亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

論文題目:

Machine Learning Techniques for Biomedical Image Segmentation: An Overview of Technical Aspects and Introduction to State-of-Art Applications

論文摘要: 近年來,在開發更精確、更有效的醫學圖像和自然圖像分割的機器學習算法方面取得了重大進展。在這篇綜述文章中,我們強調了機器學習算法在醫學圖像領域實現高效準確分割的重要作用。我們特別關注與機器學習方法在生物醫學圖像分割中的應用相關的幾個關鍵研究。我們回顧了經典的機器學習算法,如馬爾可夫隨機場、k-均值聚類、隨機森林等,雖然這些經典的學習模型往往比深度學習技術更不精確,但它們往往更具樣本效率,結構也更不復雜。我們還回顧了不同的深度學習結構,如人工神經網絡(ANNs)、卷積神經網絡(CNNs)和遞歸神經網絡(RNNs),并給出了這些學習模型在過去三年中取得的分割結果。我們強調了每種機器學習范式的成功和局限性。此外,我們還討論了與不同機器學習模型訓練相關的幾個挑戰,并提出了一些啟發式方法來解決這些挑戰。

付費5元查看完整內容

相關內容

醫學影像是指為了醫療或醫學研究,對人體或人體某部分,以非侵入方式取得內部組織影像的技術與處理過程。它包含以下兩個相對獨立的研究方向:醫學成像系統(medical imaging system)和醫學圖像處理(medical image processing)。前者是指圖像行成的過程,包括對成像機理、成像設備、成像系統分析等問題的研究;后者是指對已經獲得的圖像作進一步的處理,其目的是或者是使原來不夠清晰的圖像復原,或者是為了突出圖像中的某些特征信息,或者是對圖像做模式分類等等。

題目: An Overview of Privacy in Machine Learning

序言: 在過去幾年中,谷歌、微軟和亞馬遜等供應商已經開始為客戶提供軟件接口,使他們能夠輕松地將機器學習任務嵌入到他們的應用程序中。總的來說,機構現在可以使用機器學習作為服務(MLaaS)引擎來外包復雜的任務,例如訓練分類器、執行預測、聚類等等。他們還可以讓其他人根據他們的數據查詢模型。當然,這種方法也可以在其他情況下使用(并且經常提倡使用),包括政府協作、公民科學項目和企業對企業的伙伴關系。然而,如果惡意用戶能夠恢復用于訓練這些模型的數據,那么由此導致的信息泄漏將會產生嚴重的問題。同樣,如果模型的內部參數被認為是專有信息,那么對模型的訪問不應該允許對手了解這些參數。在本文中,我們對這一領域的隱私挑戰進行了回顧,系統回顧了相關的研究文獻,并探討了可能的對策。具體地說,我們提供了大量關于機器學習和隱私相關概念的背景信息。然后,我們討論了可能的對抗模型和設置,涵蓋了與隱私和/或敏感信息泄漏有關的廣泛攻擊,并回顧了最近試圖防御此類攻擊的結果。最后,我們總結出一系列需要更多工作的開放問題,包括需要更好的評估、更有針對性的防御,以及研究與政策和數據保護工作的關系。

付費5元查看完整內容

本文綜述了元學習在圖像分類、自然語言處理和機器人技術等領域的應用。與深度學習不同,元學習使用較少的樣本數據集,并考慮進一步改進模型泛化以獲得更高的預測精度。我們將元學習模型歸納為三類: 黑箱適應模型、基于相似度的方法模型和元學習過程模型。最近的應用集中在將元學習與貝葉斯深度學習和強化學習相結合,以提供可行的集成問題解決方案。介紹了元學習方法的性能比較,并討論了今后的研究方向。

付費5元查看完整內容

題目: Embracing Imperfect Datasets:A Review of Deep Learning Solutions for Medical Image Segmentation

摘要: 醫學影像文獻在基于卷積神經網絡的高性能分割模型方面取得了顯著進展。盡管新的性能很高,最近的高級分割模型仍然需要海量的、典型的,高質量的帶有標簽的數據集。然而,我們很少有一個完美的訓練數據集,特別是在醫學圖像領域,因為獲取數據和打標簽都是昂貴的。近年來,大量的研究對不完全數據集的醫學圖像分割問題進行了研究,解決了兩大數據集的局限性:一是訓練有標簽的數據太少,只有有限的標簽數據可用;二是訓練數據只有稀疏標簽、噪聲標簽或圖像級標簽的軟標簽。在本文中,我們對上述解決方案進行了詳細的回顧,總結了技術創新和經驗結果。我們進一步比較涉及的方法的好處和要求,并提供我們推薦的解決方案。我們希望這篇綜述文章能提高公眾對處理不完善的醫學圖像分割數據集的技術的認識。

付費5元查看完整內容

簡介:

近年來,由于機器學習(ML)/深度學習(DL)技術使用多維醫學圖像,在從一維心臟信號的心臟驟停的預測到計算機輔助診斷(CADx)的各種醫療保健應用中的卓越性能,見證了機器學習(ML)/深度學習(DL)技術的廣泛采用。盡管ML / DL的性能令人印象深刻,但對于ML / DL在醫療機構中的健壯性仍然存有疑慮(由于涉及眾多安全性和隱私問題,傳統上認為ML / DL的挑戰性很大),尤其是鑒于最近的研究結果表明ML / DL容易受到對抗性攻擊。在本文中,我們概述了醫療保健中各個應用領域,這些領域從安全性和隱私性的角度利用了這些技術,并提出了相關的挑戰。此外,我們提出了潛在的方法來確保醫療保健應用程序的安全和隱私保護機器學習。最后,我們提供了有關當前研究挑戰的見解以及未來研究的有希望的方向。

內容大綱:

付費5元查看完整內容

簡介:

深度學習技術在圖像降噪方面獲得了極大的關注。但是,處理噪聲的不同類型的學習方法有很大的差異。具體來說,基于深度學習的判別式學習可以很好地解決高斯噪聲。基于深度學習的優化模型方法對真實噪聲的估計有很好的效果。迄今為止,很少有相關研究來總結用于圖像去噪的不同深度學習技術。在本文中,作者對圖像去噪中不同深度技術進行了比較研究。我們首先對(1)用于加白噪聲圖像的深卷積神經網絡(CNN),(2)用于真實噪聲圖像的深CNN,(3)用于盲目去噪的深CNN和(4)用于混合噪聲圖像的深CNN進行分類,這是噪聲,模糊和低分辨率圖像的組合。然后,又分析了不同類型的深度學習方法的動機和原理。接下來,將在定量和定性分析方面比較和驗證公共去噪數據集的最新方法。最后,論文指出了一些潛在的挑戰和未來研究的方向。

簡要內容:

圖像去噪的深度學習方法的基礎框架:

  • 機器學習方法
  • 神經網絡方法
  • 卷積神經網絡方法

圖像去噪中的深度學習技術:

  • 用于加白噪聲圖像的深卷積神經網絡
  • 深度學習技術可實現真正的噪點圖像降噪
  • 盲降噪的深度學習技術
  • 深度學習技術用于混合噪聲圖像去噪
付費5元查看完整內容

論文主題: Recent Advances in Deep Learning for Object Detection

論文摘要: 機器學習社區已經被大量基于深度學習的方法所淹沒。卷積神經網絡、遞歸神經網絡、對抗神經網絡、自編碼等多種深部神經網絡正有效地解決無約束環境下目標的檢測、定位、識別和分割等具有挑戰性的計算機視覺任務。而關于目標檢測的分析研究已經有很多了或識別領域,許多新的深度學習技術已經浮出水面關于圖像分割技術。本文探討這些不同的圖像分割深度學習技術分析視角。這項工作的主要目標是提供一個對重要技術的直觀理解對圖像分割領域的貢獻。從一些在傳統的圖像分割方法的基礎上,本文對圖像分割技術進行了研究刻劃深度學習對圖像分割領域的影響。此后,大多數主要的分割算法已按照專用于其獨特貢獻的段落進行了邏輯分類。借助大量直觀的說明,可以期望讀者具有更好的可視化這些內部動態的能力流程。

付費5元查看完整內容

論文主題: Machine Learning Techniques for Biomedical Image Segmentation: An Overview of Technical Aspects and Introduction to State‐of‐Art Applications

論文摘要: 近年來,在開發更精確、更有效的醫學圖像和自然圖像分割的機器學習算法方面取得了重大進展。在這篇綜述文章中,我們強調了機器學習算法在醫學影像領域實現高效準確分割的重要作用。我們特別關注與機器學習方法在生物醫學圖像分割中的應用相關的幾個關鍵研究。我們回顧了經典的機器學習算法,如馬爾可夫隨機場、k-均值聚類、隨機森林等。盡管與深度學習技術相比,此類經典學習模型往往不太準確,但它們往往更具樣本效率,結構也不太復雜。我們還回顧了不同的深度學習結構,如人工神經網絡(ANNs)、卷積神經網絡(CNNs)和遞歸神經網絡(RNNs),并給出了這些學習模型在過去三年中取得的分割結果。我們強調了每種機器學習范式的成功和局限性。此外,我們還討論了與不同機器學習模型訓練相關的幾個挑戰,并提出了一些啟發式方法來解決這些挑戰。

付費5元查看完整內容

摘要:深度學習是近年來應用最廣泛的心臟圖像分割方法。在這篇文章中,我們回顧了超過100篇使用深度學習的心臟圖像分割論文,這些論文涵蓋了常見的成像方式,包括磁共振成像(MRI)、計算機斷層掃描(CT)和超聲(US)以及感興趣的主要解剖結構(心室、心房和血管)。此外,公開可用的心臟圖像數據集和代碼庫的摘要也包括在內,為鼓勵重復性研究提供了基礎。最后,我們討論了當前基于深度學習的方法的挑戰和局限性(缺乏標簽、不同領域的模型可泛化性、可解釋性),并提出了未來研究的潛在方向。

付費5元查看完整內容

摘要:近年來,在開發更準確、高效的醫學和自然圖像分割機器學習算法方面取得了重大進展。在這篇綜述文章中,我們強調了機器學習算法在醫學成像領域有效和準確分割中的重要作用。我們特別關注幾個關鍵的研究涉及到應用機器學習方法在生物醫學圖像分割。我們回顧了經典的機器學習算法,如馬爾可夫隨機場、k均值聚類、隨機森林等。盡管與深度學習技術相比,這種經典的學習模型往往精度較低,但它們通常更具有樣本效率,結構也更簡單。我們還回顧了不同的深度學習結構,如人工神經網絡(ANNs)、卷積神經網絡(CNNs)和遞歸神經網絡(RNNs),并給出了這些學習模型在過去三年中獲得的分割結果。我們強調每種機器學習范式的成功和局限性。此外,我們還討論了與不同機器學習模型訓練相關的幾個挑戰,并提出了一些解決這些挑戰的啟發方法。

付費5元查看完整內容

題目: Understanding Deep Learning Techniques for Image Segmentation

簡介: 機器學習已被大量基于深度學習的方法所淹沒。各種類型的深度神經網絡(例如卷積神經網絡,遞歸網絡,對抗網絡,自動編碼器等)有效地解決了許多具有挑戰性的計算機視覺任務,例如在不受限制的環境中對對象進行檢測,定位,識別和分割。盡管有很多關于對象檢測或識別領域的分析研究,但相對于圖像分割技術,出現了許多新的深度學習技術。本文從分析的角度探討了圖像分割的各種深度學習技術。這項工作的主要目的是提供對圖像分割領域做出重大貢獻的主要技術的直觀理解。從一些傳統的圖像分割方法開始,本文進一步描述了深度學習對圖像分割域的影響。此后,大多數主要的分割算法已按照專用于其獨特貢獻的段落進行了邏輯分類。

付費5元查看完整內容
北京阿比特科技有限公司