簡介: Python作為目前受歡迎的語言之一,越來越多的人成為Pythoner,這本書不僅僅是一本Python說明書,該書基于Python3.7。 Python中的經典計算機科學問題可以使用經過時間驗證的方案,練習和算法來提高您的CS解決問題的能力。看起來很新或獨特的計算機科學問題通常源于經典算法,編碼技術和工程原理。并且經典方法仍然是解決它們的最佳方法!通過對本書的學習,將解決許多編碼難題,從簡單的任務(如二進制搜索算法)到使用k-means進行數據聚類。該書主要包括:
目錄:
作者介紹: David Kopec是位于佛蒙特州伯靈頓的尚普蘭學院的計算機科學與創新助理教授。他是一個有經驗的軟件開發者.
理解并實施panda的大數據分析解決方案,強調性能。本書通過探索其底層實現和數據結構,增強了您使用Python數據分析庫pandas的直覺。
《Pandas 編程思想》介紹了大數據的主題,并通過觀看pandas幫助解決的激動人心和有影響力的項目來展示概念。從那里,您將學習按大小和類型評估您自己的項目,以確定pandas是否適合您的需要。作者Hannah Stepanek解釋了如何在pandas中有效地加載和規范化數據,并回顧了一些最常用的加載器和它們的幾個最強大的選項。然后,您將了解如何有效地訪問和轉換數據,應該避免哪些方法,以及何時使用更高級的性能技術。您還將學習基本的數據訪問、學習panda和直觀的字典語法。此外,還討論了如何選擇正確的DataFrame格式、使用多層次的DataFrame以及將來如何改進panda。
在本書結束時,您將對pandas庫的底層工作原理有一個牢固的理解。準備好用正確的方法在你自己的項目中做出自信的決定。
你將學到什么
這本書是給誰的
本書介紹了自由軟件Python及其在統計數據分析中的應用。它涵蓋了連續、離散和分類數據的常見統計測試,以及線性回歸分析和生存分析和貝葉斯統計的主題。每個測試的Python解決方案的工作代碼和數據,以及易于遵循的Python示例,可以被讀者復制,并加強他們對主題的直接理解。隨著Python生態系統的最新進展,Python已經成為科學計算的一種流行語言,為統計數據分析提供了一個強大的環境,并且是R的一個有趣的替代選擇。本書面向碩士和博士學生,主要來自生命和醫學科學,具有統計學的基本知識。由于該書還提供了一些統計方面的背景知識,因此任何想要執行統計數據分析的人都可以使用這本書。
高斯過程(GPs)為核機器的學習提供了一種有原則的、實用的、概率的方法。在過去的十年中,GPs在機器學習社區中得到了越來越多的關注,這本書提供了GPs在機器學習中理論和實踐方面長期需要的系統和統一的處理。該書是全面和獨立的,針對研究人員和學生在機器學習和應用統計學。
這本書處理監督學習問題的回歸和分類,并包括詳細的算法。提出了各種協方差(核)函數,并討論了它們的性質。從貝葉斯和經典的角度討論了模型選擇。討論了許多與其他著名技術的聯系,包括支持向量機、神經網絡、正則化網絡、相關向量機等。討論了包括學習曲線和PAC-Bayesian框架在內的理論問題,并討論了幾種用于大數據集學習的近似方法。這本書包含說明性的例子和練習,和代碼和數據集在網上是可得到的。附錄提供了數學背景和高斯馬爾可夫過程的討論。
統計學習是一套以復雜數據建模和數據理解為目的的工具集,是近期才發展起來的統計學的一個新領域。本書出自統計學習領域聲名顯赫的幾位專家,結合R語言介紹了分析大數據必不可少的工具,提供一些重要的建模和預測技術,并借助豐富的實驗來解釋如何用R語言實現統計學習方法。論題包括線性回歸、分類、重抽樣方法、壓縮方法、基于樹的方法、支持向量機、聚類等,作者借助彩圖和實際案例直觀解釋這些方法。為了讀者更好地理解書中內容,每章后還配有豐富的概念性和應用性練習題。
書中內容與《The Elements of Statistical Learning》的大部分內容相同,但是本書起點低,弱化了數學推導的細節,更注重方法的應用,所以更適合作為入門教材。當然,這本《統計學習導論》不僅是優秀的“統計學習”或“機器學習”課程的教材,也是數據挖掘、數據分析等相關從業者不可或缺的參考書。
Gareth James 斯坦福大學統計學博士畢業,師從Trevor Hastie。現為南加州大學馬歇爾商學院統計學教授,美國統計學會會士,數理統計協會終身會員,新西蘭統計協會會員。《Statistica Sinica》、《Applications and Case Studies》、《Theory and Methods》等期刊的副主編。
Daniela Witten 斯坦福大學統計學博士畢業,師從Robert Tibshirani。現為華盛頓大學生物統計學副教授,美國統計學會和國際數理統計協會會士,《Journal of Computational and Graphical Statistics》和《Biometrika》等期刊副主編。
Trevor Hastie 美國統計學家和計算機科學家,斯坦福大學統計學教授,英國皇家統計學會、國際數理統計協會和美國統計學會會士。Hastie參與開發了 R 中的大部分統計建模軟件和環境,發明了主曲線和主曲面。
Robert Tibshirani 斯坦福大學統計學教授,國際數理統計協會、美國統計學會和加拿大皇家學會會士,1996年COPSS總統獎得主,提出lasso方法。Hastie和Tibshirani都是統計學習領域的泰山北斗,兩人合著《The Elements of Statistical Learning》,還合作講授斯坦福大學的公開課《統計學習》。
?
改進您的編程技術和方法,成為一個更有生產力和創造性的Python程序員。本書探索了一些概念和特性,這些概念和特性不僅將改進您的代碼,而且還將幫助您理解Python社區,并對Python哲學有深入的了解和詳細的介紹。
專業的Python 3,第三版給你的工具寫干凈,創新的代碼。它首先回顧了一些核心的Python原則,這些原則將在本書后面的各種概念和示例中進行說明。本書的前半部分探討了函數、類、協議和字符串的各個方面,描述了一些技術,這些技術可能不是常見的知識,但它們共同構成了堅實的基礎。后面的章節涉及文檔、測試和應用程序分發。在此過程中,您將開發一個復雜的Python框架,該框架將整合在本書中所學到的思想。
這個版本的更新包括Python 3中迭代器的角色、用Scrapy和BeautifulSoup進行web抓取、使用請求調用沒有字符串的web頁面、用于分發和安裝的新工具等等。在本書的最后,您將準備好部署不常見的特性,這些特性可以將您的Python技能提升到下一個級別。
你將學習
這本書是給誰看的 熟悉Python的中級程序員,希望提升到高級水平。您應該至少編寫了一個簡單的Python應用程序,并且熟悉基本的面向對象方法、使用交互式解釋器和編寫控制結構。
Python算法,第二版解釋了Python方法的算法分析和設計。本書由《初級Python》的作者Magnus Lie Hetland撰寫,主要關注經典算法,但也對基本的算法解決問題技術有了深入的理解。
這本書涉及一些最重要和最具挑戰性的領域的編程和計算機科學在一個高度可讀的方式。它涵蓋了算法理論和編程實踐,演示了理論是如何反映在真實的Python程序中的。介紹了Python語言中內置的著名算法和數據結構,并向用戶展示了如何實現和評估其他算法和數據結構
這本教科書解釋的概念和技術需要編寫的程序,可以有效地處理大量的數據。面向項目和課堂測試,這本書提出了一些重要的算法,由例子支持,給計算機程序員面臨的問題帶來意義。計算復雜性的概念也被介紹,演示什么可以和不可以被有效地計算,以便程序員可以對他們使用的算法做出明智的判斷。特點:包括介紹性和高級數據結構和算法的主題,與序言順序為那些各自的課程在前言中提供; 提供每個章節的學習目標、復習問題和編程練習,以及大量的說明性例子; 在相關網站上提供可下載的程序和補充文件,以及作者提供的講師資料; 為那些來自不同的語言背景的人呈現Python的初級讀本。
本書是為那些對數據科學感興趣的Python程序員編寫的。唯一的先決條件是Python的基本知識。不需要有使用復雜算法的經驗。數學背景不是必須的。讀完這本書的業余愛好者將獲得獲得第一份高薪數據科學工作所必需的技能。這些技能包括:
開放式解決問題的能力對于數據科學職業來說是必不可少的。不幸的是,這些能力不能通過閱讀來獲得。要成為一個問題解決者,你必須堅持解決困難的問題。帶著這種想法,我的書圍繞著案例研究展開:以真實世界為模型的開放式問題。案例研究范圍從在線廣告分析到使用新聞數據跟蹤疾病暴發。
這本書在對算法工作原理的高層次理解和對優化模型的具體細節的了解之間找到一個平衡點。這本書將給你的信心和技能時,開發所有主要的機器學習模型。在這本Pro機器學習算法中,您將首先在Excel中開發算法,以便在用Python/R實現模型之前,實際了解可以在模型中調優的所有細節。
你將涵蓋所有主要的算法:監督和非監督學習,其中包括線性/邏輯回歸;k - means聚類;主成分分析;推薦系統;決策樹;隨機森林;“GBM”;和神經網絡。您還將通過CNNs、RNNs和word2vec等文本挖掘工具了解最新的深度學習。你不僅要學習算法,還要學習特征工程的概念來最大化模型的性能。您將看到該理論與案例研究,如情緒分類,欺詐檢測,推薦系統,和圖像識別,以便您得到最佳的理論和實踐為工業中使用的絕大多數機器學習算法。在學習算法的同時,您還將接觸到在所有主要云服務提供商上運行的機器學習模型。
你會學到什么?
這本書是給誰看的
希望轉換到數據科學角色的業務分析師/ IT專業人員。想要鞏固機器學習知識的數據科學家。
【導讀】Python現在是編程首選語言,但是面向數據科學家的Python的教程并非那么好上手。最近Wenqiang Feng, Xu Gao and Upendra Madam三位數據科學家撰寫了一本《給數據科學家的Python技能秘籍》,簡明扼要,非常實用,使用與數據科學家相關的詳細演示代碼和示例來共享一些用于數據科學家工作的有用python技巧,值得放在身旁學習查看!
地址: //runawayhorse001.github.io/PythonTipsDS/pd.html
為什么寫這本筆記?
不管你喜歡與否,Python一直是最流行的編程語言之一。我已經使用Python將近4年了。坦白地說,在第一次使用Python時,我并沒有被它所吸引。在開始工作后,我不得不使用Python。漸漸地,我認識到了Python的優雅之處,并將其作為我的主要編程語言之一。但我相信:
大多數強調編程的Python書籍或教程會淹沒新入門的用戶。
雖然大多數用于數據科學家或數據分析的Python書籍或教程都沒有涵蓋工程師方面的一些基本技能。
所以我想保留一些有價值的建議,這些建議在我的日常工作中得到了廣泛的應用。