對于那些資源有限的設備,比如嵌入式人臉識別系統和自動駕駛汽車。

為了開發高效的深度模型,最近的工作通常集中在1)基于深度可分離卷積的高效基本塊,如MobileNets (Howard et al. , 2017 ; Sandler et al. , 2018) 和ShuffleNets (Zhang et al. , 2018a ; Ma et al. , 2018); (2)模型壓縮和加速技術,主要包括以下類別(Cheng et al., 2018)。

  • 參數修剪和共享: 這些方法主要是去除深層神經網絡中不重要的參數,去除的參數對性能影響不大。該類別又分為模型量化(Wu et al., 2016)和二值化(Courbariaux et al., 2015)、參數共享(Han et al., 2015)和結構矩陣(Sindhwani et al., 2015)。

  • 低秩分解: 這些方法通過矩陣/張量分解來探索深度神經網絡參數的冗余性(Denton et al., 2014)。

  • 傳輸/壓縮卷積濾波器: 這些方法通過傳輸/壓縮卷積濾波器來減少不必要的參數(Zhai et al., 2016)。

  • 知識蒸餾(KD): 這些方法通常將知識從一個較大的深度神經網絡提取到一個較小的網絡中(Hinton et al., 2015)。

對模型壓縮和加速的全面回顧超出了本文涵蓋的范圍,而我們關注的是知識蒸餾,這已經得到越來越多的研究社區關注。在實踐中,大型深度模型往往會取得非常好的性能,因為過參數化提高了泛化性能 (Brutzkus and Globerson, 2019; Allen-Zhu et al., 2019; Arora et al., 2018)。知識蒸餾通過在大教師模型的監督下學習小學生模型,從而探究深度模型中參數的冗余性,用于推理(Bucilua et al., 2006; Ba and Caruana, 2014; Hinton et al., 2015; Urban et al., 2016),而知識蒸餾的關鍵問題是如何將知識從大教師模型轉移到小學生模型。一般情況下,知識蒸餾的師生框架如圖1所示。雖然在實踐中取得了巨大的成功,但在理論或經驗上理解知識提煉方法的工作并不多(Cheng et al., 2020; Phuong and Lampert, 2019; Cho and Hariharan, 2019)。具體來說,為了理解知識蒸餾的工作機制,Phuong和Lampert在深度線性分類器的情況下,從理論上證明了學習精餾學生網絡快速收斂的泛化邊界(Phuong和Lampert, 2019)。這一解釋理論上回答了學生學習的內容和速度,并揭示了決定蒸餾成功的因素。蒸餾的成功依賴于數據幾何、蒸餾目標的優化偏差和學生分類器的強單調性。Cheng等人量化了來自深度神經網絡中間層的視覺概念知識,以解釋知識蒸餾(Cheng et al., 2020)。Cho和Hariharan對知識蒸餾的有效性進行了詳細的實證分析(Cho和Hariharan, 2019)。實證分析發現,由于模型容量的差距,較大的模型不一定是更好的老師(Mirzadeh et al., 2019),而精餾會對學生的學習產生不利影響。據我們所知,(Cho and Hariharan, 2019)忽略了對教師和學生之間不同知識、不同蒸餾和相互感情的經驗評價。此外,通過實證分析,從標簽平滑、教師和先驗對最優輸出層幾何形狀的預測置信度等角度探討了對知識蒸餾的理解(Tang et al., 2020)。

模型壓縮的知識蒸餾思想與人類的學習方案非常相似。為此,近年來的知識蒸餾方法不僅擴展到了師生學習(Hinton et al., 2015),還擴展到了相互學習(Zhang et al., 2018b)、自學(Yuan et al., 2019)、輔助教學(Mirzadeh et al., 2019)和終身學習(Zhai et al., 2019)。知識蒸餾的大部分擴展集中于壓縮深度神經網絡,因此輕量級的學生網絡可以很容易地部署在諸如視覺識別、語音識別和自然語言處理(NLP)等應用程序中。此外,知識蒸餾中從一個模型到另一個模型的知識轉移符號也可以擴展到其他任務,如對抗攻擊(Papernot et al., 2016b)、數據增強(Lee et al., 2019a;Gordon和Duh, 2019),數據隱私和安全(Wang等,2019a)。

本文對知識蒸餾的研究進行了綜述。本綜述的主要目的是1) 全面概述知識蒸餾,包括動機的背景,基本符號和公式,以及幾種典型知識,蒸餾和算法; 2) 全面回顧知識蒸餾的最新進展,包括理論、應用和在不同現實場景下的擴展; 3) 從知識遷移的不同角度,包括不同類型的知識、訓練方案、知識提煉算法/結構和應用,闡述知識蒸餾的一些挑戰和見解。本文組織概況如圖2所示。具體地說,本文的其余部分結構如下。第二節給出了知識蒸餾的重要概念和常規模型。知識和蒸餾的種類分別在第3節和第4節中進行了總結。現有的關于知識提煉中的師生結構的研究在第5部分進行了說明。第6節對許多最新的知識蒸餾方法進行了全面的總結和介紹。知識蒸餾的廣泛應用將在第7節的不同方面加以說明。第8節討論了知識蒸餾中具有挑戰性的問題和未來的方向。最后,在第9節給出結論。

付費5元查看完整內容

最新的技術進步提高了交通運輸的質量。新的數據驅動方法為所有基于控制的系統(如交通、機器人、物聯網和電力系統)帶來了新的研究方向。將數據驅動的應用與運輸系統相結合在最近的運輸應用程序中起著關鍵的作用。本文綜述了基于深度強化學習(RL)的交通控制的最新應用。其中,詳細討論了基于深度RL的交通信號控制(TSC)的應用,這在文獻中已經得到了廣泛的研究。綜合討論了TSC的不同問題求解方法、RL參數和仿真環境。在文獻中,也有一些基于深度RL模型的自主駕駛應用研究。我們的調查廣泛地總結了這一領域的現有工作,并根據應用程序類型、控制模型和研究的算法對它們進行了分類。最后,我們討論了基于深度可編程邏輯語言的交通應用所面臨的挑戰和有待解決的問題。

付費5元查看完整內容

決策理論是現代人工智能和經濟學的基礎。本課程主要從統計學的角度,也從哲學的角度,為決策理論打下堅實的基礎。本課程有兩個目的:

  • 深入了解統計決策理論、實驗設計的自動化方法,并將其與人類決策聯系起來。
  • 通過開發算法和智能代理的實驗,將該理論應用到強化學習和人工智能的實際問題中。

課程可分為兩部分。

  • 第一部分,我們介紹了主觀概率和效用的概念,以及如何用它們來表示和解決決策問題。然后討論未知參數的估計和假設檢驗。最后,我們討論了順序抽樣、順序實驗,以及更一般的順序決策。

  • 第二部分是不確定性下的決策研究,特別是強化學習和專家咨詢學習。首先,我們研究幾個有代表性的統計模型。然后,我們給出了使用這些模型做出最優決策的算法的概述。最后,我們來看看學習如何根據專家的建議來行動的問題,這個領域最近在在線廣告、游戲樹搜索和優化方面有很多應用。

付費5元查看完整內容

隨著高計算設備的發展,深度神經網絡(DNNs)近年來在人工智能(AI)領域得到了廣泛的應用。然而,之前的研究表明,DNN在經過策略性修改的樣本(稱為對抗性樣本)面前是脆弱的。這些樣本是由一些不易察覺的擾動產生的,但可以欺騙DNN做出錯誤的預測。受圖像DNNs中生成對抗性示例的流行啟發,近年來出現了針對文本應用的攻擊DNNs的研究工作。然而,現有的圖像擾動方法不能直接應用于文本,因為文本數據是離散的。在這篇文章中,我們回顧了針對這一差異的研究工作,并產生了關于DNN的電子對抗實例。我們對這些作品進行了全面的收集、選擇、總結、討論和分析,涵蓋了所有相關的信息,使文章自成一體。最后,在文獻回顧的基礎上,我們提出了進一步的討論和建議。

付費5元查看完整內容

COVID-19大流行繼續對全球人口的健康和福祉產生破壞性影響。與COVID-19作斗爭的一個關鍵步驟是對受感染患者進行有效的篩查,其中最關鍵的篩查方法之一是使用胸片進行放射成像。基于此,許多基于深度學習的人工智能(AI)系統被提出,結果顯示在使用胸片圖像檢測COVID-19感染患者的準確性方面很有希望。然而,據作者所知,這些開發的人工智能系統是封閉的,研究社區無法對其進行更深入的理解和擴展,也無法對公眾進行訪問和使用。因此,在本研究中,我們引入COVID-Net,這是一種針對胸片圖像中COVID-19的檢測而設計的深度卷積神經網絡,它是開源的,并且對公眾開放。我們還描述了用于訓練COVID-Net的胸片數據集,我們將其稱為COVIDx,它由來自兩個開放訪問數據庫的2839例患者的5941張前后胸片圖像組成。此外,我們研究COVID- net如何使用可解釋性方法進行預測,以獲得與COVID病例相關的關鍵因素的更深入的了解,從而幫助臨床醫生改進篩選。決不生產就緒的解決方案,希望開放獲取COVID-Net,隨著描述構建開源COVIDx數據集,將杠桿,建立由研究人員和公民數據科學家們還都加快發展的高度準確的實際深度學習解決方案檢測COVID-19病例和加速處理那些最需要的人。

付費5元查看完整內容

題目: 新型冠狀病毒肺炎流行病學特征的最新認識

簡介: 中華預防醫學會新型冠狀病毒肺炎防控專家組在文獻回顧和專家研討基礎上,形成了對新型冠狀病毒肺炎流行病學特征的最新認識。病毒最初的來源為武漢市華南海鮮市場,穿山甲為潛在的動物宿主。目前傳染源主要是新型冠狀病毒感染的患者,隱性感染者也可能成為傳染源,主要經呼吸道飛沫傳播和接觸傳播,人群普遍易感。平均潛伏期5.2 d,流行初期基本再生數(R0)為2.2。患者多數表現為普通型和輕型。病死率為2.38%,合并基礎疾病的老年男性病死率較高。新型冠狀病毒肺炎的防控要點包括完善疫情信息監測、隔離診治傳染源、加快疑似病例診斷、規范密切接觸者管理、重視聚集性疫情防控和院內感染防控、關注返程人員的疫情防控和加強社區防控。

新型冠狀病毒肺炎(novel coronavirus pneumonia,NCP),簡稱新冠肺炎,其病原體為新型冠狀病毒。WHO已將該疾病正式命名為2019冠狀病毒病(corona virus disease 2019,COVID-19)。自2019年12月12日首例患者入院以來,截至2020年2月10日,我國累計報告新型冠狀病毒肺炎確診病例42 708例,累計死亡1 017例[1]。其中,湖北省和武漢市的累計確診病例分別占全國的74.3%和43.2%,是疫情防控的重中之重。同時,中國以外有24個國家和地區報告確診病例395例,累計死亡1例[2]。中華預防醫學會新型冠狀病毒肺炎防控專家組基于文獻綜述、專家研討等方法,形成了對新型冠狀病毒肺炎流行病學特征的最新認識,以便讀者能不斷積累對這個新發傳染病的認識,提高防控意識,共同應對疫情。

內容概述:

  • 傳染源
  • 傳播途徑
  • 易感人群
  • 流行特征
  • 臨床特征
  • 防控要點
付費5元查看完整內容

簡介

近年來,由于機器學習(ML)/深度學習(DL)技術使用多維醫學圖像,在從一維心臟信號的心臟驟停的預測到計算機輔助診斷(CADx)的各種醫療保健應用中的卓越性能,見證了機器學習(ML)/深度學習(DL)技術的廣泛采用。盡管ML / DL的性能令人印象深刻,但對于ML / DL在醫療機構中的健壯性仍然存有疑慮(由于涉及眾多安全性和隱私問題,傳統上認為ML / DL的挑戰性很大),尤其是鑒于最近的研究結果表明ML / DL容易受到對抗性攻擊。在本文中,我們概述了醫療保健中各個應用領域,這些領域從安全性和隱私性的角度利用了這些技術,并提出了相關的挑戰。此外,我們提出了潛在的方法來確保醫療保健應用程序的安全和隱私保護機器學習。最后,我們提供了有關當前研究挑戰的見解以及未來研究的有希望的方向。

內容大綱

付費5元查看完整內容
北京阿比特科技有限公司