亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

隨著高計算設備的發展,深度神經網絡(DNNs)近年來在人工智能(AI)領域得到了廣泛的應用。然而,之前的研究表明,DNN在經過策略性修改的樣本(稱為對抗性樣本)面前是脆弱的。這些樣本是由一些不易察覺的擾動產生的,但可以欺騙DNN做出錯誤的預測。受圖像DNNs中生成對抗性示例的流行啟發,近年來出現了針對文本應用的攻擊DNNs的研究工作。然而,現有的圖像擾動方法不能直接應用于文本,因為文本數據是離散的。在這篇文章中,我們回顧了針對這一差異的研究工作,并產生了關于DNN的電子對抗實例。我們對這些作品進行了全面的收集、選擇、總結、討論和分析,涵蓋了所有相關的信息,使文章自成一體。最后,在文獻回顧的基礎上,我們提出了進一步的討論和建議。

付費5元查看完整內容

相關內容

 機器學習的一個分支,它基于試圖使用包含復雜結構或由多重非線性變換構成的多個處理層對數據進行高層抽象的一系列算法。

知識薈萃

精品入門和進階教程、論文和代碼整理等

更多

查看相關VIP內容、論文、資訊等

基于協同過濾(CF)的潛在因素模型(LFM),如矩陣分解(MF)和深度CF方法,由于其良好的性能和推薦精度,在現代推薦系統(RS)中得到了廣泛的應用。盡管近年來取得了巨大的成功,但事實表明,這些方法易受對抗性例子的影響,即,這是一種微妙但非隨機的擾動,旨在迫使推薦模型產生錯誤的輸出。這種行為的主要原因是,用于LFM訓練的用戶交互數據可能會受到惡意活動或用戶誤操作的污染,從而導致不可預測的自然噪聲和危害推薦結果。另一方面,研究表明,這些最初設想用于攻擊機器學習應用程序的系統可以成功地用于增強它們對攻擊的魯棒性,以及訓練更精確的推薦引擎。在這方面,本調查的目標有兩方面:(i)介紹關于AML-RS的最新進展,以保障AML-RS的安全性。(ii)展示了AML在生成對抗網絡(GANs)中的另一個成功應用,生成對抗網絡(GANs)使用了AML學習的核心概念(即用于生成應用程序。在這項綜述中,我們提供了一個詳盡的文獻回顧60篇文章發表在主要的RS和ML雜志和會議。這篇綜述為RS社區提供了參考,研究RS和推薦模型的安全性,利用生成模型來提高它們的質量。

付費5元查看完整內容

盡管生成式對抗網絡(GAN)的歷史并不長,但它已被廣泛地研究和用于各種任務,包括其最初的目的,即合成樣品的生成。然而,將GAN用于具有不同神經網絡結構的不同數據類型,由于其在訓練方面的局限性,使得模型很容易出現混亂。這種臭名昭著的GAN訓練是眾所周知的,并已在許多研究中提出。因此,為了使GAN的訓練更加穩定,近年來提出了許多正則化方法。本文綜述了近年來引入的正則化方法,其中大部分是近三年來發表的。具體地說,我們關注的是那些可以被普遍使用的方法,而不管神經網絡體系結構如何。根據其運算原理將其分為若干組,并分析了各方法之間的差異。此外,為了提供使用這些方法的實際知識,我們調研了在最先進的GANs中經常使用的流行方法。此外,我們還討論了現有方法的局限性,并提出了未來的研究方向。

付費5元查看完整內容

智能視頻監控(IVS)是當前計算機視覺和機器學習領域的一個活躍研究領域,為監控操作員和取證視頻調查者提供了有用的工具。人的再識別(PReID)是IVS中最關鍵的問題之一,它包括識別一個人是否已經通過網絡中的攝像機被觀察到。PReID的解決方案有無數的應用,包括檢索顯示感興趣的個體的視頻序列,甚至在多個攝像機視圖上進行行人跟蹤。文獻中已經提出了不同的技術來提高PReID的性能,最近研究人員利用了深度神經網絡(DNNs),因為它在類似的視覺問題上具有令人信服的性能,而且在測試時執行速度也很快。鑒于再識別解決方案的重要性和廣泛的應用范圍,我們的目標是討論在該領域開展的工作,并提出一項最先進的DNN模型用于這項任務的調查。我們提供了每個模型的描述以及它們在一組基準數據集上的評估。最后,我們對這些模型進行了詳細的比較,并討論了它們的局限性,為今后的研究提供了指導。

付費5元查看完整內容

【簡介】深度神經網絡(DNNs)在各項任務上都取得了不俗的表現。然而,最近的研究表明通過對輸入進行很小的擾動就可以輕易的騙過DNNs,這被稱作對抗式攻擊。作為DNNs在圖上的擴展,圖神經網絡(GNNs)也繼承了這一缺陷。對手通過修改圖中的一些邊等操作來改變圖的結構可以誤導GNNs作出錯誤的預測。這一漏洞已經引起了人們對在安全領域關鍵應用中采用GNNs的極大關注,并在近年來引起了越來越多的人的研究興趣。因此,對目前的圖對抗式攻擊和反制措施進行一個全面的梳理和回顧是相當有必要的。在這篇綜述中,我們對目前的攻擊和防御進行了分類,以及回顧了相關表現優異的模型。最后,我們開發了一個具有代表性算法的知識庫,該知識庫可以使我們進行相關的研究來加深我們對基于圖的攻擊和防御的理解。

付費5元查看完整內容

簡介:

如今,深度學習已被廣泛應用于圖像分類和圖像識別的問題中,取得了令人滿意的實際效果,成為許多人 工智能應用的關鍵所在.在對于模型準確率的不斷探究中,研究人員在近期提出了“對抗樣本”這一概念.通過在原有 樣本中添加微小擾動的方法,成功地大幅度降低原有分類深度模型的準確率,實現了對于深度學習的對抗目的,同時 也給深度學習的攻方提供了新的思路,對如何開展防御提出了新的要求.在介紹對抗樣本生成技術的起源和原理的 基礎上,對近年來有關對抗樣本的研究和文獻進行了總結,按照各自的算法原理將經典的生成算法分成兩大類——全像素添加擾動和部分像素添加擾動.之后,以目標定向和目標非定向、黑盒測試和白盒測試、肉眼可見和肉眼不可見的二級分類標準進行二次分類.同時,使用 MNIST 數據集對各類代表性的方法進行了實驗驗證,以探究各種方法的優缺點.最后總結了生成對抗樣本所面臨的挑戰及其可以發展的方向,并就該技術的發展前景進行了探討.

內容簡介:

本文重點對生成對抗樣本的已有研究工作進行綜述,主要選取了近年來有代表性的或取得比較顯著效果的方法進行詳細的原理介紹和優缺點分析.按照其生成方式和原理的不同,分為全像素添加擾動和部分像素添 加擾動兩類.在此基礎上,根據目標是否定向、是否黑盒和是否肉眼可見這 3 個標準進行細分,將各類方法中的 代表性算法在統一數據集(MNIST)上進行測試,驗證并分析其優缺點,終總結提出未來的發展前景. 本文第 1 節主要介紹對抗樣本的基本概念和基礎知識,包括對抗樣本本身的定義、其延伸有關的相關概念 以及基本操作流程.第 2 節則指出對抗樣本是從深度學習中衍生出來的概念,同時介紹了對抗樣本有效性的評估方法.第 3 節則介紹對抗樣本的起源,說明了對抗樣本的產生契機和原理解釋.第 4 節介紹生成對抗樣本的發展狀況,以全像素添加擾動和部分像素添加擾動兩大類進行算法說明,同時總結生成方法中常用的數據集.第 5 節是對第 4 節中代表方法的實驗,結合對同一數據集的效果測試來說明各類方法的優缺點.通過這些優缺點,在 第 6 節中討論對抗樣本生成技術面臨的挑戰和前景預測.

目錄:

  • 1 簡 介

    • 1.1 樣本的定義
    • 1.2 相關概念
    • 1.3 基本操作流程
  • 2 前 傳

    • 2.1機器學習在分類問題中的運用
    • 2.2 深度學習在分類問題中的運用
    • 2.3 評估方法
  • 3 起源

    • 3.1 首次發現
    • 3.2 基本原理
  • 4 發 展

    • 4.1 分類方式及代表模型
    • 4.2 常用數據集
  • 5 實驗結果對比

  • 6 面臨挑戰與前景預測

付費5元查看完整內容

論文題目: Adversarial Attacks and Defenses in Images, Graphs and Text: A Review

簡介: 深度神經網絡(DNN)在不同領域的大量機器學習任務中取得了前所未有的成功。然而,對抗性例子的存在引起了人們對將深度學習應用于對安全性有嚴苛要求的應用程序的關注。因此,人們對研究不同數據類型(如圖像數據、圖數據和文本數據)上的DNN模型的攻擊和防御機制越來越感興趣。近期,來自密歇根州立大學的老師和同學們,對網絡攻擊的主要威脅及其成功應對措施進行系統全面的綜述。特別的,他們在這篇綜述中,針對性的回顧了三種流行數據類型(即、圖像數據、圖數據和文本數據)。

付費5元查看完整內容

隨著基于機器學習(ML)系統在醫學、軍事、汽車、基因組以及多媒體和社交網絡等多種應用中的廣泛應用,對抗式學習(AL)攻擊(adversarial learning attacks)有很大的潛在危害。此篇AL的綜述,針對統計分類器的攻擊的防御。在介紹了相關術語以及攻擊者和維護者的目標和可能的知識范圍后,我們回顧了最近在test-time evasion (TTE)、數據中毒(DP)和反向工程(RE)攻擊方面的工作,特別是針對這些攻擊的防御。在此過程中,我們將魯棒分類與異常檢測(AD)、無監督和基于統計假設的防御和無攻擊(no attack)假設的防御區分開來;我們識別了特定方法所需的超參數、其計算復雜性以及評估其性能的指標和質量。然后,我們深入挖掘,提供新的見解,挑戰傳統智慧,并針對尚未解決的問題,包括:1)穩健的分類與AD作為防御策略;2)認為攻擊的成功程度隨攻擊強度的增加而增加,這忽略了對AD的敏感性;3)test-time evasion (TTE)攻擊的小擾動:謬誤或需求?4)一般假設的有效性,即攻擊者知道要攻擊的示例的真實程度;5)黑、灰或白盒攻擊作為防御評估標準;6)基于查詢的RE對廣告防御的敏感性。 然后,我們給出了幾種針對TTE、RE和DP攻擊圖像的防御的基準比較。論文最后討論了持續的研究方向,包括檢測攻擊的最大挑戰,其目的不是改變分類決策,而是簡單地嵌入“假新聞”或其他虛假內容,而不被發現。

付費5元查看完整內容

異常檢測是一個在各個研究領域和應用領域內得到廣泛研究的重要問題。本研究的目的有兩個方面:首先,我們對基于深度學習的異常檢測的研究方法進行了系統全面的綜述。此外,我們還回顧了這些方法對不同應用領域異常的應用,并評估了它們的有效性。我們根據所采用的基本假設和方法,將最先進的研究技術分為不同的類別。在每一類中,我們概述了基本的異常檢測技術,以及它的變體,并給出了關鍵的假設,以區分正常行為和異常行為。對于我們介紹的每一類技術,我們還介紹了它們的優點和局限性,并討論了這些技術在實際應用領域中的計算復雜性。最后,我們概述了研究中的未決問題和采用這些技術時所面臨的挑戰。

付費5元查看完整內容
北京阿比特科技有限公司