獲取關于在Python中操作、處理、清理和處理數據集的完整說明。本實用指南的第二版針對Python 3.6進行了更新,包含了大量的實際案例研究,向您展示了如何有效地解決廣泛的數據分析問題。在這個過程中,您將學習最新版本的pandas、NumPy、IPython和Jupyter。 本書由Wes McKinney (Python pandas項目的創建者)撰寫,是一本實用的、現代的Python數據科學工具介紹書。它非常適合剛接觸Python的分析師和剛接觸數據科學和科學計算的Python程序員。數據文件和相關材料可在GitHub上獲得。
使用IPython shell和Jupyter筆記本進行探索性計算 * 學習NumPy (Numerical Python)的基本和高級特性 * 開始使用pandas庫中的數據分析工具 * 使用靈活的工具來加載、清理、轉換、合并和重塑數據 * 使用matplotlib創建信息可視化 * 應用pandas groupby工具對數據集進行切片、切丁和匯總 * 分析和操作規則和不規則時間序列數據 * 了解如何通過全面、詳細的示例解決真實世界的數據分析問題
獲取使用Python操作、處理、清理和處理數據集的權威手冊。對于Python 3.10和pandas 1.4的更新,這個實踐指南的第三版包含了實踐案例研究,向您展示如何有效地解決大量數據分析問題。在此過程中,您將了解最新版本的pandas、NumPy和Jupyter。
本書涉及Python中操作、處理、清理和處理數據的具體細節。我的目標是為Python編程語言的各個部分及其面向數據的庫生態系統和工具提供指導,幫助您成為一名有效的數據分析師。雖然“數據分析”在這本書的標題中,但重點是Python編程、庫和工具,而不是數據分析方法。這是數據分析所需的Python編程。
在我2012年最初出版這本書之后的某個時候,人們開始用數據科學這個術語來概括從簡單的描述性統計到更高級的統計分析和機器學習的一切。從那時起,用于進行數據分析(或數據科學)的Python開源生態系統也得到了顯著的擴展。現在有很多其他的書專門關注這些更高級的方法。我希望本書能夠為您提供充分的準備,使您能夠轉向更具體的領域資源。
目錄內容:
Preface * Preliminaries * Python Language Basics, IPython, and Jupyter Notebooks * Built-In Data Structures, Functions, and Files * NumPy Basics: Arrays and Vectorized Computation * Getting Started with pandas * Data Loading, Storage, and File Formats * Data Cleaning and Preparation * Data Wrangling: Join, Combine, and Reshape * Plotting and Visualization
Data Aggregation and Group Operations* Time Series * Introduction to Modeling Libraries in Python * Data Analysis Examples * Advanced NumPy * More on the IPython System * Index * About the Author
學習如何在編寫高性能python程序和算法中使用數據結構這篇關于數據結構和算法的實用介紹可以幫助每一個想要編寫更高效軟件的程序員。本書以Robert Lafore基于java的傳奇指南為基礎,幫助學生準確理解數據結構和算法是如何運行的。您將學習如何用非常流行的Python語言有效地應用它們,并擴展您的代碼以應對當今的大數據挑戰。在整個過程中,作者關注現實世界的例子,用直觀的交互式可視化交流關鍵思想,并將復雜性和數學限制在提高性能所需的范圍內。他們逐步介紹了數組、排序、堆棧、隊列、鏈表、遞歸、二叉樹、2-3-4樹、哈希表、空間數據結構、圖等等。它們的代碼示例和插圖非常清晰,即使你是一個接近初學者,或者你有使用其他過程或面向對象語言的經驗,你也可以理解它們。
獲取使用Python操作、處理、清理和處理數據集的權威手冊。對于Python 3.10和pandas 1.4的更新,這個實踐指南的第三版包含了實踐案例研究,向您展示如何有效地解決大量數據分析問題。在此過程中,您將了解最新版本的pandas、NumPy和Jupyter。
本書涉及Python中操作、處理、清理和處理數據的具體細節。我的目標是為Python編程語言的各個部分及其面向數據的庫生態系統和工具提供指導,幫助您成為一名有效的數據分析師。雖然“數據分析”在這本書的標題中,但重點是Python編程、庫和工具,而不是數據分析方法。這是數據分析所需的Python編程。
在我2012年最初出版這本書之后的某個時候,人們開始用數據科學這個術語來概括從簡單的描述性統計到更高級的統計分析和機器學習的一切。從那時起,用于進行數據分析(或數據科學)的Python開源生態系統也得到了顯著的擴展。現在有很多其他的書專門關注這些更高級的方法。我希望本書能夠為您提供充分的準備,使您能夠轉向更具體的領域資源。
目錄內容:
Preface * Preliminaries * Python Language Basics, IPython, and Jupyter Notebooks * Built-In Data Structures, Functions, and Files * NumPy Basics: Arrays and Vectorized Computation * Getting Started with pandas * Data Loading, Storage, and File Formats * Data Cleaning and Preparation * Data Wrangling: Join, Combine, and Reshape * Plotting and Visualization
Data Aggregation and Group Operations* Time Series * Introduction to Modeling Libraries in Python * Data Analysis Examples * Advanced NumPy * More on the IPython System * Index * About the Author
Python是訪問、操作和從各種數據中獲得見解的理想選擇。Python for Data Science通過根植于實際示例和實踐活動的邊做邊學的方法向您介紹Python的數據分析世界。您將學習如何編寫Python代碼來獲取、轉換和分析數據,為業務管理、市場營銷和決策支持中的用例實踐最先進的數據處理技術。
您將發現Python豐富的用于基本操作的內置數據結構集,以及用于數據科學的魯棒的開源庫生態系統,包括NumPy、pandas、scikit-learn、matplotlib等。這些示例展示了如何以各種格式加載數據,如何簡化、分組和聚合數據集,以及如何創建圖表、地圖和其他可視化功能。后面的章節將深入展示真實世界的數據應用,包括使用位置數據來推動出租車服務,市場籃子分析來識別共同購買的商品,以及機器學習來預測股票價格。
Introduction
**Chapter 1: **The Basics of Data Chapter 2: Python Data Structures **Chapter 3: **Python Data Science Libraries Chapter 4: Accessing Data from Files and APIs Chapter 5: Working with Databases **Chapter 6: **Aggregating Data Chapter 7: Combining Datasets **Chapter 8: **Creating Visualizations **Chapter 9: **Analyzing Location Data Chapter 10: Analyzing Time Series Data Chapter 11: Gaining Insights from Data Chapter 12: Machine Learning for Data Analysis
本書通過使用Python的案例研究來探索數據分析和統計的基礎知識。這本書將向你展示如何自信地用Python編寫代碼,以及如何使用各種Python庫和函數來分析任何數據集。該代碼在Jupyter 筆記本中提出,可以進一步調整和擴展。
這本書分為三個部分——用Python編程,數據分析和可視化,以及統計。首先介紹Python——語法、函數、條件語句、數據類型和不同類型的容器。然后,您將回顧更高級的概念,如正則表達式、文件處理和用Python解決數學問題。
本書的第二部分將介紹用于數據分析的Python庫。將有一個介紹性的章節涵蓋基本概念和術語,和一個章節的NumPy(科學計算庫),NumPy(數據角力庫)和可視化庫,如Matplotlib和Seaborn。案例研究將包括作為例子,以幫助讀者理解一些實際應用的數據分析。
本書的最后幾章集中在統計學上,闡明了與數據科學相關的統計學的重要原則。這些主題包括概率、貝葉斯定理、排列和組合、假設檢驗(方差分析、卡方檢驗、z檢驗和t檢驗),以及Scipy庫如何簡化涉及統計的繁瑣計算。
你會: 進一步提高你的Python編程和分析技能 用Python解決微積分、集合論和代數中的數學問題 使用Python中的各種庫來結構化、分析和可視化數據 使用Python進行實際案例研究 回顧基本的統計概念,并使用Scipy庫來解決統計方面的問題
本書由 Python pandas 項目創始人Wes McKinney 親筆撰寫,詳細介紹利用 Python 進行操作、處理、清洗和規整數據等方面的具體細節和基本要點。第 2 版針對 Python 3.6 進行全面修訂和更新,涵蓋新版的 pandas、NumPy、IPython 和 Jupyter,并增加大量實際案例,可以幫助你高效解決一系列數據分析問題。
本書最大的特點是通過介紹 Python 編程和用于數據處理的庫和工具環境,可以讓你成為一個數據分析專家。雖然本書的標題是“數據分析”,重點卻是 Python 編程、庫,以及用于數據分析的工具。這就是數據分析要用到的 Python 編程。
//index-of.es/Varios-2/Python%20for%20Data%20Analysis.pdf
中文版
Python是一種多范式編程語言,已經成為數據科學家進行數據分析、可視化和機器學習的首選語言。有沒有想過如何成為有效處理數據分析問題的專家,解決這些問題,并從數據中提取所有可用信息?好了,別再找了,這就是你要的書!
通過這個全面的指南,您將探索數據,并以一種有意義的方式展示統計分析的結果和結論。您將能夠快速準確地執行實際操作的排序、縮減和后續分析,并充分理解數據分析方法如何支持業務決策。
您將首先了解Python中可用的數據分析工具,然后探索用于識別數據模式的統計模型。漸漸地,您將使用Python、panda和SciPy回顧統計推斷。在此之后,我們將集中于使用計算工具執行回歸,您將了解如何用算法的方式識別數據中的集群。最后,我們將深入探討使用貝葉斯方法量化因果關系的高級技術,您將發現如何使用Python的工具進行監督機器學習。
你會學到什么
在Python中獲得操作、處理、清理和處理數據集的完整說明。本實用指南的第二版針對Python 3.6進行了更新,其中包含了大量的實際案例研究,向您展示了如何有效地解決廣泛的數據分析問題。在這個過程中,您將學習最新版本的panda、NumPy、IPython和Jupyter。
本書由Python panda項目的創建者Wes McKinney編寫,是對Python中的數據科學工具的實用的、現代的介紹。對于剛接觸Python的分析人員和剛接觸數據科學和科學計算的Python程序員來說,它是理想的。數據文件和相關材料可以在GitHub上找到。
這本教科書解釋的概念和技術需要編寫的程序,可以有效地處理大量的數據。面向項目和課堂測試,這本書提出了一些重要的算法,由例子支持,給計算機程序員面臨的問題帶來意義。計算復雜性的概念也被介紹,演示什么可以和不可以被有效地計算,以便程序員可以對他們使用的算法做出明智的判斷。特點:包括介紹性和高級數據結構和算法的主題,與序言順序為那些各自的課程在前言中提供; 提供每個章節的學習目標、復習問題和編程練習,以及大量的說明性例子; 在相關網站上提供可下載的程序和補充文件,以及作者提供的講師資料; 為那些來自不同的語言背景的人呈現Python的初級讀本。