流程工業是國民經濟的支柱產業,石化、化工、鋼鐵、有色等是典型的流程制造業。解決流程制造中資源、能源利用率和安全環保問題,亟需推動流程制造綠色化、低碳化、高端化、智能化發展。智能制造是我國實現制造強國的主攻方向,是提升制造業整體競爭力的核心技術。為實現流程工業的跨越式發展,需要將智能制造與流程工業的特點和目標相結合,充分利用大數據,將人工智能、移動互聯網、云計算等信息技術與流程工業物理資源深度融合,開發各種新功能來實現智能制造的目標。
本文在回顧流程工業生產全過程中現有決策、控制和運行管理框架的不足的基礎上,提出了一種流程工業智能制造新模式,即工業人工智能、工業互聯網與流程工業的深度融合。文章針對流程工業現有的由企業資源規劃、制造執行系統和過程控制系統組成的三層結構的發展現狀進行了總結,并對流程工業所采取的決策、控制和運營管理進行了分析;闡述了智能制造框架的含義,提出了基于人機協作的智能優化決策系統和智能自主控制系統的設想。最后,分析了在流程工業中成功部署智能制造所面臨的科學挑戰和關鍵技術。
“21世紀以來,隨著人工智能、大數據、云計算、物聯網等新一代信息技術的快速發展及應用,“智能制造”概念進一步深化。根據我國工信部2016年出臺的《智能制造發展規劃(2016-2020年)》中定義,“智能制造是基于新一代信息技術與先進制造技術深度融合,貫穿于設計、生產、管理、服務等制造活動各個環節,具有自感知、自決策、自執行、自適應、自學習等特征,旨在提高制造業質量、效益和核心競爭力的先進生產方式。””
根據上海市人工智能技術協會和商湯智能產業研究院聯合發布的《數字化轉型白皮書:數智技術驅動智能制造》,如今各國對“智能制造”的理解都不再局限于生產過程或單體智能,而是擴展到產業價值鏈的各個環節、包含企業活動的方方面面,也不再單方面強調數智技術本身的應用價值,而是更加重視數智技術與先進制造等跨領域技術的深度融合和實踐創新。
由數據驅動代替經驗驅動已成為產業數字化轉型的共識。如果將數據視為智能時代的“新石油”,那么數智技術即是鉆取和提煉“石油”價值的“煉油工廠”,使用數智技術廣泛獲取數據,進行深度學習,將海量原始數據加工為知識,并轉化為決策或行動來指導企業運行。
數智技術是推動產業數字化轉型不可或缺的關鍵技術,其應用價值主要體現在三個方面:
決策更及時:實時獲取場景/業務數據的自動反饋,結合智能化分析進行動態預測,代替人工經驗判斷,提升決策的準確性和及時性,例如基于設備狀態實時分析的故障預測和健康管理,或基于在線用戶數據的需求預測,加速產品創新和迭代周期等。
運營更精細:隨著產業數字化進程加速,所獲取的數據顆粒度越來越細、數據維度也更加豐富,由數據驅動的企業運營、管理會更加精細,例如基于用戶畫像的精準營銷,或對能源使用的實時監測和控制等。
應用更智能:智能化設備/應用輔助或取代人工崗位,并在應用過程中進行算法的自我迭代和優化,不斷提高決策水平,例如基于機器視覺的產品缺陷監測等。
盡管數智技術對產業數字化轉型的意義匪淺,但在實際落地過程中仍然存在一定挑戰:
數字化程度低,信息閉環難閉合:數據資產的積累是產業數字化轉型的重要前提,如何持續獲取數據,并將分布在不同系統、組織內的數據打通融合是企業數字化轉型的首要命題。目前,多數企業(尤其是中小企業)受限于資金和人才匱乏,對數智技術投入不足,導致企業數字化水平低,缺乏完善的信息網絡基礎設施;此外,由于缺少統一標準、接口和編碼體系,使得企業內外“數據孤島”叢立,無法實現互通、共享,導致企業使用數據規模、種類有限,信息閉環難閉合,海量數據的資產價值無法得到充分發揮。
跨界融合難度大,復合型人才缺乏:數字化轉型實際上是利用數智技術對企業流程再造的過程,需要既具備良好的數智技術素養,又能夠了解產業技術和發展規律的復合型人才。據清華大學互聯網發展和治理研究中心2020年對全球ICT人才調研統計,當前我國數智技術人才主要集中于科技行業,缺乏產業經驗和實踐背景,而產業IT人員總體對數智技術的認知不深,難以支撐產業數字化轉型需要。根據人力資源與社會保障部數據分析,2025年智能制造領域人才需求為900萬人,人才缺口預計達到450萬人。
不同產業差異大,規模效應難一朝形成:由于不同產業或產業中不同領域、不同企業之間存在技術、流程等差異巨大,數智技術在產業中的深入滲透須結合具體場景進行定制化開發,尚不存在一套放之四海而皆準的解決方案,這使得數智技術在產業互聯網中的應用很難像在消費互聯網時代一樣,短期建立規模效應、獲取巨大收益,而是需要與產業合作共進,在垂直領域中不斷積累解決問題的通用能力。
網絡安全問題不容忽視:隨著數智技術的應用推廣,網絡安全問題將成為數字化轉型過程中面臨的重要挑戰。一方面,傳統網絡安全系統跟不上數智技術應用和創新步伐;另一方面,數字化轉型帶來信息節點和信息總量爆發式增長,使得網絡攻擊的潛在損失“指數級”放大,對網絡安全技術提出更高要求。
流程工業是制造業的重要組成部分, 是國民經濟發展的重要基礎, 主要包括化工、冶金、石化等行業, 其安全高效的生產對國家而言具有重要的戰略意義. 然而, 流程工業物理化學變化反應復雜、流程間能質流嚴重耦合、多目標沖突、在線實驗風險大, 給生產流程系統建模與高效協同優化帶來極大困難, 嚴重制約了生產質量和資源利用率的進一步提升. 隨著信息技術與人工智能的發展, 建立虛實結合、協同優化運行的流程工業數字孿生生產線所需技術逐漸成熟, 其在流程工業的應用價值與潛力日益凸顯. 本文首先闡述數字孿生在流程工業應用的必要性與重要性, 并通過邊界定義法將數字孿生與信息物理系統(Cyber-physical system, CPS)、工業互聯網等概念進行對比分析,從而明確數字孿生的基本內涵與功能邊界. 其次描述流程工業抽象模型和數字孿生理論模型間的映射關系, 并分析了如何用數字孿生技術解決流程工業系統建模與高效協同優化的瓶頸問題. 最后, 從數字孿生系統構建的角度探討數字孿生發展的關鍵技術, 并以一條煉鐵生產線為例, 展示數字孿生技術在實際工業中的應用解決方案.
摘要:數據和知識是新一代信息技術與智能制造深度融合的基礎。然而,當前產品設計、制造、裝配和服務等過程中,數據及知識的存儲大多以傳統關系型數據庫為基礎,這導致了數據及知識的冗余性和搜索及推理的低效性。近年來,知識圖譜技術飛速發展起來,它本質上是基于語義網絡的思想,可以實現對現實世界的事物及其相互關系的形式化描述。該技術為智能制造領域數據及知識的關聯性表達和相關性搜索推理問題的解決帶來了可能性,因此其在智能制造的實現過程中扮演著越來越重要的角色。為了給知識圖譜在智能制造領域的應用提供理論支撐,總結了知識圖譜領域的研究進展;同時探索了知識圖譜在智能制造領域的3大類應用方向,共15小類應用前景,分析了在各個應用前景上與傳統方法的不同之處,應用過程中所需要使用的知識圖譜相關技術以及實施過程中所待突破的關鍵技術,希望可以為進一步展開針對知識圖譜在智能制造領域的研究提供啟發,同時為相關企業針對知識圖譜的實際應用提供參考;最后以數控車床故障分析為案例,驗證了知識圖譜在智能制造領域應用的有效性。
物聯網、云計算、人工智能等新一代信息技術的迅猛發展,帶來了制造業的新一輪突破,推動著制造系統向智能化方向發展,驅動著未來制造模式的創新[1]。其中數據和知識是實現制造業與新一代信息技術融合的基礎,是實現智能制造的保障。一方面,產品在其生命周期的各個階段將會產生海量工業數據和知識[2];另一方面,工業數據和知識是制造領域的信息化進程的必備資源,其中蘊含了大量有用的模式。然而,當前制造領域產品設計、制造、裝配、服務等生命周期過程中數據以及知識的存儲大多以傳統關系型數據庫為基礎,冗余性較高、分布分散、關聯性較弱且儲量相對較小,強調對數據以及知識的檢索卻較少從語義層面研究數據以及知識的關聯、認知、理解與推理。因此,如何從冗 余的數據與知識文本中抽取有用信息,如何有效表 達數據之間的內在關聯與知識之間的內在關聯,如 何有效利用數據的關聯性與知識的關聯性實現高效 的信息檢索與信息推理,是當前實現智能制造目標 的核心瓶頸之一。知識圖譜(Knowledge graph,KG)來源于谷歌下 一代智能語義搜索引擎技術。其本質上基于語義網 絡的思想,是一種有向圖結構的語義知識庫,用于 以符號形式描述物理世界中的概念及其相互關 系 [3],其應用服務架構如圖 1 所示。在知識圖譜內 部,數據和知識的存儲結構為三元組,形如 s p o , ,其中 s 和 o 為知識圖譜中的節點,分別 代表了主語實體知識和賓語實體知識, p 為知識圖 譜中的邊,代表了從 s 指向 o 的關系知識(謂語)。
知識圖譜具有如下 3 種特點:① 數據及知識的 存儲結構為有向圖結構。有向圖結構允許知識圖譜 有效地存儲數據和知識之間的關聯關系;② 具備高 效的數據和知識檢索能力。知識圖譜可以通過圖匹 配算法,實現高效的數據和知識訪問;③ 具備智能 化的數據和知識推理能力。知識圖譜可以自動化、 智能化地從已有的知識中發現和推理多角度的隱含知識。
目前,知識圖譜技術已經在互聯網領域如搜索引擎、智能問答等發揮了重要作用,同時也已經在 多個領域進行初步應用,比如:金融、電商、醫療 等 [4]。許多國際著名企業也已經開始探索知識圖譜 的應用,比如谷歌、微軟、IBM、蘋果等。與此同 時,在智能制造領域,西門子于 2018 年提出了他們 在知識圖譜領域的規劃[5];博世公司于 2019 年構建 了底盤系統控制相關數據的大型知識圖譜,以提供 有效地數據訪問[6]。然而國內的機械行業針對知識 圖譜的探索卻有些許不足。在研究過程中以及與多家機械相關企業的交流中發現,當前知識圖譜在智 能制造領域應用過程還存在以下不足。
(1) 缺乏對知識圖譜理論的深入認識。目前知 識圖譜相關理論與技術在迅速發展,但是智能制造 領域的專家大多對該技術缺乏深入的了解,無法有 效管理和應用知識圖譜中的數據及知識。
(2) 知識圖譜相關技術在智能制造領域的優勢 不明晰。目前知識圖譜在智能制造領域的應用處于 起步階段,針對產品設計、制造、裝配、服務等過 程所帶來的優勢不是很明確,且在知識圖譜應用于 智能制造領域過程中可能遇到的問題尚不明確。
(3) 知識圖譜相關技術在智能制造領域的應用 場景模糊。當前企業對知識圖譜在智能制造領域的 應用前景有所疑問,不確定知識圖譜技術在產品設 計、制造、裝配和服務等過程的切入點和切入方式。
(4) 知識圖譜在智能制造領域落地所需要的技 術不明確。目前在通用領域上的知識圖譜的研究角 度十分廣泛,但是針對智能制造領域各個應用場景, 所需要使用的知識圖譜相關技術類別卻還不是很明晰。
(5) 智能制造領域相關數據缺乏。目前基于深 度學習的知識圖譜相關技術需要構建一定量的有標 簽數據集,目前通用領域的相關數據集比較多,而 智能制造領域的相關數據卻比較缺乏。
針對以上問題,本文總結了可以應用于智能制 造領域的知識圖譜技術的研究進展。同時從應用出 發,探索了知識圖譜在智能制造領域的 3 大類應用 方向,共 15 小類應用前景,分析了在各個應用前景 上與傳統方法的不同之處,應用過程中所需要的知 識圖譜技術以及實施過程中所待突破的關鍵技術, 為后續知識圖譜在智能制造領域的進一步落地提供 理論支撐和方法參考。
機器視覺是建立在計算機視覺理論工程化基礎上的一門學科,涉及到光學成像、視覺信息處理、人工智能以及機電一體化等相關技術。隨著我國制造業的轉型升級與相關研究的不斷深入,機器視覺技術憑借其精度高、實時性強、自動化與智能化程度高等優點,成為了提升機器人智能化的重要驅動力之一,并被廣泛應用于工業生產、農業以及軍事等各個領域。在廣泛查閱相關文獻之后,針對近十多年來機器視覺相關技術的發展與應用進行分析與總結,旨在為研究學者與工程應用人員提供參考。首先,總結了機器視覺技術的發展歷程、國內外的機器視覺發展現狀;其次,重點分析了機器視覺系統的核心組成部件、常用視覺處理算法以及當前主流的機器視覺工業軟件;然后,介紹了機器視覺技術在產品瑕疵檢測、智能視頻監控分析、自動駕駛與輔助駕駛與醫療影像診斷等四個典型領域的應用;最后分析了當前機器視覺技術所面臨的挑戰,并對其未來的發展趨勢進行了展望。希望為機器視覺技術的發展和應用推廣發揮積極作用。
隨著人工智能技術的快速發展及其在工業系統中卓有成效的應用, 工業智能化成為當前工業生產轉型的一個重要 趨勢. 論文提煉了工業人工智能 (Industrial artificial intelligence, IAI) 的建模、診斷、預測、優化、決策以及智能芯片等共性關 鍵技術, 總結了生產過程監控與產品質量檢測等 4 個主要應用場景. 同時, 論文選擇預測性維護作為工業人工智能的典型應 用場景, 以工業設備的閉環智能維護形式, 分別從模型方法、數據方法以及融合方法出發, 系統的總結和分析了設備的壽命 預測技術和維護決策理論, 展示了人工智能技術在促進工業生產安全、降本、增效、提質等方面的重要作用. 最后, 探討了工 業人工智能研究所面臨的問題以及未來的研究方向.
摘要: 工業4.0將工業制造流程以及產品質量優化從以前依照經驗和觀察進行判斷轉變為以事實為基礎, 通過分析數據進而挖掘潛在價值的完整智能系統. 人工智能技術的快速發展在工業4.0的實現中扮演著關鍵的角色. 然而, 傳統的人工智能技術通常著眼于日常生活、社會交流和金融場景, 而非解決工業界實際所遇到的問題. 相比而言, 工業人工智能技術基于工業領域的具體問題, 利用智能系統提升生產效率、系統可靠性并優化生產過程, 更加適合解決特定的工業問題同時幫助從業人員發現隱性問題, 并讓工業設備有自主能力來實現彈性生產并最終創造更大價值. 本文首先介紹工業人工智能的相關概念, 并通過實際的工業應用案例如元件級的滾珠絲杠、設備級的帶鋸加工機與機器群等不同層次的問題來展示工業人工智能架構的可行性與應用前景.
本文結合工業自動化和信息技術在工業革命中的作用以及制造與生產全流程決策、控制以及運行管理的現狀和智 能化發展方向的分析, 提出了發展工業人工智能的必要性. 通過對人工智能技術的涵義、發展簡史和發展方向的分析以及自 動化與人工智能研究與應用的核心目標、實現方式、研究對象與研究方法等方面的對比分析, 提出了工業人工智能技術的涵 義. 通過對工業人工智能和工業自動化的研究對象與研究目標對比分析, 提出了工業人工智能的研究方向和研究思路與方法。